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Abstract

Large language models (LLMs) possess exten-
sive world knowledge, including geospatial
knowledge, which has been successfully
applied to various geospatial tasks such
as mobility prediction and social indicator
prediction. However, LLMs often generate
inaccurate geospatial knowledge, leading
to geospatial hallucinations—incorrect or
inconsistent representations of geospatial
information—that compromise their reliability.
While the phenomenon of general knowledge
hallucination in LLMs has been widely studied,
the systematic evaluation and mitigation
of geospatial hallucinations remain largely
unexplored. To address this gap, we propose
a comprehensive evaluation framework for
geospatial hallucinations, leveraging structured
geospatial knowledge graphs for controlled
assessment. Through extensive evaluation
across 20 advanced LLMs, we uncover the
hallucinations in their geospatial knowledge.
Building on these insights, we introduce a
dynamic factuality aligning method based on
Kahneman-Tversky Optimization (KTO) to
mitigate geospatial hallucinations in LLMs,
leading to a performance improvement of
over 29.6% on the proposed benchmark.
Extensive experimental results demonstrate the
effectiveness of our benchmark and learning
algorithm in enhancing the trustworthiness of
LLMs in geospatial knowledge and reasoning
tasks. Codes and data are available via
https://github.com/tsinghua-fib-lab/
GeospatialHallucination.

1 Introduction

Recently, large language models (LLMs), known
for their excellent reasoning abilities (Wei et al.,
2022) and extensive world knowledge (Yu et al.,
2023; Ivanova et al., 2024), have been widely ap-
plied across various domains.The extensive geospa-
tial knowledge embedded in LLMs has also been
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Figure 1: An overview of our work. In order to ad-
dress real-world geospatial hallucination of LLMs. We
propose 1) GEOHALUBENCH to detect and evaluate
geospatial knowledge errors, 2) DynamicKTO to enhance
LLMs’ factuality effectively and efficiently.

explored (Gurnee and Tegmark, 2023; Roberts
et al., 2023) and successfully applied to vari-
ous geospatial tasks. Gurnee et al.(Gurnee and
Tegmark, 2023) and Roberts et al.(Roberts et al.,
2023) demonstrate that LLMs maintain grounded
geospatial knowledge that accurately reflects the
real world. Leveraging this geospatial knowledge,
LLM-based methods have shown promising per-
formance in several geospatial tasks, including
GeoLLM for social indicator prediction (Manvi
et al., 2023), AgentMove for global mobility pre-
diction (Feng et al., 2024b), and UrbanCLIP for
robust and effective urban representation (Yan et al.,
2024).

While the world knowledge embedded in LLMs
has contributed to their widespread success in
various applications over the past two years, re-
searchers have identified significant errors and self-
contradictions—referred to as hallucinations—in
the generated results of LLMs, particularly in
domain-specific areas (Huang et al., 2023; Ji et al.,
2023). These hallucinations significantly affect the
trustworthiness of LLMs and their performance
in real-world applications. Geospatial knowledge
within LLMs also exhibits notable hallucinations in
practical use cases (Manvi et al., 2024; Feng et al.,
2024c). Detecting and mitigating these hallucina-

870

https://github.com/tsinghua-fib-lab/GeospatialHallucination
https://github.com/tsinghua-fib-lab/GeospatialHallucination


tions has become a critical problem for the develop-
ment and reliable deployment of LLMs in the real
world. While various solutions have been proposed
for general and domain-specific knowledge hallu-
cinations (Zhang et al., 2024; Chen et al., 2024),
systematic evaluation and mitigation of geospa-
tial knowledge hallucinations remain largely un-
explored. This is particularly challenging due to
two main factors. First, geospatial data is complex
and diverse, resulting in varied manifestations of
associated spatial hallucinations. Second, general
hallucination reduction methods often fail to ac-
count for the unique characteristics of geospatial
knowledge, e.g., various elements and relations
between them.

In this paper, we propose a systematic bench-
mark and an effective factuality aligning method
to evaluate and mitigate geospatial hallucinations
in LLMs. We first build SpatialKG to reorganize
the diverse and unstructured geospatial data, and
introduce a set of geospatial evaluation questions,
along with a systematic taxonomy of hallucina-
tions. Furthermore, the elements in the evaluation
questions are flexible and customizable, allowing
for a thorough localization of the shortcomings
in geospatial hallucinations across various LLMs.
After evaluating 20 advanced LLMs using our pro-
posed benchmark, we find that most of them, es-
pecially the open-source LLMs, exhibit significant
hallucinations. Based on our observations of these
geospatial hallucinations, we develop DynamicKTO
to effectively mitigate the geospatial hallucinations
in smaller-scale, open-source LLMs by enhancing
the KTO algorithm with dynamic factuality align-
ing. With the help of DynamicKTO, LLama3.1-8B
achieves a significant performance improvement
on the proposed benchmark and demonstrates com-
petitive performance compared to the second-best
model among the 20 advanced LLMs we evaluated.
In summary, our contributions are threefold.

• To the best of our knowledge, we are the first to
systematically evaluate and mitigate the geospa-
tial hallucinations in LLMs.

• We have developed a comprehensive bench-
mark to assess geospatial hallucinations and
analyze the performance of 20 advanced LLMs
within this framework.

• We propose DynamicKTO, which extends the
KTO by incorporating dynamic factuality align-
ing to account for the diversity and heterogene-
ity of geospatial knowledge and data.

• Extensive experiments on GEOHALUBENCH

and DynamicKTO demonstrate the effectiveness
of our proposed framework in evaluating and
mitigating geospatial hallucinations.

2 Methods

2.1 SpatialKG: Structured Geospatial
Knowledge Organization

As a reliable and informative knowledge base is
essential for the definition, detection, and mitiga-
tion of the hallucination problem. We construct
a high-quality knowledge graph called SpatialKG
based on previous work (Liu et al., 2023b). We
design a new schema (the high-level structure of
KG, including the types of entities and relations) in
order to capture fundamental elements in the urban
environment and to cover most important relations
for geospatial cognition.

In SpatialKG, fundamental entities include Point
of Interest (POI), Area of Interest (AOI) and Road
as basic elements describing urban and rural struc-
tures. Based on the types of entity in SpatialKG,
we conclude the typical and important relations
to describe the spatial connections between enti-
ties as follows: POI-LocateAt-AOI, POI-Near-POI,
AOI-Near-AOI, AOI-ConnectTo-Road, and Road-
Intersect-Road. Mastering the real-world knowl-
edge does not only imply the memory of existing
entities’ names, but also refers to the capability
of recognizing their important attributes. We se-
lect the following attributes and link them to the
entities in SpatialKG. For POI, address and cate-
gory are basic information considered. For regions,
attributes include area and type of land use (indus-
trial, residential, etc.). As for Road, we select the
length of a road as its attribute discussed.

SpatialKG is automatically constructed from
OpenStreetMap1 and Foursquare’s Open Source
Places2, which are updating and high-quality city
data sources. We design a pipeline to examine and
filter the original data for quality control.

2.2 GEOHALUBENCH: Geospatial
Hallucination Benchmarking

With adequate knowledge from SpatialKG, we can
classify and benchmark LLM’s geospatial halluci-
nation of real world.

1https://www.openstreetmap.org
2https://opensource.foursquare.com/os-places/
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GEOHALUBENCH

Figure 2: An illustration of the hierarchy and composi-
tion of GEOHALUBENCH.

2.2.1 GEOHALUBENCH Composition
In this section, we introduce the overall composi-
tion of GEOHALUBENCH. As shown in Figure 2,
we organize data from SpatialKG into a system-
atic benchmark with 3 first-level categories and 5
second-level categories. GEOHALUBENCH con-
sists of several branches, each corresponding to the
regions of a city. Each city includes 21 tasks with
a total of 2,100 instances.

