@inproceedings{huang-etal-2025-zero,
title = "Zero-Shot Privacy-Aware Text Rewriting via Iterative Tree Search",
author = "Huang, Shuo and
Yuan, Xingliang and
Haffari, Gholamreza and
Qu, Lizhen",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.488/",
pages = "9175--9190",
ISBN = "979-8-89176-335-7",
abstract = "The increasing adoption of large language models (LLMs) in cloud-based services has raised significant privacy concerns, as user inputs may inadvertently expose sensitive information. Existing text anonymization and de-identification techniques, such as rule-based redaction and scrubbing, often struggle to balance privacy preservation with text naturalness and utility. In this work, we propose a zero-shot, tree-search-based iterative sentence rewriting algorithm that systematically obfuscates or deletes private information while preserving coherence, relevance, and naturalness. Our method incrementally rewrites privacy-sensitive segments through a structured search guided by a reward model, enabling dynamic exploration of the rewriting space. Experiments on privacy-sensitive datasets show that our approach significantly outperforms existing baselines, achieving a superior balance between privacy protection and utility preservation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2025-zero">
<titleInfo>
<title>Zero-Shot Privacy-Aware Text Rewriting via Iterative Tree Search</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shuo</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingliang</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gholamreza</namePart>
<namePart type="family">Haffari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lizhen</namePart>
<namePart type="family">Qu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>The increasing adoption of large language models (LLMs) in cloud-based services has raised significant privacy concerns, as user inputs may inadvertently expose sensitive information. Existing text anonymization and de-identification techniques, such as rule-based redaction and scrubbing, often struggle to balance privacy preservation with text naturalness and utility. In this work, we propose a zero-shot, tree-search-based iterative sentence rewriting algorithm that systematically obfuscates or deletes private information while preserving coherence, relevance, and naturalness. Our method incrementally rewrites privacy-sensitive segments through a structured search guided by a reward model, enabling dynamic exploration of the rewriting space. Experiments on privacy-sensitive datasets show that our approach significantly outperforms existing baselines, achieving a superior balance between privacy protection and utility preservation.</abstract>
<identifier type="citekey">huang-etal-2025-zero</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.488/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>9175</start>
<end>9190</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Zero-Shot Privacy-Aware Text Rewriting via Iterative Tree Search
%A Huang, Shuo
%A Yuan, Xingliang
%A Haffari, Gholamreza
%A Qu, Lizhen
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F huang-etal-2025-zero
%X The increasing adoption of large language models (LLMs) in cloud-based services has raised significant privacy concerns, as user inputs may inadvertently expose sensitive information. Existing text anonymization and de-identification techniques, such as rule-based redaction and scrubbing, often struggle to balance privacy preservation with text naturalness and utility. In this work, we propose a zero-shot, tree-search-based iterative sentence rewriting algorithm that systematically obfuscates or deletes private information while preserving coherence, relevance, and naturalness. Our method incrementally rewrites privacy-sensitive segments through a structured search guided by a reward model, enabling dynamic exploration of the rewriting space. Experiments on privacy-sensitive datasets show that our approach significantly outperforms existing baselines, achieving a superior balance between privacy protection and utility preservation.
%U https://aclanthology.org/2025.findings-emnlp.488/
%P 9175-9190
Markdown (Informal)
[Zero-Shot Privacy-Aware Text Rewriting via Iterative Tree Search](https://aclanthology.org/2025.findings-emnlp.488/) (Huang et al., Findings 2025)
ACL