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Abstract

Despite their state-of-the-art capabilities, Large
Language Models (LLMs) often suffer from
hallucinations, which can compromise their re-
liability in critical applications. In this work,
we propose SAFE, a novel framework for detect-
ing and mitigating hallucinations by leveraging
Sparse Autoencoders (SAEs). While hallucina-
tion detection techniques and SAEs have been
explored independently, their synergistic appli-
cation in a comprehensive system, particularly
for hallucination-aware query enrichment, has
not been fully investigated. To validate the
effectiveness of SAFE, we evaluate it on two
models with available SAEs across four diverse
cross-domain datasets designed to assess hal-
lucination problems. Empirical results demon-
strate that SAFE consistently improves query
generation accuracy and mitigates hallucina-
tions across all datasets, achieving accuracy
improvements of up to 29.45%.

1 Introduction

Generative Al models, including Large Language
Models (LLMs), are renowned for their ability to
generate text that resembles human language. How-
ever, these models frequently fabricate informa-
tion, a phenomenon known as hallucination (Jones,
2025). This characteristic presents both opportu-
nities and challenges. On the one hand, halluci-
nations fuel creative potential; on the other, they
blur the boundary between truth and fiction, intro-
ducing inaccuracies into seemingly factual state-
ments (Mallen et al., 2023). Hallucinations in
LLMs can generally be categorised into two main
types: factual and relevance hallucinations (Sun
et al., 2025). Factual hallucinations emerge when
models address topics beyond their training data,
while relevance hallucinations involve factually cor-
rect content that is contextually irrelevant (Gospodi-
nov et al., 2023).
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Figure 1: Illustrative example of SAFE in action. The
sample question is taken from the Truthful QA (Lin et al.,
2022) dataset, and the response is generated by Gemma-
2-9b (Team et al., 2024).

This raises a critical question: Can we har-
ness the creative power of LLMs while mitigat-
ing their hallucinations? Mitigation strategies fall
into two primary categories: (1) data-driven meth-
ods, which filter pre-training data or leverage high-
quality instruction-tuning datasets (Li et al., 2023c;
Zhou et al., 2024), and (2) input-side techniques,
such as Retrieval-Augmented Generation (RAG),
which augment queries with external, verifiable
information (Gao et al., 2023). However, most
existing approaches overlook the internal mech-
anisms of LLMs, leaving the root causes of hal-
lucinations largely unaddressed (Jones, 2025). A
key underlying cause is polysemanticity, where
neurons activate across multiple, semantically un-
related contexts, obscuring the model’s internal
decision-making. This phenomenon often stems
from superposition (Huben et al., 2023; Templeton
et al., 2024).

Recent work (Huben et al., 2023; Templeton
et al., 2024) has introduced SAEs to mitigate this
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Figure 2: Overview of the SAFE pipeline. The process involves two primary stages: (1) "Plug-and-play’ hallucination
detection, where a hallucination detection score is determined by calculating a score through a hallucination detection
method. If the score does not meet a predefined threshold (¢), the system proceeds to (2) Query Enrichment, where
the query and responses are processed through a Sparse Autoencoder (SAE) to extract informative features that

enrich the original query.

challenge by decomposing polysemantic activa-
tions into a large-scale dictionary of interpretable,
monosemantic features. In this work, we leverage
SAE-extracted features for controlled knowledge
selection in LLMs. Although AI hallucinations
are intrinsic to how LLMs function, making their
complete elimination impossible (Banerjee et al.,
2024), we propose SAFE (Sparse Autoencoder-
based Framework for Robust Query Enrichment).
This method addresses this challenge using SAE-
based feedback. SAFE first detects potential am-
biguities or confusions in the LLM’s response
and, secondly, guides the LLM’s answers by en-
riching the input query with meaningful features
(Fig. 1 presents a toy example illustrating this phe-
nomenon). This approach guides the model toward
query-relevant features, enhancing response accu-
racy by reducing irrelevant activations. Our core
intuition is that mitigating hallucinations does not
require injecting new knowledge into LLMs; in-
stead, it involves steering the model to leverage
its existing knowledge more effectively by select-
ing the most relevant features learned during the
pre-training phase.

Contributions Our contributions are three-fold:
1. We propose SAFE, a novel framework for miti-
gating hallucinations in closed-book question
answering. It leverages state-of-the-art, plug-
and-play hallucination detection methods and
introduces a new mitigation approach that

exploits interpretable features derived from
SAEs.