2.2.2 Spatial World Hallucination Taxonomy
The concept of hallucination traces its roots to the
fields of pathology and psychology (Macpherson
and Platchias, 2013). Within the realm of NLP, hal-
lucination is typically referred to as a phenomenon
in which the generated content appears nonsensi-
cal or unfaithful to the provided source content
(Filippova, 2020; Maynez et al., 2020). However,
existing studies on hallucinations in LLMs typi-
cally define hallucination as the generation of in-
correct content in terms of factuality or faithfulness
(Maynez et al., 2020; Ji et al., 2023; Huang et al.,
2023; Xu et al., 2024).

However, these broad definitions can be vague
and insufficient for guiding further and in-depth
research for specific fields. To address this gap,
we propose a taxonomy for spatial world knowl-
edge hallucination, grounded in knowledge struc-
ture. Briefly speaking, geospatial hallucination
refers to fabrication of non existing geospatial enti-
ties or relations, omission of actual existences, and
confusion of their attributions in this work, which
is an important subset of hallucination. A more

detailed taxonomy within the concept of geospatial
hallucination.
Entity-wise. In this first-level category, we con-
sider the entities in the scenario of hallucination.
There are two subcategories that detect different
types of hallucinations. 1) Entity Fabrication:
LLMs will fabricate facts that do not exist actually.
2) Entity Omission: LLMs will forget factually
existing entities.
Relation-wise. Another first-level category roots
from the relation among entities. The two subcate-
gories define and examinze the hallucination types
in terms of mutual relations between entities. 1)
Relation Fabrication: This type of hallucination
refers to the error of fabricating a factual inaccurate
relation between entities. 2) Relation Omission: It
is a type of hallucination that omits actual relations
in the real world.
Attribute-wise. This category represents a com-
mon type of the geospatial hallucination in the real
world. 1) Attribute Confusion. Even the knowl-
edge about some entities is reliable, there may be
errors about its attribute, like category, length, area,
etc. in the field of geospatial cognition.

2.2.3 GEOHALUBENCH Construction
Every testing sample in GEOHALUBENCH con-
tains a multiple choice question, one reference an-
swer, and a mapping from options to hallucination
types. The detailed construction pipeline is de-
scribed below.
Factual Information Retrieval. Benchmarking
hallucination is based on reliable factual data
source. According to the proposed taxonomy
of geospatial hallucination, we sample from Spa-
tialKG in predefined patterns for entity, entity-
entity relation, or entity-attribute. They are used as
ground truths.
Hallucination Generation. In each test case, we
curate distracting options corresponding to differ-
ent error types to detect the hallucination type of
the testee. These distracting options need halluci-
nation data with given hallucination type. For En-
tity Fabrication, we first construct non-existing but
plausible entities by instructing Meta-Llama-3.1-
405B-Instruct. Then, the actual entities in reality
are filtered out through comparing with SpatialKG.
For Relation Fabrication category, irrelevant rela-
tions within SpatialKG are created and introduced
as hallucinated information. Entity Omission and
Relation Omission utilize a void option (None of
the others) as the negative option. As for Attribute
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Confusion, we randomly select values of attribute
that is not close to the accurate value than a set
threshold.

Figure 3: An example case of GEOHALUBENCH, where
the multiple-choice options are labeled with distinct
colors, and the corresponding hallucination types are
highlighted in corresponding colors for clarity.

Test Question
Here is a multiple-choice question:
Which of the following is a point of interest in Bei-
jing?
A. Silver Spoon Cafe
B. Haidian Library
C. None of the other options
Please select from A, B, C. Output your answer di-
rectly

Hallucination Type
Hallucinated, Entity Fabrication
Factual
Hallucinated, Entity Omission

After factual information retrieval and halluci-
nation generation, the data are transformed into a
multiple-choice question, where each option cor-
responds to a specific type of hallucination or a
non-hallucination response. An example is demon-
strated in Figure 3.

2.3 DynamicKTO: Optimization for
Hallucination Mitigation

2.3.1 Kahneman-Tversky Optimization
Kahneman-Tversky Optimization (KTO) (Etha-
yarajh et al., 2024) is a human-aware loss that di-
rectly maximizes the utility of generations inspired
by a Kahneman-Tversky model of human utility.
Inventors have shown that it matches or exceeds
the performance of preference-based methods like
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) with a more flexible data requirement.

2.3.2 DynamicKTO

In standard KTO, a hyperparameter β ∈ R+ is in-
troduced to the value function as a control of risk
aversion, which serves a similar effect as β in the
DPO loss, controlling how far πθ drifts from πref.
However, a fixed beta means the same risk man-
agement strategy throughout the dataset, which is
not appropriate with varying training data. If the
answer to a task is relative easy and fixed, a higher
β will encourage a closer generation with training
samples to avoid risk, resulting in a better perfor-

mance, vice versa when answers are less certain. A
single, unified β value is inadequate for addressing
the diverse tasks involved in hallucination mitiga-
tion, which is further illustrated by an additional
theoretical analysis in Appendix A.2.

Therefore, we propose DynamicKTO, an im-
proved version of the Kahneman-Tversky Opti-
mization (KTO) algorithm for hallucination mit-
igation, where the hyperparameter β is dynami-
cally adjusted. The dynamic β is a function of the
training sample’s feature, allowing more flexible
adaptation during the optimization process. The
loss function is as follows:
LDynamicKTO(πθ, πref) = Ex,y∼D[λy − v(x, y)],

where
rθ(x, y) = log

πθ(y|x)
πref(y|x)

,

z0 = KL(πθ(y
′|x)∥πref(y

′|x)),
β(x) = Type2Beta(x),

v(x, y) =

{
λDσ(β(x)(rθ(x, y)− z0)) if y ∼ ydesirable|x,
λUσ(β(x)(z0 − rθ(x, y))) if y ∼ yundesirable|x.

For geospatial hallucination mitigation, β is ad-
justed to 0.1, 0.3, and 0.5 for Entity, Relation, and
Attribute respectively.

3 Experiments

3.1 Benchmarking Spatial Hallucination:
GEOHALUBENCH

We systematically evaluate representative LLMs on
their geospatial hallucination situation with GEO-
HALUBENCH. All evaluations are conducted un-
der zero-shot setting with each model’s default
prompts. We use the greedy decoding strategy for
all LLMs to ensure reproducibility. Following stan-
dard practices, Accuracy based on pattern matching
is used as the primary metric.
Results: Hallucination Level. Main results of
Beijing are shown in Table 1. The general per-
formance results are relatively low, revealing sig-
nificant geospatial hallucinations among different
LLMs, even state-of-the-art ones. Parameter size
plays a crucial role in determining the level of hal-
lucination. For instance, within the Qwen family,
larger models generally exhibit higher performance
when handling spatial world knowledge. However,
it is noteworthy that two Qwen2.5 models, with
parameter sizes under 3B, perform exceptionally
well in this task despite their smaller scale. This
suggests that spatial factual tests present a unique
challenge compared to other tasks, offering poten-
tial for improvement even with more limited model
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Table 1: Results of GEOHALUBENCH on Beijing. For open-source LLMs, the results are presented in descending
order of model size. The reported accuracy represents the macro average across the three dimensions in the "Overall"
category and the micro average for all other categories. "Ranking" indicates the model’s position among the tested
LLMs.

