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Abstract

Reinforcement learning (RL) for large lan-
guage models (LLMs) typically requires clear
reward signals, which are often unavailable for
open-ended (OE) questions where answer eval-
uation is ambiguous without scalable expert
labeling. We investigate whether LLMs benefit
from training on mixed data with varying re-
ward clarity. Our approach combines Multiple-
choice questions (MCQs), which offer clear
binary rewards, with OE questions, for which
we use simpler, potentially noisy rewards such
as Jaccard similarity or LLM-based evaluators.
We hypothesize that MCQs can stabilize train-
ing when mixed with OE questions. Our ex-
periments show this mixed-data approach con-
sistently improves medical question-answering
performance across model scales.

1 Introduction

Reinforcement learning (RL) has shown promise
in enhancing the reasoning capabilities of large
language models (LLMs) (Schulman et al., 2017;
Yu et al., 2025). RL thrives on clear and consistent
reward signals that provide unambiguous feedback.
Multiple-choice questions (MCQs) exemplify this
ideal scenario by offering binary rewards: answers
are either correct or incorrect. This clarity provides
a stable learning signal for the model.

However, specialized domains like medicine fre-
quently require open-ended (OE) questions where
evaluating answers involves greater complexity.
For these questions, defining clear reward signals
is challenging. Consider this medical scenario:
“What is the first step in the management of a pa-
tient with congestive heart failure, type 2 diabetes,
altered mental status, and a serum glucose level of
500 mg/dL?” If the ground truth is “IV NS,” and a
model answers, “Start IV dextrose-containing flu-
ids,” is this answer entirely wrong, partially correct,
or acceptable? While human expert labeling could
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provide accurate assessments, this approach is ex-
pensive and not scalable for on-policy RL, where
rewards are dynamically needed during training.

This limitation raises a crucial research question:
Can LLMs benefit from training on data with noisy
reward signals, and if so, how can such data be ef-
fectively utilized? Reward models (RMs) (Su et al.,
2025) trained to mimic human expert evaluations
provide numerical scores (e.g., 0 to 1), but poten-
tially introducing additional biases, such as length
bias (Bu et al., 2025). Alternatively, simpler met-
rics like Jaccard similarity (Jaccard, 1912) between
model outputs and reference answers provide more
direct, but potentially noisier, reward signals.

In this work, we investigate a novel strategy that
leverages both the stability of clear reward signals
from MCQs and the broader coverage of OE ques-
tions despite their inherently noisier rewards. We
propose mixing MCQs and OE questions within
the same training batches. The hypothesis is that
the unambiguous feedback from MCQs serves as
an anchor, stabilizing the training process, while
the model still learns from diverse OE data. We
explore various reward mechanisms for OE ques-
tions, including Jaccard similarity and LLM-based
reward models. However, due to the complexity of
medical terms, such as abbreviations and spelling
errors, Jaccard can fail to capture semantic equiva-
lence. For instance, “Administer intravenous nor-
mal saline” and the ground truth “IV NS” are iden-
tical in meaning but receive a score of 0 due to
token mismatch. Notably, after training with our
mixed-reward strategy, the model still produced
the correct answer "Administer intravenous normal
saline" to this question, demonstrating robustness
even under noisy reward signals.

In summary, our main contribution is demonstrat-
ing that RL can benefit from an expanded dataset,
even if it includes noisy rewards. We evaluate
the performance of our method on several med-
ical QA benchmarks, including MedQA-USMLE,
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MMLU-Pro, and CMB-Exam, to show consistent
accuracy improvements. This mixed-data, mixed-
reward strategy aims to effectively balance reward
signal quality with data diversity, leading to more
robust medical QA models.

2 Related Works

Rule-Based Rewards for Clear Feedback Rule-
Based Rewards are crucial in Reinforcement Learn-
ing (RL) for tasks with clear correctness criteria,
offering deterministic feedback that can reduce
manual annotation and enhance model safety (Hu
et al., 2023; Mu et al., 2024). DeepSeek-R1 (Guo
et al., 2025) has shown its effectiveness. We use
rule-based rewards for multiple-choice questions
(MCQs) due to their clear binary feedback, making
it a core part of our reward strategy.