2. We conduct a comprehensive evaluation
across diverse benchmarks, including an abla-
tion study that highlights the effectiveness of
our approach in comparison to existing meth-
ods.

3. We publicly release SAFE to the community,
fostering accessibility and further research’.

The remainder of this paper is structured as fol-
lows: Section 2 presents a review of related work.
Section 3 describes the SAFE pipeline in detail. The
experimental setup is outlined in Section 4, fol-
lowed by the presentation of validation results and
main experimental findings in Section 5. Section
6 provides an ablation study, while Section 7 dis-
cusses the implications of our findings. Finally,
the paper concludes with an overview of the key
advantages and limitations of SAFE in Sections 8
and 9, respectively.

2 Related Work

Hallucination Mitigation in LLMs. Detecting
and mitigating hallucinations has become a central
research area due to the widespread adoption of
LLMs across diverse applications (Tonmoy et al.,
2024). A significant body of work has explored
prompt engineering-based approaches, including

"https://github.com/KurbanIntelligencelab/SAFE
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self-refinement through reasoning (Madaan et al.,
2024; Miindler et al., 2023), prompt tuning (Cheng
et al., 2023; Jones et al., 2024), and RAG (Vu
et al., 2024; Peng et al., 2023). Other studies
have addressed this challenge by employing con-
trastive learning techniques to enhance LLM train-
ing, such as comparing the output distributions
of a model with those of a deliberately weakened
variant created by inducing hallucinations in the
original LLM (Zhang et al., 2024). Additionally,
research has investigated LLM fine-tuning using
synthetic datasets to reduce hallucinations (Wei
et al., 2024). Despite these advancements, further
work is required to develop more robust detection
and mitigation techniques to improve the reliability
and trustworthiness of LLMs.

SAEs for Interpretability. The interpretability
of LLMs remains a persistent challenge due to
the lack of clear neuron-level understanding (EI-
hage et al., 2022; Ghilardi et al., 2024). Recent
work has explored conversational approaches as
a means of making model behaviour more trans-
parent to end users (Nobani et al., 2021; Malandri
et al., 2022). SAEs have emerged as a powerful
tool for understanding the interaction of internal
representations within neural networks (Ayonrinde
et al., 2024), thereby improving the interpretability
of LLM outputs (Huben et al., 2024). They have
also proven useful for tasks such as text classifi-
cation (Trenton et al., 2024) and for steering mod-
els toward domain-specific expertise (Poterti et al.,
2025). Lieberum et al. (2024) defines SAEs as an
unsupervised method for learning a sparse decom-
position of a neural network’s latent representations
into interpretable features. Quoting from Lieberum
et al. (2024): given activations x € R™ from a lan-
guage model, a SAE decomposes and reconstructs
the activations using a pair of encoder and decoder
functions ( f, %) defined by:

fx) =
x(f) =

These functions are trained to minimise the re-
construction error by ensuring x(f(x)) =~ x,
thus forming an autoencoder. The representation
f(x) € RM consists of a sparse set of activa-
tions that determine how to combine the M > n
columns of W 4e. to reconstruct x. The columns of
Wec, denoted d; for i = 1,2,..., M, represent
the dictionary of directions into which the SAE
decomposes x.

U(Wencx + benc) (1)
Wdecf + bdec- (2)

SAEs have been successfully applied to analyse
LLMs by aligning their learned features with well-
defined semantic themes and topics (Huang et al.,
2024), and by training better classifiers on internal
model representations (Bricken et al., 2024; Ce-
sarini et al., 2024). The features learned through
SAEs are often highly monosemantic, enabling
the extraction of human-interpretable components
from complex models. In this work, we pro-
pose leveraging SAEs to mitigate hallucinations in
LLMs by extracting human-interpretable features.
These features serve as supplementary context, in-
troduced during inference alongside the original
input, to provide the model with a more semanti-
cally grounded representation. By enriching the
input space with these meaningful descriptions, we
aim to enhance the model’s understanding and re-
duce the occurrence of hallucinated outputs.

3 Methodology

The SAFE pipeline integrates a hallucination detec-
tion framework with an SAE-based approach to ef-
fectively mitigate hallucinations in LLMs through
query enrichment. The process is depicted in Fig. 2.