Model License Size Entity Relation Attribute Overall Ranking

Gemini-2.0-flash Proprietary - 0.4767 0.4936 0.5400 0.5034 1
Qwen-max-2025-01-25 Proprietary - 0.4600 0.4864 0.5160 0.4875 2
Qwen-plus-2025-01-25 Proprietary - 0.4183 0.4840 0.5360 0.4794 3
GPT-4o-mini Proprietary - 0.4467 0.4520 0.4640 0.4542 6
GPT-4o Proprietary - 0.4083 0.4344 0.4680 0.4369 8

DeepSeek-V3 Open 671B 0.4667 0.4528 0.4920 0.4705 4
Llama-3.1-405B-Instruct Open 405B 0.3683 0.4216 0.4480 0.4126 14
Qwen2.5-72B-Instruct Open 72B 0.3983 0.4304 0.5360 0.4549 5
Llama-3.3-70B-Instruct Open 70B 0.3933 0.3952 0.4800 0.4228 11
Llama-3.1-70B-Instruct Open 70B 0.3717 0.4016 0.4520 0.4084 15

Qwen2.5-32B-Instruct Open 32B 0.4100 0.3704 0.5040 0.4281 10
Mistral-Small-24B-Instruct-2501 Open 24B 0.2867 0.1920 0.3280 0.2689 20
Phi-4 Open 14B 0.4317 0.4072 0.5040 0.4476 7
Qwen2.5-14B-Instruct Open 14B 0.3950 0.3920 0.4800 0.4223 12

Llama-3.1-8B-Instruct Open 8B 0.4183 0.3752 0.2400 0.3445 19
Qwen2.5-7B-Instruct Open 7B 0.3550 0.3056 0.5040 0.3882 16
Qwen2.5-3B-instruct Open 3B 0.3233 0.3272 0.4600 0.3702 17
Qwen2.5-1.5B-instruct Open 1.5B 0.3517 0.4328 0.4600 0.4148 13
Qwen2.5-0.5B-instruct Open 0.5B 0.4400 0.4552 0.3920 0.4291 9

Random - - 0.4100 0.3880 0.2680 0.3553 18

sizes. The top three LLMs in GEOHALUBENCH

are all proprietary models, which require substan-
tial resources for both training and inference. Nev-
ertheless, several open-sourced models have proven
competitive, even outperforming GPT-4o.
Results: Hallucination Types. The distribution of
hallucination types of Beijing is presented in Figure
4. The behavior of hallucination varies across dif-
ferent LLMs, depending on factors such as model
size and training pipelines. With a few exceptions,
most of the LLMs tested are able to follow the
instructions in GEOHALUBENCH relatively accu-
rately. In general, the ratio of Omission to Fabri-
cation is notably higher than expected, suggesting
that the primary cause of geospatial hallucination is
a lack of knowledge, rather than the generation of
non-factual content. In contrast to other model fam-
ilies, the LLaMA series demonstrates a pronounced
tendency to fabricate assertions, a tendency that di-
minishes as the model’s parameter size increases.
The Qwen family exhibits a spindle-shaped pattern
with respect to Entity/Relation Omission as model
size scales, with models ranging from 3B to 32B be-
ing more prone to omitting real-world information.
The incidence of hallucinations involving attribute
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Figure 4: Distributions of Hallucination Types and In-
struction Following Violation of different LLMs. Mod-
els are listed at name order. All the LLMs are chat
models instruction-tuned by their developers.
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Figure 5: The introduction of the Refuse/Abstain option alters the ranking of LLMs. The line chart illustrates the
percentile rankings of LLMs on GEOHALUBENCH (without refusal) and GEOHALUBENCH-Abstain (with refusal).
Higher points indicate superior rankings and better performance on the respective benchmark.

Table 2: Representative results on Beijing, London, and New York. All the LLMs are chat models instruction-tuned
by their developers. Results are sorted by model name.

Model Beijing London New York
Entity Relation Attribute Overall Entity Relation Attribute Overall Entity Relation Attribute Overall

DeepSeek-V3 0.4667 0.4528 0.4920 0.4705 0.4300 0.3904 0.4080 0.4095 0.5150 0.4336 0.4760 0.4749
GPT-4o-mini 0.4467 0.4520 0.4640 0.4542 0.4767 0.4808 0.4360 0.4645 0.5800 0.4784 0.4680 0.5088
Llama-3.3-70B 0.3933 0.3952 0.4800 0.4228 0.4683 0.4304 0.4720 0.4569 0.5767 0.4472 0.5200 0.5146
Llama-3.1-70B 0.3717 0.4016 0.4520 0.4084 0.4533 0.3976 0.3920 0.4143 0.5150 0.4416 0.4920 0.4829
Llama-3.1-8B 0.4183 0.3752 0.2400 0.3445 0.3400 0.2432 0.2640 0.2824 0.4333 0.3360 0.2680 0.3458
Qwen2.5-72B 0.3983 0.4304 0.5360 0.4549 0.4100 0.3496 0.4400 0.3999 0.5100 0.4256 0.5240 0.4865
Qwen2.5-7B 0.3550 0.3056 0.5040 0.3882 0.3317 0.2856 0.4080 0.3418 0.4033 0.3384 0.5160 0.4192
Random 0.4100 0.3880 0.2680 0.3553 0.4317 0.3704 0.3040 0.3687 0.4100 0.3928 0.2280 0.3436

confusion remains relatively high and stable across
models, suggesting that this issue either receives
limited attention or is inherently difficult to address
within current LLM practices.
Results: Multiple Regions. The results of GEO-
HALUBENCH for Beijing, London, and New York
are presented in Table 2. Due to space limitations,
only representative models and results are included.
Across all three cities, the overall performance is
relatively low, highlighting the challenges LLMs
face in handling global spatial knowledge. Al-
though the absolute accuracy varies between cities,
the performance rankings of different LLMs re-
main highly consistent across all three locations.
This consistency demonstrates the robustness and
generalizability of the GEOHALUBENCH design.
Notably, hallucinations related to New York are
systematically less frequent than those for Beijing
or London, suggesting a general bias in the world
knowledge that current LLMs tend to acquire.

Apart from representative developed cities, we
also explore geospatial hallucination situation in
underrepresented regions. As shown in Table 9, the
lower performance results demonstrate that LLMs
have more tendency to hallucination in less repre-
sented areas, showcasing LLMs’ less knowledge
on these regions.
Extension: Abstain to Answer. For humans, it is

natural to abstain from or refuse to answer a ques-
tion when faced with a knowledge gap. However,
this issue becomes more complex when applied
to LLMs. While abstaining from answering can
help avoid factual errors, it also renders LLMs un-
reliable or unhelpful as knowledge sources. To
evaluate LLMs’ hallucination behavior more com-
prehensively, we incorporate the act of abstaining
or refusing to answer into our analysis. We expand
GEOHALUBENCH to GEOHALUBENCH-Abstain
by adding a new option of "Cannot Determine" and
conduct an evaluation, with results presented in Fig-
ure 5. Refusing to answer world knowledge ques-
tions is a common behavior among LLMs, though
the refusal rates vary across different models. This
behavior significantly influences performance rank-
ings on GEOHALUBENCH-Abstain, showing a no-
ticeable negative correlation between refusal rate
and performance. For instance, LLMs with lower
rate of refusal like Llama-3.1-70B, Llama-3.1-8B,
Qwen2.5-0.5B or Qwen2.5-1.5B have a huge im-
provement in ranking. On the other hand, decrease
of ranking is generally associated with a high de-
nial rate. LLMs have different strategies facing
the option of abstain originated from different pre-
training or post-training process. When an LLM
overuses abstention, it misses opportunities to pro-
vide correct answers. Thus, strictly prohibiting or
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enforcing abstention is neither practical nor reason-
able. Effective training should balance precision
and recall when teaching LLMs to abstain.

3.2 Mitigating Hallucination with DynamicKTO

Our evaluation on GEOHALUBENCH shows the
weakness of current LLMs about the topic of
geospatial knowledge in the real world. This
situation calls for an effective method to inject
LLMs with knowledge about the real world and
discourage them from generating hallucinated con-
tents. We implement DynamicKTO and validate its
strength compared with existing training methods.
Furthermore, we prove that DynamicKTO is not de-
structive to LLM’s original capabilities. Finally,
we utilize DynamicKTO with supervised fine-tuning
(SFT) to build a more factual model with more
accurate world knowledge and capable of various
urban spatial tasks.
Datasets and Baselines. Due to space limit,
please refer Appendix A.11 for details about
datasets and baselines used in experiments.