Handling Ambiguity in Rewards of Open-
Ended Questions Evaluating responses to open-
ended (OE) questions is more challenging, as defin-
ing clear rules becomes difficult. Instead, reward
models (e.g. medical_o1_verifier_3B (Chen et al.,
2024) and RLVR (Su et al., 2025)) are trained on
labeled data in the format of <question, answer,
ground-truth> to give scores for answers on OE
questions. They can be resource-intensive to de-
velop and may introduce their own noise. For ex-
ample, reinforcement learning only relying on med-
ical_o1_verifier_3B suffers from reward hacking
in our preliminary experiments. The examples are
shown in Appendix A.1

Mixed-Data Training, Curriculum Learning,
and Multi-Task RL Given the availability of
both clear rewards from MCQs and graded, nois-
ier rewards from OE questions (e.g., Jaccard simi-
larity), we propose a mixed-data training strategy.
This approach is conceptually grounded in princi-
ples from curriculum learning (Bengio et al., 2009)
and multi-task reinforcement learning (Teh et al.,
2017). Our mixed-training approach similarly aims
to leverage diverse signal types within a unified
learning process. This overall strategy is imple-
mented using the DAPO algorithm (Yu et al., 2025),
selected for its effectiveness in policy optimization.

Medical Reasoning LLMs The application of
advanced LLMs to the medical domain has seen
growing interest. HuatuoGPT-o1 (Chen et al.,
2024) was among the first medical LLMs demon-
strating complex reasoning, trained using SFT fol-
lowed by PPO with a medical verifier. MED-RLVR

(Zhang et al., 2025) utilizes a rule-based reward
with PPO to significantly boost performance on
medical MCQs. Our work builds on these efforts by
exploring how a mixed-reward strategy, combining
reward signals from multiple-choice questions and
open-ended questions, can further enhance medical
QA capabilities.

3 Methodology

3.1 Reinforcement Learning Algorithm

DAPO for Mixed-Reward Training We adopt
the Decouple Clip and Dynamic sAmpling Policy
Optimization (DAPO) algorithm (Yu et al., 2025)
for our reinforcement learning training. DAPO, a
variant of GRPO (Shao et al., 2024), is selected
not only for its effectiveness in policy optimization,
but also for its suitability for mixed-reward train-
ing. DAPO covers several features, with the key
feature of dynamic sampling particularly suitable
for mixed-reward training.

Dyanmic Sampling in DAPO ensures that each
training batch contains prompts that provide effec-
tive gradients (eliminating zero-gradient groups).
This is particularly useful when training with a
mix of MCQs (clear rewards) and OE questions
(potentially noisy rewards, examples shown in Ap-
pendix A.2), as DAPO can dynamically curate
batches of appropriate difficulty. This process,
where the algorithm adaptively selects data for op-
timal learning, aligns with the philosophy of cur-
riculum learning and proved effective in our ex-
periments. Our preliminary experiments revealed
that datasets composed exclusively of open-ended
questions needed more iterations to identify useful
training data and form effective learning batches
(see Appendix A.3).

3.2 Train Dataset Collection

Our train dataset contains different types and dif-
ferent languages of medical questions, including
close-end datapoints from MedQA-USMLE (Jin
et al., 2021), MedMCQA (Pal et al., 2022), CMB-
Exam (Wang et al., 2023), and open-end datapoints
from HuaTuo medical verifiable questions (Chen
et al., 2024). We use untrained LLMs to perform 16
rollouts on each question and filter out simple ones
with all correct answers. After that, the remaining
datapoints can be considered as the difficult and
challenging ones.
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Model Dataset MedQA-USMLE
MMLU-Pro

CMB-Exam MCQs Avg. HealthBench-Small
Health Biology

HuatuoGPT-o1-7B 70.7% 59.78% 74.06% 80.75% 71.32% 0.5642

Deepseek-R1-Distill-Qwen-7B 36.06% 30.56% 60.25% 33.3% 40.04% 0.4116

Qwen2.5-3B-Instruct 32.60% 26.28% 52.02% 67.71% 44.65% 0.6659
MCQA 18.6k 53.89% 44.5% 65.27% 65.10% 57.19% 0.6202