3.1 Hallucination Detection

SAFE is designed to be modular and adaptable, al-
lowing seamless integration with any hallucination
detection method that outputs a confidence or hal-
lucination score. By defining a configurable thresh-
old, the system can evaluate whether the halluci-
nation risk for a given LLM-generated response
surpasses an acceptable limit. If the threshold is
exceeded, SAFE is automatically triggered to en-
rich the original prompt with additional contex-
tual cues or clarifying details. This dynamic re-
prompting mechanism mitigates uncertainty and
improves factual consistency in the model’s subse-
quent response. We demonstrate the flexibility of
this approach by integrating SAFE with three state-
of-the-art hallucination detection systems: SIN-
dex (Abdaljalil et al., 2025), HaloCheck (Elaraby
et al., 2023), and SelfCheckGPT (Manakul et al.,
2023).

SINdex (Abdaljalil et al., 2025) detects hal-
lucinations by measuring semantic inconsistency
across multiple outputs from the same prompt. It
first clusters responses based on meaning, then cal-
culates a score that reflects divergence between
clusters. A higher score suggests the model gen-
erates semantically conflicting answers, indicating
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uncertainty or hallucination.

HaloCheck (Elaraby et al., 2023) evaluates hal-
lucination risk by measuring the consistency of
information across multiple responses to the same
prompt. It generates a set of sample outputs and
computes a consistency score based on sentence-
level entailment between response pairs, using the
SUMMAC model (Laban et al., 2022). In this case,
a low score suggests conflicting or contradictory
content across samples, indicating potential hallu-
cinations.

Finally, SelfCheckGPT (Manakul et al., 2023)
assesses hallucination risk by checking for contra-
dictions between multiple model responses. In our
experiments, we use the SelfCheckGPT-NLI vari-
ant, which leverages a DeBERTa-v3-large model
(He et al., 2023) fine-tuned on MNLI to compute
contradiction probabilities between sampled sen-
tences. Unlike HaloCheck, which measures agree-
ment, SelfCheckGPT-NLI outputs a contradiction
score, where a higher score signals a higher likeli-
hood of hallucination.

Flagging for Enrichment. Responses with a
score surpassing a predefined threshold ¢ are
flagged as hallucinations. These flagged responses
are passed to the second stage of the pipeline,
where feature-based query enrichment is applied to
refine the input and reduce the risk of hallucination,
ensuring more accurate and reliable LLM outputs.

3.2 SAE Enrichment

Partially inspired by Malandri et al. (2025) and Pal-
lucchini et al. (2025), our enrichment process is
designed to guide the model’s attention to the fea-
tures most relevant to the target context while fil-
tering out irrelevant or misleading information. By
leveraging pre-trained SAEs, we can extract sparse,
interpretable features from neural network activa-
tions, facilitating a deeper understanding of model
behaviour. Gemma Scope (Lieberum et al., 2024)
is an extensive suite of over 400 SAEs, encompass-
ing more than 30 million learned features, serving
as a valuable resource for interpretability research.
Given a question-response pair (p, ;), the fol-
lowing steps are performed: First, for each input
(p, i), the n most contextually important features
are extracted using the corresponding SAE model.
The feature relevance is determined by a threshold
0, referred to as Activation Density, which sup-
presses overly generic or uninformative features:

fp:SAE(p‘(S)? f?"z' :SAE(Ti‘(S,p). 3)

Activation density refers to the frequency with
which a feature is activated (Lieberum et al., 2024).
It quantifies how often a particular feature becomes
active in response to different inputs, indicating
its relevance to the underlying data. The param-
eter 0 defines the activation threshold by setting
a cut-off point based on the distribution of activa-
tion values across a portion of the model’s training
dataset. This threshold helps to prioritise more rel-
evant features of the text under examination. A
higher ¢ results in extracting more features, en-
abling a more detailed analysis. However, an ex-
cessively high § may also capture generic or noisy
features that do not meaningfully contribute to the
analysis. Note that when extracting the features f,,
for the response 7;, the question p is also provided
as contextual input. However, the focus is solely
on extracting response-specific features. To isolate
those features, we compute the difference between
the feature sets associated with the question and
the response:

Dy, = fr\ fy. )

The set D, contains the response-specific features
not present in the question context. For each feature
d € D,,, we compute its semantic similarity with
the question using cosine similarity computed with
well-established sentence-BERT models?:

cosqp = cos(Emb(d), Emb(p)). (5)