Table 3: DynamicKTO outperforms other fine-tuning
methods in mitigating hallucinations. The metric used is
accuracy, where the accuracy value represents the macro
average across three dimensions for the "Overall" cate-
gory, and a micro average for the remaining categories.
Models are evaluated on GEOHALUBENCH-Abstain.
The last two rows illustrate the relative improvements.

Method Entity Relation Attribute Overall

Llama3.1-8B 0.4050 0.3624 0.2840 0.3505

+SFT 0.3833 0.3568 0.2960 0.3454
+DPO 0.4183 0.3768 0.2920 0.3624

+KTO
β = 0.1 0.4333 0.3912 0.3000 0.3748
β = 0.3 0.4300 0.3832 0.2880 0.3671
β = 0.5 0.4167 0.3736 0.2920 0.3608

+SimPO 0.4367 0.3928 0.3120 0.3805
+ORPO 0.4383 0.4320 0.3680 0.4128

+DynamicKTO 0.5717 0.4256 0.4600 0.4858
vs. not fine-tuned +41.16% +17.44% +61.97% +38.61%
vs. best KTO +31.94% +8.79% +53.33% +29.60%

Results on GEOHALUBENCH. Table 3 illustrates
the advantage of DynamicKTO in mitigating hal-
lucinations. The model trained with DynamicKTO
achieves state-of-the-art (SOTA) performance, or is
very close to it, across all three dimensions. When
compared to the base model without fine-tuning
(Llama3.1-8B-Instruct), a significant reduction in
hallucinations is observed. While other fine-tuning
or alignment methods generally offer improve-
ments in hallucination mitigation, DynamicKTO out-
performs them significantly, as evidenced by the
results on GEOHALUBENCH. Furthermore, we

Table 4: DynamicKTO does not cause catastrophic inter-
ference with the model’s general capabilities. We uti-
lize three renowned general benchmarks: IFEval (Zhou
et al., 2023), BBH (Suzgun et al., 2022), and MMLU
(Hendrycks et al., 2020).

Benchmark Metric Llama3.1-8B +KTO +ORPO +DynamicKTO

IFEval Accuracy 79.55 77.98 77.89 78.30
BBH Score 44.33 43.82 42.84 43.43
MMLU Accuracy 69.17 68.99 68.17 63.84

have tested various values of β in KTO to isolate
the effect of hyperparameters. The improvement
of DynamicKTO over the best KTO result confirms
that the performance boost is not merely due to triv-
ial hyperparameter optimization, but rather stems
from the dynamic design of DynamicKTO.
Results on General Benchmarks. Concurrently,
DynamicKTO effectively reduces hallucinations
while maintaining the model’s general capabilities,
as evidenced by the results presented in Table 4.
Experiments demonstrate that DynamicKTO is as
safe as existing methods. For two of three bench-
marks, the degradation of performance is less with
DynamicKTO compared with KTO or ORPO. As for
MMLU, the drop of performance is around 5%. In
summary, the model maintains its instruction fol-
lowing ability and general knowledge after trained
with DynamicKTO.
Model Generalizability. As an alignment opti-
mization method, DynamicKTO is model-agnostic
and effective across various models in mitigating
geospatial hallucinations. Comparison of different
models using DynamicKTO is provided in Table 5.
FactualCityGPT.

Recently, there has been growing interest in en-
hancing LLMs with real-world cognition and intel-
ligence. Previous work of CityGPT has proposed a
LLM with enhanced capabilities on understanding
urban space and solving related tasks. However, we
observe severe hallucination of spatial knowledge
after reproducing and evaluating it, as shown in
Table 3. To reduce hallucinations, improve its relia-
bility and further enhance LLMs’ ability to handle
urban tasks, we apply DynamicKTO on CityGPT.
As shown in Table 6, the new SFT+DynamicKTO
model is still capable of urban spatial tasks, and hal-
lucinate less. Compared to other aliment algorithm
baselines, DynamicKTO have significant advantages
as well.

4 Related Work
Geospatial Knowledge in LLMs Trained on large-
scale text corpora, LLMs have acquired exten-
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Table 5: Effects of DynamicKTO with different base models. Both base models are chat models instruction-tuned.

Model Before Fine-tuning KTO (β = 0.1) DynamicKTO
Entity Relation Attribute Overall Entity Relation Attribute Overall Entity Relation Attribute Overall

Llama3.1-8B 0.4050 0.3624 0.2840 0.3505 0.4333 0.3912 0.3000 0.3748 0.5717 0.4256 0.4600 0.4858
Qwen2.5-7B 0.2533 0.1408 0.1480 0.1807 0.2600 0.1400 0.1600 0.1867 0.2967 0.2040 0.2280 0.2429

Table 6: We build Factual-CityGPT, an urban spatial LLM with reduced hallucinations. This table presents its
performance on hallucination mitigation (GEOHALUBENCH) and urban spatial tasks (CityEval). CI refers to City
Image, US to Urban Semantics, SRR to Spatial Reasoning Route, and SRNR to Spatial Reasoning NoRoute.

Model Hallucination CityEval
Entity Relation Attribute Overall CI US SRR SRNR

CityGPT-Llama3.1-8b 0.3833 0.3568 0.296 0.3454 0.5492 0.7000 0.8440 0.6460
Factual-CityGPT-Llama3.1-8b 0.5917 0.3456 0.3760 0.4378 0.5569 0.6933 0.8040 0.6160

sive world knowledge (Ivanova et al., 2024; Yu
et al., 2023), including global geospatial informa-
tion (Roberts et al., 2023; Gurnee and Tegmark,
2023). This embedded geospatial knowledge
has inspired the potential application of LLMs
in various knowledge-intensive geospatial tasks,
such as global geospatial prediction (Manvi et al.,
2023)—including health, education, and poverty
level estimation—mobility prediction (Wang et al.,
2023; Feng et al., 2024b) using text-based ad-
dresses, and urban task planning (Jiang et al.,
2024). However, due to the limitations of online
corpora in capturing real-world information, re-
searchers have explored various fine-tuning meth-
ods to enhance LLMs’ geospatial knowledge, such
as CityGPT (Feng et al., 2024a) and LAMP (Balse-
bre et al., 2024). Unlike these studies, which focus
on leveraging LLMs’ geospatial knowledge for spe-
cific tasks, our work is the first to systematically
evaluate geospatial knowledge hallucinations and
propose an effective mechanism to mitigate them.

Hallucination Evaluation of LLMs. The hallu-
cination problem in LLMs has been widely stud-
ied (Huang et al., 2023; Ji et al., 2023), with nu-
merous evaluation benchmarks (Bao et al., 2024;
Li et al., 2023a; Liu et al., 2023a) and training
methods (Ethayarajh et al., 2024; Wu et al., 2024)
proposed to address general hallucination issues
in LLMs. For hallucination evaluation and detec-
tion, Niels et al.(Mündler et al., 2023) investigate
the problem of self-contradiction, while Manakul
et al.(Manakul et al., 2023) introduce SelfCheck-
GPT, a simple sampling-based method to detect
hallucinations. Min et al.(Min et al., 2023) pro-
pose FactScore to identify hallucinations in long-
form text generated by LLMs. Recently, Ribeiro et
al.(Ribeiro et al., 2022) and Sansford et al. (Sans-
ford et al., 2024) introduced KG-based frameworks

for hallucination detection and evaluation.
Hallucination Reduction of LLMs. To mitigate
hallucinations in LLMs, one simple approach in-
volves using retrieval-augmented generation (RAG)
methods with external knowledge bases during gen-
eration (Lewis et al., 2020). However, RAG-based
methods are resource-intensive, requiring a large
number of tokens and time during inference. As a
result, researchers have continued to explore more
efficient methods (Zhang et al., 2024; Tian et al.,
2024; Chen et al., 2024) to effectively mitigate
hallucinations in various domains. For instance,
Zhang (Zhang et al., 2024) proposes KnowPAT,
which constructs a preference set and introduces a
new alignment objective for service and urology.
Chen et al.(Chen et al., 2024) propose HALC, a
robust auto-focal grounding mechanism for reduc-
ing object hallucinations in vision-language mod-
els (VLMs), while Tian et al.(Tian et al., 2024)
develop FactTune, a fine-tuning method aimed at
reducing hallucinations in biographies and medical
queries. In contrast to these works focused on gen-
eral knowledge and domain-specific hallucination
evaluation and mitigation, our research specifically
targets the evaluation and mitigation of geospatial
knowledge hallucinations in LLMs.