Open-ended QA 16k 49.02% 30.44% 22.04% 59.44% 40.24% 0.5623

Mix 34.6k 57.50% 46.94% 67.78% 66.82% 59.76% 0.576

Qwen2.5-7B-Instruct 59.62% 52.69% 70.15% 78.34% 65.2% 0.7286

MCQA 18.6k 69.13% 57.82% 72.66% 79.53% 69.79% 0.7385
Open-ended QA 16k 68.11% 56.72% 71.27% 76.97% 68.27% 0.7234

Mix 34.6k 71.33% 61.37% 76.85% 79.95% 72.38% 0.6934

Qwen3-4B 71.09% 60.88% 81.45% 69.59% 70.75% 0.8693
MCQA 18.6k 73.06% 63.37% 79.08% 70.84% 71.59% 0.8745

Open-ended QA 16k 69.91% 56.36% 78.1% 70.8% 68.79% 0.778

Mix 34.6k 73.61% 61.74% 81.31% 70.54% 71.8% 0.8341

Table 1: Results of medical benchmarks. Bold highlights the best accuracy or score among models of the same size.

3.3 Reward Design
For the dataset consisting of multiple-choice ques-
tions, we use the following binary rule-based re-
ward:

R(ŷ, y) =

{
1, is_equal(ŷ, y)
0, otherwise

(1)

where ŷ is the predicted option and y is the
ground-truth option. We extract predicted options
using regex matching on model outputs format-
ted as [A-D] or [A-D]. content, counting exact
matches as correct.

For the dataset with open-ended questions and
short answers, we evaluate the responses by Jaccard
Similarity (Jaccard, 1912) as follows:

R(ŷ, y) =
ŷtokenize ∩ ytokenize

ŷtokenize ∪ ytokenize
(2)

where ŷ means the predicted response and y
means the ground-truth answer, and ytokenize means
the word set after tokenization (Bird, 2006):

ytokenize = word_tokenize(y) (3)

Rule-based rewards provide clear and discrete
feedback, making it easy to identify completely
correct v.s. incorrect responses. However, partially
correct answers can still be informative for learning.
The Jaccard Similarity score, which ranges from
0 to 1, offers a softer and more nuanced reward
signal. This is especially valuable for open-ended
questions, where exact matches between predic-
tions and ground truth are uncommon. Jaccard

Similarity can provide continuous and fine-grained
feedback, expand the reward space, and support
smoother model training.

4 Experiments

4.1 Datasets

Training Data We study the impact of different
data types with different reward strategies. For
closed-ended MCQs in English and Chinese, we
sample 9,000 and 9,600 examples from the chal-
lenging dataset described in Section 3.2, respec-
tively. To maintain balance, 16,000 open-ended
questions are sampled.

Benckmarks The experiments are performed us-
ing a widely adopted medical benchmark dataset,
including MedQA-USMLE, CMB-Exam, and
health and biology tracks of MMLU-Pro. We use
a 4-choice concise version of MedQA-USMLE,
which contains 1,273 questions. The test set of
CMB-Exam consists of 11,200 multiple-choice and
multiple-answer questions. In order to verify the
model’s generalization ability outside the training
distribution, we evaluate the performance on health
and biology categories in MMLU-Pro (Wang et al.,
2024). The dataset contains 818 and 717 multiple-
choice questions, respectively. We use accuracy as
the evaluation metric. For multiple-answer ques-
tions in the CMB-Exam, only questions with ex-
actly matching answers are counted.

To evaluate the model’s performance on open-
ended medical questions, we extract 100 dialogue
samples from the HealthBench (Arora et al., 2025)
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Model Dataset MedQA-USMLE
MMLU-Pro

CMB-Exam MCQs Avg. HealthBench-Small
Health Biology

Qwen2.5-7B-Instruct Mix 34.6k (RM) 69.68% 61.61% 74.62% 78.85% 71.19% 0.7234

Mix 34.6k (Binary) 71.25% 61.25% 73.36% 79.44% 71.33% 0.7448

Table 2: Results of using a reward model (RM) and binarized Jaccard Similarity (Binary) on open-ended questions
in the mixed dataset.