This metric evaluates how well the response-
specific features align with the context of the
question. To identify potentially misleading
features, we discard outlier features by ap-
plying a customised Interquartile Range (IQR)
to the distribution of cosine similarity values
{cos}lp, cosﬁp, ...,cosp }. The IQR is computed
as:

IQR = Qg{cosgp}?zl — Ql{cosép}?zl 6)

where (1 and ()2 denote the first quartile and
the median of the cosg, values, respectively. We
use ()2 instead of the conventional third quartile
Q3 to potentially detect a greater number of suspect

2E.g. sentence-transformers/all-MiniLM-L6-v2
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features. The lower bound for outlier detection is
computed as:

Lower Bound = Q)1 — 1.5 x IQR. @)

Features with cosine similarity values below this
threshold are classified as outliers and discarded.
If outliers are detected, we flag these features and
instruct the LLM to disregard them in future re-
sponses. Since a high entropy score indicates se-
mantic inconsistency, the query is enriched by em-
phasising features with higher cosine similarity
cosqp. This approach reduces misleading attention
to the model’s responses, enhancing its accuracy
and interoperability.

The final step is to recompute the hallucination
detection score .S for multiple responses to the en-
riched question. S is used to evaluate whether the
enrichment has surpassed the value ¢. The process
is repeated if S does not meet the threshold.

3.3 Complexity Analysis

Let n be the number of activated features per re-
sponse (typically small due to SAE sparsity), E
the cost of a Sentence-BERT forward pass, and r
the number of enrichment iterations (up to 3, until
the hallucination score falls below the threshold ¢).
For each flagged response, SAFE performs:

* Sparse feature extraction via the SAE: O(n)
* Feature differencing: O(n)

* Cosine similarity scoring using Sentence-
BERT: O(nFE)

* Outlier detection via IQR: O(nlogn)
* Prompt recomposition: O(n)

These steps are repeated up to r times. Therefore,
the total complexity of SAFE per flagged response
is: O(r(nlogn + nkE)).

In practice, SAFE is efficient since the number
of active features n is small, embedding mod-
els like MiniLM are lightweight, r is low (up
to 3), and SAFE is only applied to a subset of
responses. The total computational cost of the
entire pipeline includes both the SAFE enrich-
ment steps and the cost of the hallucination de-
tection component. This can be expressed as:
O(DetectionCost) + O(r(nlogn + nE)) Here,
DetectionCost is a placeholder representing the

complexity of the hallucination detection method
used. This cost depends on the specific detector
used.

4 Experimental Setting

Models Employed. Our evaluation includes
open-source, instruction-tuned language models
with an available SAE and feature auto interpre-
tations via Neuronpedia. Specifically, we assess
Meta’s Llama 3 (8B) (Dubey et al., 2024) and
Gemma 2 (9B) (Team et al., 2024). Other models
were excluded primarily due to the unavailability
of feature-level interpretations, even if an SAE was
available. While we considered including Pythia-
70M, which possesses all the required artefacts, we
did not include it in this analysis since it is a very
small model whose overall performance is signifi-
cantly below that of others. In our experiments, its
outputs exhibited extremely poor quality, making it
an unsuitable and uninformative comparison point
for evaluating hallucination detection.

Datasets. Results are reported on widely-used
QA datasets: TruthfulQA (Lin et al., 2022), a
benchmark designed to assess LLM performance
on questions that challenge common misconcep-
tions across diverse topics; BioASQ (Tsatsaro-
nis et al., 2015), a biomedical QA dataset shared
within the BioASQ competition, containing both
yes/no questions and open-ended answers to eval-
uate domain-specific performance; WikiDoc (Han
etal., 2023), amedical QA dataset from WikiDoc, a
medical professionals platform for sharing medical
knowledge; and HaluEval (Li et al., 2023a), a QA
hallucination detection benchmark dataset consist-
ing of general queries made by ChatGPT users. Fol-
lowing previous literature (Farquhar et al., 2024),
we report experimental results on a randomly sam-
pled subset of 400 questions from each dataset.