5 Conclusion

We propose a framework to systematically evalu-
ate and mitigate geospatial hallucinations in LLMs.
Using a dedicated taxonomy and controllable eval-
uation design, we assess 20 advanced LLMs and
provide a comprehensive analysis. To improve per-
formance, we enhance the KTO algorithm with
dynamic factuality aligning, accounting for geospa-
tial data diversity. With DynamicKTO, smaller open-
source models achieve competitive results against
top-performing LLMs in hallucination mitigation.
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6 Limitations

To Cover Broader World Knowledge. While
GEOHALUBENCH currently includes three glob-
ally diverse cities—spanning from Asia to Amer-
ica—there are still many regions that should be
considered to fully evaluate a world model. Bei-
jing, London, and New York are prosperous cities,
but other underdeveloped areas are often less repre-
sented, where LLMs may possess less knowledge
and exhibit more hallucinations. Additionally, de-
spite SpatialKG capturing key elements of urban
space, it can be further enriched with additional in-
formation, such as the opening times of POIs, road
speed limits, and more. Multi-modal data, includ-
ing remote sensing or street image services, could
also serve as valuable sources of world knowl-
edge. Integrating such data into SpatialKG and
GEOHALUBENCH could provide a more compre-
hensive understanding and evaluation of the world,
beyond just geospatial data.
To Generalize DynamicKTO to More Tasks. We
have proposed DynamicKTO and demonstrated its
superiority in mitigating spatial knowledge hallu-
cination, but further testing is required to bench-
mark DynamicKTO’s performance on other general
alignment tasks. Utilizing DynamicKTO to enhance
LLM’s factuality in other domains is also promis-
ing. For instance, in the area of law, medicine,
finance, etc. there is a strong need for LLMs with
less hallucination.
To Explore Various Behaviors. Teaching an LLM
to say "I don’t know" is a very exciting and in-
triguing research question, closely tied to the topic
of exploring the knowledge boundaries of LLMs.
We explore LLMs’ behavior of abstaining from an-
swering geospatial knowledge questions, revealing
its complexity and potential. Future work should
focus on finding a balance between precision and
recall when training LLMs to abstain from provid-
ing answers.

7 Ethics Statement
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algorithms come from publicly available sources,
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the code and data available for public access.

3https://www.openstreetmap.org
4https://opensource.foursquare.com/os-places/
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A Appendix

A.1 Additional Clarification about Geospatial
Hallucination’s Denotation and
Connotation

We define geospatial hallucination of not only fab-
rication of non existing entities (relations), but also
omission of actual things and confusion of their
attributions. From this definition, geospatial hallu-
cination is a subset of hallucination, which can be
classified as a subset of ’mistakes’ of LLMs.

LLMs’ mistake is a broader topic of models gen-
erating unsatisfactory contents. There are other
kinds of "mistakes" like instruction following vi-
olation (Zhou et al., 2023), harmful content gen-
eration (Kumar et al., 2023), or misaligned values
(Wolf et al., 2024), which are incorrect behaviors
of LLMs even with no factual or logical error.

A.2 Additional Explanation of DynamicKTO’s
Motivation and Advantages

In this section, we would make extra theoretical ex-
planations to our motivation of DynamicKTO from
a model’s loss perspective.

To the best of our knowledge, we are the first
to propse a method of adjusting β in KTO and
demonstrate its advantages in geospatial hallucina-
tion mitigation.

We conducted analysis with a proposed met-
ric called LFactDistance in the following definition,
which is inspired by DPO and KTO loss as a way
to assess model’s judgement between hallucinated
and factual information.

Let θ be the policy (model). Given a pair re-
garding a same knowledge, their log probalities are
defined as follows:

log pθ(x) =
1

L

L∑

i=1

log pθ
(
xi | prompt, x<i

)
, (1)

log pθ(y) =
1

L

L∑

i=1

log pθ
(
yi | prompt, y<i

)
. (2)

Here, x = (x1, . . . , xL) denotes the factual se-
quence, and y = (y1, . . . , yL) denotes the halluci-
nated sequence.

z(n) = log pθ
(
x(n)

)
− log pθ

(
y(n)

)
, (3)
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σ(z) =
1

1 + e−z
, (4)

LFactDistance = − 1

N

N∑

n=1

log σ
(
z(n)

)
. (5)

The loss quantifies factual preference by com-
paring the log probabilities of a factual response
against a hallucinated response.

We use the definition above to analyze the in-
fluences of training methods to model. The exper-
iment results are shown in Table 7. Statistics of
LFactDistance is demonstrated in Table 8.

Table 7: LFactDistance changes after training. Base model
is the chat model instruction-tuned by its developer.

Category Llama3.1-8B +DPO +KTO +DynamicKTO

Entity 1.1072 1.0874 1.0770 0.7209
Relation 0.9465 0.9372 0.9278 0.8200
Attribute 0.7471 0.7401 0.7383 0.6265

Table 8: Training with DynamicKTO lowers both
the mean and the variability (standard deviation) of
LFactDistance.

Metric Llama3.1-8B +DPO +KTO +DynamicKTO

Macro Average 0.9336 0.9216 0.9144 0.7225
Standard Deviation 0.1472 0.1422 0.1386 0.0790

The difference of LFactDistance among Entity, Re-
lation, and Attribute indicate a difference of dif-
ficulty for a LLM to judge and generate factual
contents. As a result, a fixed β is not appropri-
ate since it enforce same risk management strategy
throughout all the data, which calls a dynamic ad-
justing β at task level (Entity, Relation, Attribute).
We hope to 1) reduce the overall FactDistanceLoss
and 2) enhance stability and consistency.

First, the introduction of the DynamicKTO opti-
mization algorithm leads to a substantial improve-
ment in factual preference, as evidenced by lower
FactDistanceLoss scores across all three categories:
Entity, Relation, and Attribute.

Second, the standard deviation measures the
consistency of the model’s performance across
different data points. The baseline model has
a standard deviation of 0.1472, which decreases
with DPO (0.1422) and KTO (0.1386). However,
DynamicKTO achieves the most significant reduc-
tion to 0.0790, indicating that it not only improves
factual preference but also enhances the stability

and consistency of the model’s responses across
samples.

A.3 Geospatial Hallucination Results on
Underrepresented Regions

Geospatial hallucination situations of underrepre-
sented regions apart from major cities like Bei-
jing (GDP per capita $ 30,177), London (GDP per
capita $ 79,069) , or New York (GDP per capita
$119,932) are also worth attention.

We understand the inherent geographically bi-
ases of LLMs introduced by pre-training or post-
training stages. The results of geospatial halluci-
nation in large cities is present in Table 2. Even
in most important metropolises, the challenge of
hallucination is great.