Model Dataset HuaTuo Medical Verifiable Testset Mean Tokens per Answer

Qwen2.5-7B-Instruct 49.4% 70.20

MCQA 18.6k 54% 50.25

Open-ended QA 16k (Binary) 50.1% 6.64

Mix 34.6k (Binary) 54.4% 6.64

Mix 34.6k (RM) 60.1% 368.24

Table 3: Supplementary evaluation on HuaTuo medical verifiable dataset with different reward strategies for
open-ended questions

dataset and construct a subset named HealthBench-
Small. Following the official OpenAI evaluation
protocol, we employ Qwen3-32B (Yang et al.,
2025) as the evaluation model with score as the
evaluation metric.

We use temperature 1.0 for evaluation and train-
ing parameters in Appendix A.4.

4.2 Main Results

The evaluation results in Table 1 are divided into
four parts based on rows. The first part is repre-
sented by models such as HuatuoGPT-o1-7B (Chen
et al., 2024) and Deepseek-R1-Distill-Qwen-7B
(Guo et al., 2025). The long responses generated
by Deepseek-R1-Distill-Qwen-7B make it diffi-
cult to extract valid options within an 8,192-token
response length, which affects evaluation perfor-
mance. The second and third parts present results
across three types of datasets: an English-Chinese
multiple-choice dataset, an open-ended verifiable
QA dataset, and a mixed dataset combining both.
For both Qwen2.5-3B-Instruct and Qwen2.5-7B-
Instruct (Yang et al., 2024), training on the mixed
dataset leads to better performance than using only
multiple-choice or only open-ended data on every
benchmark. We also conduct an experiment on one
of the newly open-sourced Qwen3 series models.
Qwen3-4B outperforms the larger Qwen2.5-7B on
most of the benchmarks in the last part of the table,
indicating the promising potential of the Qwen3
series. The HealthBench dataset consists of doctor-
patient conversations, but our training set lacks data

in this specific dialogue format. This discrepancy
may result in the observed decline in performance
on the HealthBench benchmark.

We expand our study to compare different re-
ward strategies in Table 2. In reinforcement learn-
ing, rewards for open-ended questions are typically
computed using a reward model. We employed an
open-source Reward Model(RM) named Qwen2.5-
7B-RLVR (Su et al., 2025), instead of Jaccard Sim-
ilarity, to compute rewards for open-ended ques-
tions. The reward model judges the response and
generates a "YES" or "NO" output, with "YES"
counted as 1 and "NO" as 0. Our experiments
found comparable performance between Jaccard
similarity and RM on MCQ evaluation. However,
Jaccard similarity offers computational efficiency
without requiring domain-specific training. And
training with a reward model increases computa-
tional demands and runtime. In the second line
of the table, we apply a threshold to the Jaccard
Similarity score to convert it into a binary value.
Scores below 0.6 are mapped to 0 and others are
mapped to 1. The evaluation results show that this
hard binarization of rewards performs similarly to
using Jaccard Similarity.

4.3 Supplementary Open-Ended Evaluation

To better understand the impact of our mixed-
reward approach on open-ended questions, we con-
ducted supplementary experiments using 1,000
held-out questions from the HuaTuo medical verifi-
able dataset (Chen et al., 2024). Table 3 presents
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Model Dataset MedQA-USMLE
MMLU-Pro

CMB-Exam MCQs Avg. HealthBench-Small
Health Biology

Qwen2.5-7B-Instruct MedQA 9k + CMB 9.6k 69.13% 57.82% 72.66% 79.53% 69.79% 0.7385

MedQA-OE 9k + CMB 9.6k 60.49% 54.88% 71.55% 79.25% 66.54% 0.7205

MedQA-OE 9k + CMB-OE 9.6k 58.92% 53.67% 68.48% 71.35% 63.11% 0.6597

Table 4: Ablation study results of using different combinations of MCQs and open-end (OE) questions.

these results, with GPT-4o serving as the evaluation
model.

Our results demonstrate that the mixed training
strategy significantly outperforms training exclu-
sively on open-ended questions, a 4.3% absolute
improvement. This confirms that incorporating
MCQs with clear binary rewards provides stabiliz-
ing signals that enhance learning even for open-
ended tasks.