We expand our benchmark to include three more
underrepresented regions globally, which are Cairo
(in Africa, GDP per capita $8,847), Kabul (in Asia,
GDP per capita is $1,188), and Sucre (in South
America, no Wikipedia GDP data, Bolivia’s GDP
per capita is $4,014). 5 According to various fac-
tors, these regions have relative fewer information
resources on the Internet, leading to less attention
especially in LLMs.

Quantitative evaluation results are shown in Ta-
ble 9. The lower performance results demonstrate
that LLMs are facing great challenges of geospa-
tial hallucination especially in underrepresented
regions. Compared to results in paper, especially
the better performance on New York, we can ob-
serve a general bias in the world knowledge that
LLMs possess now.

A.4 Training Cost Analysis of DynamicKTO
Through quantitative experiments and complexity
analysis, the increase in training cost is manageable.
While the introduction of additional operations
in DynamicKTO theoretically slows down training,
these operations are not computationally intensive.
As a result, the impact on training efficiency is ac-
ceptable at most of the time. Empirical results show
that with 4 NVIDIA A100 GPUs, standard KTO
training takes 3h 1m 49s (181 mins), whereas Dyn-
imicKTO training takes 3h 7m 52s (187 mins) —a
slight increase of 3.3%. In addition, since the addi-
tional operation is conducted once on each training
sample, the training time scales linearly with the
amount of data. The approach remains efficient for
larger datasets. The slight increase in time cost is

5All GDP data above are from the Wikipedia entry of List
of cities by GDP or the entry of Economy of Bolivia.
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Table 9: Representative results on Cairo, Kabul, and Sucre. All the LLMs are chat models instruction-tuned by their
developers. Results are sorted by model name.

Model Cairo Kabul Sucre
Entity Relation Attribute Overall Entity Relation Attribute Overall Entity Relation Attribute Overall

DeepSeek-V3 0.4883 0.3304 0.4440 0.4209 0.4817 0.3360 0.4280 0.4152 0.4900 0.3328 0.5000 0.4409
GPT-4o-mini 0.4917 0.3904 0.4040 0.4287 0.5600 0.3960 0.4400 0.4653 0.5533 0.4048 0.4760 0.4780
Llama-3.3-70B 0.4900 0.3840 0.4640 0.4460 0.5983 0.3632 0.4360 0.4658 0.5250 0.3672 0.4720 0.4547
Llama-3.1-70B 0.4717 0.3568 0.4080 0.4122 0.5583 0.3680 0.4240 0.4501 0.5200 0.3656 0.4400 0.4419
Llama-3.1-8B 0.4150 0.3696 0.2400 0.3415 0.3500 0.2984 0.2240 0.2908 0.4000 0.3704 0.2480 0.3395
Qwen2.5-72B 0.4367 0.3384 0.4640 0.4130 0.4067 0.3216 0.4600 0.3961 0.4617 0.3336 0.4960 0.4304
Qwen2.5-7B 0.3900 0.2778 0.4160 0.3613 0.3450 0.2989 0.4120 0.3520 0.4183 0.2834 0.4160 0.3726
Random 0.4367 0.4024 0.2680 0.3690 0.4167 0.3867 0.2040 0.3358 0.3933 0.3752 0.2720 0.3468

almost negligible considering its effectiveness in
mitigating hallucinations.

A.5 Additional Analysis about DynamicKTO’s
Performance

DynamicKTO’s performance on geospatial halluci-
nation mitigation is demonstrate in Table 5. In this
section, we would conduct more analysis.

As a novel and competitive alignment method,
ORPO is a strong baseline in specific settings.
Putting aside the greater data efficiency of KTO,
theoretical analysis suggests that if the preference
data has sufficiently little noise and sufficiently lit-
tle intransitivity, then KTO might fall behind of
other alignment methods (Ethayarajh et al., 2024).
ORPO is also a advanced algorithm featuring ef-
fectiveness, efficiency and scalability (Hong et al.,
2024). The used factuality alignment dataset, es-
pecially the relation subset, is carefully curated,
which may bring slight disadvantages for KTO
as for relation category (about 1% accuracy dif-
ference). Generally, DynamicKTO is superior than
ORPO on the task of geospatial hallucination miti-
gation. Considering its theoretical potential and em-
pirical superiority, DynamicKTO is especially useful
for hallucination mitigation.

A.6 CityEval Performance Comparision
between DynamicKTO and Baselines

DynamicKTO generalize better to CityEval bench-
mark than baselines. With the importation of addi-
tional finetuning data independent from CityEval
tasks, it is expected for factuality aligned mod-
els to perform worse than CityGPT. Empirical re-
sults demonstrate that DynamicKTO can maintain
the most comprehensive capabilities for CityEval
while achieving SOTA geospatial hallucination mit-
igation as demonstrated in Table 10.

Table 10: DynamicKTO can generalize better to CityE-
val benchmark than other baselines. CI refers to
City Image, US to Urban Semantics, SRR to Spa-
tial Reasoning Route, and SRNR to Spatial Reason-
ing NoRoute. +DynamicKTO refers to Factual-CityGPT-
Llama3.1-8B, which is finetuned on CityGPT-Llama3.1-
8B with DynamicKTO.

Model CityEval
CI US SRR SRNR

CityGPT-Llama3.1-8B 0.5492 0.7000 0.8440 0.6460
+KTO 0.4077 0.5233 0.7880 0.6280
+DPO 0.4338 0.5567 0.7840 0.6200
+DynamicKTO 0.5569 0.6933 0.8040 0.6160

A.7 Additional Analysis about DynamicKTO’s
Difference from Sequential Training

Previous studies (Lee et al., 2024; Blakeney et al.,
2024; Leybzon and Kervadec, 2024) have exam-
ined the impact of training data order in language
model fine-tuning, highlighting the critical role of
data sequencing. In the context of achieving bal-
anced geospatial factual capabilities, replacing Dy-
namicKTO with sequential KTO tuning per task
may be suboptimal due to the risk of overfitting
to earlier tasks or overwriting previously learned
knowledge.

To further investigate this, we conducted exper-
iments using sequential KTO training, applying
the same best-performing β for each individual
task. The results, as shown in Table 11, show that
DynamicKTO outperforms naive sequential KTO
fine-tuning, reinforcing its advantage in managing
knowledge injection across heterogeneous geospa-
tial tasks.

A.8 Automated Taxonomy Initialization of
DynamicKTO for Different Tasks

The core insight behind DynamicKTO originates
from the observed heterogeneity in data difficulty
across different knowledge categories. However, a
fixed β means the same risk management strategy

883



Table 11: DynamicKTO cannot replaced by naively
model training with sequential KTO with different hy-
perparameters. ST denotes Sequentially Trained. MT
denotes Mixed Trained.

Method Entity Relation Attribute Overall

ST w/ KTO 0.4567 0.4168 0.3960 0.4232
MT w/ KTO 0.4333 0.3912 0.3000 0.3748
DynamicKTO 0.5717 0.4256 0.4600 0.4858

throughout the datasets in KTO, which is not ap-
propriate anymore. A better algorithm, adjusting
its "tightness" according to training knowledge, is
needed for more effective hallucination mitigation.

So, the setting of β would be better decided
from the statistics of the training data used and
domain knowledge. We introduce a metric called
LFactDistance, which quantifies a model’s ability to
distinguish between factual and hallucinated in-
formation. Experimental results in Table 7 reveal
clear differences in judgment difficulty across cat-
egories: Entity is the most challenging, followed
by Relation, and Attribute is the easiest. Based on
this observation, β is set inversely proportional to
LFactDistance.

Originally, DynamicKTO is developed specifi-
cally to mitigate geospatial hallucination, the pri-
mary focus of this study. To that end, we also
introduce a Spatial World Hallucination Taxon-
omy, grounded in both domain understanding and
broad geospatial data analysis. The consistency be-
tween the taxonomy, the LFactDistance analysis, and
DynamicKTO ’s empirical results further supports
the soundness of this task design.

In terms of tuning granularity, we aim to strike a
balance between interpretability, training stability,
and data efficiency. Our theoretical and empirical
analysis shows that the Entity–Relation–Attribute
categorization provides meaningful geospatial dis-
tinctions while maintaining training stability.

For domains beyond geospatial knowledge, re-
searchers may want to rely on domain knowledge
to set β in DynamicKTO. However, within the frame-
work of LFactDistance analysis and DynamicKTO, the
β can be automatically and easily calculated at dif-
ferent levels, removing the need for predefined task
types. Two practical and promising alternatives can
be utilized.

• Sample-Level: β is calculated individually for
each training sample based on its

• Unsupervised Clustering-Level: Clustering

with (e.g., via K-Means++) is first applied to
the data, and β is then computed based on
each cluster’s average data characteristics.

We also validate these methods for geospatial
hallucination. As shown in Table 12, experimental
results demonstrate significant improvements com-
pared with the baseline method. On the other hand,
these two methods still underperform the category-
level DynamicKTO. This is mainly due to the insta-
bility. So we still recommend using DynamicKTO
along with our taxonomy for the geospatial knowl-
edge problem.

Table 12: The predefined taxonomy is helpful for
geospatial hallucination mitigation. The number of clus-
ters is set to three for fair comparison. S. Level de-
notes Sample-Level. UC. Level denotes Unsupervised
Clustering-Level. C. Level denotes Category-Level.

Method Entity Relation Attribute Overall

+KTO 0.4333 0.3912 0.3000 0.3748
+DynamicKTO (S. Level) 0.4400 0.4336 0.4160 0.4299
+DynamicKTO (UC. Level) 0.4600 0.4730 0.4080 0.4467
+DynamicKTO (C. Level) 0.5717 0.4256 0.4600 0.4858

A.9 Additional Analysis about
GEOHALUBENCH’s Uniqueness and
Advantages over Wikipedia-Based
Datasets

GEOHALUBENCH distinguishes itself among ex-
isting Wikipedia-based factual detection datasets.
While some shared knowledge may be tested, GEO-
HALUBENCH has several key distinctions that set
it apart.

First, its taxonomy is specially designed for the
scenario of geospatial hallucination, whereas other
fact-check benchmarks involve general factual ac-
curacy.

Second, unlike wikipedia-based factual datasets
like FEVER (Thorne et al., 2018) or WiCE
(Kamoi et al., 2023), which contain claims and la-
bels (SUPPORTED, UNSUPPORTED, etc.), GEO-
HALUBENCH can attribute a test sample’s response
to a specific type of hallucination. This feature
enhances the interpretability of hallucination detec-
tion.

Third, GEOHALUBENCH is automatically con-
structed from a knowledge graph with data from
OpenStreetMap and Foursquare’s Open Source
Places, which are high-quality, updating geoinfor-
mation services. As a result, GeoHaluBench is
competitive in terms of data quality, scalability,
coverage, and quantity.
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Additionally, with the increasing demand for
LLMs to master real-world geospatial knowledge, a
speciallized and high-quality benchmark like Geo-
HaluBench is essential.

Besides, previous related works have examined
the possibility of using Wikipedia for geographic
problems, but they found limitations of Wikipedia
compared to specialized map services like Open-
StreetMap. For instance, GeoLM (Li et al., 2023b)
points out that training with Wikipedia only solves
partial challenges in geospatial grounding, as it
only provides the linguistic context of a geo-entity
with sentences describing history, emographics, cli-
mate, etc. The information about the geospatial
neighbors of a geoentity is still missing. Another
research named GeoLLM (Manvi et al., 2023) also
utilizes map data from OpenStreetMap rather than
information from wikipedia.

A.10 Demonstration of the Dataset

A.10.1 Additional Discussion about the
Question Form of GEOHALUBENCH

Multi-choice questions answering serve as the
practice to detect hallucination behaviors in GEO-
HALUBENCH. If a LLM choose a non-existing op-
tion like Silver Spoon Cafe in Figure 3, we can rea-
sonable to infer that the LLM ’believes’ that Silver
Spoon Cafe is an actual POI, demonstrating its vul-
nerability to hallucination. Besides, multi-choice
question can serve as a practical form of interact-
ing with LLMs for its usability, interpretability,
and controllability, especially when users regard
them as knowledge bases apart from chatbots. We
also get inspired by existing hallucination evalua-
tion benchmarks like TruthfulQA (Lin et al., 2022),
REALTIMEQA (Kasai et al., 2023), Med-HAL
(Pal et al., 2023), FACTOR (Muhlgay et al., 2024),
etc. which utilize multi-choice QA to detect and
analyze various kind of hallucinations, providing
valuable assessment for LLMs.

A.10.2 GEOHALUBENCH Dataset
Figure 3 demonstrates a test case from Entity-POI-
Existence category. The original options may con-
tain Chinese characters, as the selected region is
Beijing, China; these have been translated into En-
glish for demonstration purposes. The situation is
similar in other non-English-speaking regions.

A.10.3 DynamicKTO Fine-tuning Dataset
Figure 6 presents two examples used during fine-
tuning with DynamicKTO. Although both examples

Figure 6: A positive and negative training sample used
by DynamicKTO.

POSITIVE SAMPLE

TASK: [POI_Category]
USER: What category does the following POI (Point
of Interest) in Beijing belong to: Ajisen Ramen
Shuangjing Restaurant?
ASSISTANT: Dining and Drinking > Restaurant >
Asian Restaurant > Noodle Restaurant
Label: Factual

NEGATIVE SAMPLE

TASK: [POI_Category]
USER: What category does the following POI (Point
of Interest) in Beijing belong to: Ajisen Ramen
Shuangjing Restaurant?
ASSISTANT: Dining and Drinking > Restaurant >
Fast Food Restaurant
Label: Hallucinated

address the same question here, preference pairs
are not required. A task label for hyperparameter
adjustment, a content label for optimization, and a
direction label are sufficient for DynamicKTO.

A.11 Datasets and Baselines Detail for
DynamicKTO Experiments

Datasets. We construct a fine-tuning dataset con-
sisting of 1500 (for entity information) or 2000 (for
relation or attribute information) instances of POI,
AOI, and Road respectively. These elements are
extracted randomly from SpatialKG and then or-
ganized into natural language narratives with tem-
plates. From the constructing process, they are
annotated to be either hallucinated or factual nat-
urally. In an attempt to generalize, a narrative is
paraphrased. To avoid data leakage, none of the in-
stances in the training set is identical to any sample
in GEOHALUBENCH.
Baselines. We compare DynamicKTO with super-
vised fine-tuning, Direct Preference Optimization
(DPO) (Rafailov et al., 2023), Kahneman-Tversky
Optimization (KTO) (Ethayarajh et al., 2024), Sim-
ple Preference Optimization (SimPO) (Meng et al.,
2025), and Odds Ratio Preference Optimization
algorithm (ORPO) (Hong et al., 2024) for their ef-
fects to hallucination mitigation. For SFT, we refer
the data and training pipeline from CityGPT (Feng
et al., 2024a), a previous study of injecting LLM
with urban knowledge. We use the standard im-
plementation from LLaMA-Factory (Zheng et al.,
2024) for baselines.
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A.12 Prompts and Details of Methods
We construct hallucinated entities to serve as nega-
tive examples for DynamicKTO by instructing Meta-
Llama-3.1-405B-Instruct. Figure 7, 8, 9 exhibit
prompts used in this process.

A.13 Detailed Result Example
Table 13 is the detailed results of GEO-
HALUBENCH on Beijing at the level of test tasks.