The reward model baseline (Mix 34.6k RM)
achieves higher scores but generates substantially
longer responses (368.24 tokens v.s. 6.64 tokens
for Jaccard similarity). This difference in response
length reveals a critical evaluation artifact: GPT-4o-
based evaluation exhibits length bias, favoring ver-
bose responses regardless of content quality (Zheng
et al., 2023). The excessive verbosity from RM-
trained models suggests reward hacking, where
models learn to exploit evaluation biases rather
than improve answer quality.

The performance decline on HealthBench-Small
warrants explanation. Our training data consists of
direct QA pairs with short, factual responses, while
HealthBench contains multi-turn doctor-patient di-
alogues requiring empathetic, conversational re-
sponses. This format mismatch, compounded
by our Jaccard similarity reward favoring con-
cise answers, explains the reduced performance
on dialogue-based evaluation. This limitation high-
lights the challenge of generalizing across diverse
medical communication formats.

Given these evaluation complexities, we priori-
tize MCQ benchmarks as more objective measures
of medical knowledge. The clear correctness crite-
ria and binary evaluation eliminate the confounding
factors present in open-ended evaluation, such as
length bias and stylistic preferences. Nevertheless,
our supplementary results confirm that the mixed-
reward approach benefits both question types, vali-
dating our central hypothesis that combining vary-
ing reward signals enhances overall model capabil-
ity.

4.4 Ablation Study
To better understand the impact of question types
on performance, we conduct an ablation study
by systematically varying the composition of our
training data. We convert subsets of the English
(MedQA) and Chinese (CMB) MCQs training
data described in Section 4.1 into open-ended for-
mats, and explore different combinations of these
datasets. We use rule-based rewards for MCQs
and Jaccard similarity for OE questions. Table 4
presents these results. While training exclusively
with MCQs (first row) achieves the highest perfor-
mance, the mixed MCQ/OE approach significantly
outperforms training on purely open-ended ques-
tions (second and third rows). This suggests that
MCQs training not only enhances accuracy, but
also contributes to more stable model behavior.

5 Conclusion

In this paper, we demonstrate the effectiveness
of a mixed training approach combining English-
Chinese multiple-choice questions and open-ended
QA data, using rule-based rewards and Jaccard sim-
ilarity with DAPO for reinforcement learning. This
strategy consistently outperforms single-dataset ap-
proaches on most of the benchmarks across both
3B and 7B models. The performance of the newly
released Qwen3-4B model aligns with the above
conclusion while surpassing the larger Qwen2.5-
7B, indicating that the new model is more efficient
and powerful. Our approach strikes an optimal bal-
ance by leveraging the training stability of MCQs
while still exposing the model to the diverse rea-
soning patterns essential for open-ended medical
questions. This suggests a promising direction for
future development.

Limitations

Due to constraints in computational resources and
time, we were unable to experiment with larger or
more recent model families. Our current findings
are therefore limited to a single model line, and
further validation on diverse architectures would
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strengthen the generality of the conclusions. It
also remains worth exploring how the performance
gains from the mixed dataset scale with model size,
and where the upper bound of this approach may
lie.

In addition, while our study targets multilingual
and multi-type medical question answering, in-
cluding English–Chinese multiple-choice and open-
ended verifiable QA, real-world medical applica-
tions involve more varied formats. Notably, the
HealthBench medical dialogue data differ struc-
turally from our chosen QA settings, which may
introduce a format mismatch that limits direct ap-
plicability. Beyond these design choices, our re-
ward modeling emphasizes robustness but does not
exhaustively address reward noise. Future work
could investigate alternative noise characterization
methods, especially for long-sequence tasks such
as clinical report generation or multi-turn dialogues,
where the stability of rewards is particularly criti-
cal.
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A Appendix

A.1 Reward Hacking in 3B Verifier

We identified a concerning pattern where models
achieve near-perfect RM scores (0.98+) by simply
repeating the question without providing any ac-
tual answer. This represents a fundamental failure
where the reward signal completely misaligns with
actual utility. Below are reward hacking examples
in the reward model medical_o1_verifier_3B:

Question: A 24-year-old male developed a
hyperpigmented patch on his right upper chest
four years ago, which later showed thick hair
growth. What is the diagnosis for this condi-
tion?
Predicted Answer: A 24-year-old male devel-
oped a hyperpigmented patch on his right up-
per chest four years ago, which later showed
thick hair growth. What is the diagnosis for
this condition?
Ground Truth Answer: Becker’s nevus
Reward Model Score: 0.9844

Question: In a patient suspected of being
diagnosed with Rabies, a sample of corneal
smear was taken. Which investigation can be
performed directly on the corneal smear to
detect the presence of rabies virus antigen?
Predicted Answer: In a patient suspected
of being diagnosed with Rabies, a sample of
corneal smear was taken. Which investiga-
tion can be performed directly on the corneal
smear to detect the presence of rabies virus
antigen?
Ground Truth Answer: Immunofluores-
cence test
Reward Model Score: 0.9648

A.2 Noisy Rewards

Reward signals produced by Jaccard similarity on
open-ended dataset are considered "noisy" because
semantically correct and well-reasoned responses
can sometimes receive low or zero rewards due
to surface-level mismatches. For instance, "Peutz-
Jeghers syndrome" receives only 0.3333 similarity
score compared to the ground truth "Peutz-Jegher
syndrome," despite being correct. Similarly, "Peni-
cillamine" receives a 0.0 score against "Pencil-
lamine." Here are some cases:

A good case:

Question: Analyze the transition of a curve
from Blue to Red. What will happen to the
Sensitivity and Specificity as a result of this
change?
Predicted Answer: Sensitivity and Speci-
ficity will both increase.
Ground Truth Answer: Both Sensitivity and
Specificity increase.
Jaccard Similarity Score: 0.8333

Bad cases:
Question: What is the most probable diagno-
sis for a female patient who presents with pig-
mentation of the lips and oral mucosa along
with intestinal polyps, and has a family history
of the same condition?
Predicted Answer: Peutz-Jeghers syndrome
Ground Truth Answer: Peutz-Jegher syn-
drome
Jaccard Similarity Score: 0.3333

Question: What is the appropriate treatment
for a 52-year-old man presenting with jaun-
dice, extrapyramidal symptoms, and a finding
consistent with Kayser-Fleischer rings on oph-
thalmic examination?
Predicted Answer: Penicillamine
Ground Truth Answer: Pencillamine
Jaccard Similarity Score: 0.0

We demonstrate that despite this inherent noise
in open-ended question rewards, combining them
strategically with clean binary rewards from MCQs
can still improve overall performance. This ad-
dresses our core research question of whether and
how LLMs can effectively learn from imperfect
reward data.

A.3 Number of Generated Batches
In DAPO, dynamic sampling filters out data where
all scores within a group are either 1 or 0. New
samples keep generating until the number of valid
data points reaches the training batch size. Fig-
ure 1 shows the number of generations required
when training with different datasets on Qwen2.5-
7B-Instruct. The horizontal axis represents the nor-
malized number of training steps, corresponding
to the training progress. The number of gener-
ated batches increases in experiments using MCQs
datasets. This indicates many groups of data in a
batch consist entirely of the same labels (all scores
of 1 or 0), which reduces the data utilization. Train-
ing with open-ended datasets results in fewer gen-
erated batches, suggesting that the reward scores
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within each group are more diverse and less de-
terministic. Experiments conducted with mixed
datasets demonstrate improved data utilization and
enhance batch learning efficiency.

Figure 1: Number of generated batches with training
progress

A.4 Parameter Setting
The parameter settings used in our train and evalua-
tion are in Table 5. The inference engine employed
is vLLM (Kwon et al., 2023) and the training frame-
work is verl (Sheng et al., 2024).

Table 5: Training Parameters

Parameter Value

use_kl_loss False
kl_loss_coef 0.0
filter_groups_metric score
clip_ratio_low 0.2
clip_ratio_high 0.28
clip_ratio_c 10.0
lr 1e−6
n_resp_per_prompt 16
weight_decay 0.1
offload True
param_offload True
optimizer_offload True
gpu_memory_utilization 0.5
train_prompt_bsz 32
gen_prompt_bsz 96
max_response_length 1024
temperature 1.0
top_p 1.0
do_sample True
enable_overlong_buffer True
overlong_buffer_len 64
overlong_penalty_factor 1.0
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