A.14 Implementation Details
A.14.1 Training
We use LLaMA-Factory (Zheng et al., 2024) for
fine-tuning LLMs. As for DynamicKTO, we im-
plement it by modifying LLaMA-Factory. The
training epoch is 1 and other key hyperparameters
remain same as default except for epoch, batch size,
and beta. For experiments in Section 3.2, epoch is
set to 1. For Factual-CityGPT training, epoch is set
to 3. It takes about 2 hours to train a 8B model for
1 epoch with 8 × A100 GPUs.

A.14.2 Evaluation
Opencompass6 (Contributors, 2023b) is used for
our evaluation on general benchmarks, all tested
models are deployed locally with lmdeploy (Con-
tributors, 2023a).

For GEOHALUBENCH, we deploy our fine-
tuned models and LLaMA-3.1-8B with VLLM
(Kwon et al., 2023). The temperature is set to 0
for reproducibility. Other parameters are as default.
The rest LLMs are used via APIs.

A.15 Case Study
We use the instance in Figure 3 as an example.
According to reliable knowledge sources, Haid-
ian Library is an existing point of interest (POI)
in Haidian District, Beijing. In contrast, Silver
Spoon Cafe is not a POI but a fabricated name. If
the LLM selects option A, "Silver Spoon Cafe," it
mistakenly believes the cafe is located in Beijing,
which exemplifies Entity Fabrication Hallucination.
On the other hand, if the LLM selects option C,
"None of the other options," it incorrectly rules
out the other two options as valid entities, thereby
overlooking the real POI. This represents Entity
Omission Hallucination.

60.3.9 version
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Figure 7: The prompt template of generating POI-related hallucinations.

In a purpose of research, we would like to use imaginary/fictional/mocked information to hallucinate the name of this
POI.
Make sure the hallucinated names are natural and realistic as much as possible. They should not be real names.
Please provide five hallucinated names of this POI given the example existing names.
Example existing names: [real_poi_name_list]
Please follow the following format, use [Hallucination] to wrap the hallucinated (generated) names:
[Hallucination] POI Name 1 [Hallucination]
[Hallucination] POI Name 2 [Hallucination]
[Hallucination] POI Name 3 [Hallucination]
[Hallucination] POI Name 4 [Hallucination]
[Hallucination] POI Name 5 [Hallucination]

Figure 8: The prompt template of generating AOI-related hallucinations.

In a purpose of research, we would like to use imaginary/fictional/mocked information to hallucinate the name of this
AOI.
Make sure the hallucinated names are natural and realistic as much as possible. They should not be real names.
Please provide five hallucinated names of this AOI given the example existing names.
Example existing names: [real_aoi_name_list]
Please follow the following format, use [Hallucination] to wrap the hallucinated (generated) names:
[Hallucination] AOI Name 1 [Hallucination]
[Hallucination] AOI Name 2 [Hallucination]
[Hallucination] AOI Name 3 [Hallucination]
[Hallucination] AOI Name 4 [Hallucination]
[Hallucination] AOI Name 5 [Hallucination]

Figure 9: The prompt template of generating Road-related hallucinations.

In a purpose of research, we would like to use imaginary/fictional/mocked information to hallucinate the name of this
road.
Make sure the hallucinated names are natural and realistic as much as possible. They should not be real names.
Please provide five hallucinated names of this road given the example existing names.
Example existing names: [real_road_name_list]
Please follow the following format, use [Hallucination] to wrap the hallucinated (generated) names:
[Hallucination] Road Name 1 [Hallucination]
[Hallucination] Road Name 2 [Hallucination]
[Hallucination] Road Name 3 [Hallucination]
[Hallucination] Road Name 4 [Hallucination]
[Hallucination] Road Name 5 [Hallucination]
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Table 13: Detailed results of GEOHALUBENCH on Beijing. PE refers to POI-Existence, AE refers to AOI-Existence,
RE refers to Road-Existence, PLoA refers to POI-LocateAt-AOI, PNeP refers to POI-Near-POI, ANeA refers to
AOI-Near-AOI, ACoR refers to AOI-ConnectTo-Road, RCoR refers to Road-ConnectTo-Road, PAddr refers to
POI-Address, PCate refers to POI-Category, ALand refers to AOI-LandUse, AArea refers to AOI-Area, RLeng
refers to Road-Length. Models are in original names in APIs.

Model PE AE RE PLoA PNeP ANeA ACoR RCoR PAddr PCate ALand AArea RLeng
DeepSeek-V3 0.180 0.255 0.600 0.332 0.084 0.024 0.260 0.368 0.200 0.800 0.520 0.040 0.100
gemini-2.0-flash 0.170 0.335 0.640 0.360 0.076 0.196 0.388 0.516 0.160 0.820 0.600 0.240 0.380
gpt-4o 0.135 0.290 0.505 0.320 0.104 0.116 0.268 0.308 0.160 0.680 0.460 0.080 0.200
gpt-4o-mini 0.270 0.390 0.485 0.360 0.124 0.144 0.324 0.264 0.140 0.760 0.540 0.040 0.200
Llama-3.1-8B-Instruct 0.385 0.375 0.455 0.452 0.320 0.240 0.408 0.392 0.040 0.640 0.500 0.200 0.040
Llama-3.1-8B-Instruct 0.385 0.375 0.455 0.452 0.320 0.240 0.408 0.392 0.040 0.640 0.500 0.200 0.040
Llama-3.3-70B-Instruct 0.320 0.345 0.475 0.476 0.196 0.108 0.300 0.276 0.180 0.840 0.580 0.020 0.120
Meta-Llama-3.1-405B-Instruct 0.160 0.265 0.510 0.324 0.096 0.140 0.252 0.160 0.100 0.840 0.600 0.000 0.000
Meta-Llama-3.1-70B-Instruct 0.290 0.330 0.460 0.468 0.232 0.276 0.328 0.204 0.280 0.800 0.640 0.000 0.040
Mistral-Small-24B-Instruct-2501 0.030 0.075 0.095 0.008 0.000 0.000 0.000 0.000 0.000 0.360 0.120 0.000 0.000
phi-4 0.225 0.325 0.475 0.352 0.068 0.128 0.368 0.320 0.200 0.800 0.620 0.080 0.200
qwen2.5-0.5b-instruct 0.395 0.465 0.475 0.484 0.444 0.372 0.496 0.480 0.160 0.600 0.480 0.320 0.260
qwen2.5-1.5b-instruct 0.235 0.240 0.515 0.440 0.184 0.156 0.348 0.352 0.320 0.760 0.480 0.180 0.300
Qwen2.5-14B-Instruct 0.055 0.105 0.365 0.132 0.004 0.000 0.088 0.032 0.120 0.700 0.220 0.000 0.000
Qwen2.5-32B-Instruct 0.085 0.165 0.465 0.164 0.020 0.008 0.136 0.156 0.200 0.760 0.420 0.000 0.040
qwen2.5-3b-instruct 0.165 0.300 0.450 0.292 0.032 0.008 0.040 0.064 0.020 0.740 0.180 0.000 0.000
Qwen2.5-72B-Instruct 0.085 0.180 0.480 0.184 0.024 0.028 0.140 0.192 0.120 0.780 0.420 0.020 0.020
Qwen2.5-7B-Instruct 0.125 0.160 0.405 0.236 0.020 0.008 0.092 0.064 0.100 0.700 0.260 0.100 0.160
qwen-max-2025-01-25 0.165 0.300 0.575 0.292 0.068 0.152 0.412 0.336 0.200 0.860 0.480 0.020 0.040
qwen-plus-2025-01-25 0.115 0.245 0.555 0.240 0.024 0.128 0.216 0.304 0.220 0.800 0.560 0.100 0.100
Random 0.290 0.285 0.315 0.220 0.324 0.244 0.296 0.304 0.240 0.260 0.240 0.200 0.220
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