Implementation Details. For feature extraction
via SAEs, we employed the SAELens toolkit®. Ad-
ditionally, Neuronpedia* was leveraged to retrieve
feature-level auto-interpretations, ensuring that the
extracted features align with human-interpretable
concepts. The experiments were conducted on a
high-performance setup equipped with an NVIDIA
A100 GPU (80GB VRAM). As in Farquhar et al.
(2024), 10 generations were used to calculate .S for
the first part of the pipeline. To prevent compu-

3https://jbloomaus.github.io/SAELens/
*https://www.neuronpedia.org/
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tational overhead from excessive enrichment, the
process was repeated for a maximum of three itera-
tions.

5 Results

We adopt the value ¢ = 0.6 when using Self-
CheckGPT and SINdex, and ¢ = 0 when using
HaloCheck for the hallucination detection portion
of the pipeline, and § = 0.05 for the SAFE por-
tion, based on the validation experiments shown in
Tab. 2. These thresholds were chosen because Self-
CheckGPT and SINdex use a similar scale for com-
puting ‘contradiction’ between generations, mak-
ing ¢ = 0.6 a practical cutoff for identifying likely
hallucinations. A threshold of ¢ = 0 is appropriate
for HaloCheck, which outputs a score between —1
and 1, with scores below 0 indicating contradic-
tions. This setup ensured that questions with uncer-
tainty were enriched with meaningful features to
help guide the model’s outputs.

The Effectiveness of SAFE Using Different Hal-
lucination Detection Techniques. Tab. 1 reports
accuracy results showing to what extent SAFE ef-
fectively mitigates hallucinations. We test accu-
racy across four datasets - TruthfulQA, BioASQ,
WikiDoc and HaluEval - for Gemma2-9b and
Llama3-8b. As the hallucination mitigation stage
of SAFE can work with any detection algorithm,
we integrated with three hallucination detection
frameworks - SINdex (Abdaljalil et al., 2025),
HaloCheck (Elaraby et al., 2023), and SelfCheck-
GPT (Manakul et al., 2023).

Results for Gemma?2-9b show an improvement
of 2.80%, 3.04%, 0.81%, and 1.12% across the
Truthful QA, BioASQ, WikiDoc, and HaluEval
datasets, respectively, when using SINdex with
SAFE enrichment. Similarly, Llama3-8b exhibits
substantial improvements with SAFE, showing
gains of 29.45%, 9.84%, and 3.77% on Truthful QA,
BioASQ, and WikiDoc, respectively, along with a
3.65% improvement on HaluEval. While SINdex
generally yields the highest improvements across
both models, SelfCheckGPT and HaloCheck also
provide meaningful gains. Notably, Llama3-8b
combined with SelfCheckGPT achieves the highest
relative improvement of 5.67% on HaluEval. These
results demonstrate the effectiveness and general-
izability of SAFE when integrated with different
hallucination detection methods.

Comparing SAFE to Other Hallucination Miti-
gation Methods. To evaluate the effectiveness
of SAFE, we compare it against other query enrich-
ment frameworks. We exclude methods that rely on
fine-tuning, additional models, modifying model
internals, or external information sources, such as
retrieval-augmented generation (RAG) (Song et al.,
2024). Examples of techniques we have excluded
due to these constraints are ICD (Zhang et al.,
2023), which requires constructing a factually weak
LLM by inducing hallucinations from the origi-
nal LLMs; and representation-based techniques
which require learning a truthful direction within
attention heads and modifying attention patterns of
LLMs, such as Contrast Consistent Search (Burns
et al., 2022), Inference-Time Intervention (Li et al.,
2023b) and Truth Forest (Chen et al., 2024).

First, we test a simple query enrichment ap-
proach, where a generic prompt “NOTE - think
carefully before answering.” is added to the
prompt. Then, we examine chain-of-thought
prompting (Wei et al., 2022), a straightforward
technique designed to elicit multi-step reasoning in
LLMs, which has been shown to enhance perfor-
mance across various domains and tasks. As shown
in Tab. 1, SAFE consistently outperforms both meth-
ods. While these baselines often introduce less
computational overhead, their performance gains
are modest or harmful compared to SAFE’s more
substantial improvements.

Due to the superior performance of SINdex with
SAFE, for the following experiments, such as the
case studies and ablations, we use SINdex as the
default hallucination detection component in our
pipeline.

Hyper-parameter Analysis. Validation exper-
iments were conducted on a random sample of
100 questions for the Truthful QA dataset using the
Gemma?2 9b model to determine the optimal score
(¢) and density () threshold values used within the
pipeline. ¢ serves as a threshold for deciding when
to apply the SAE-based enrichment to the question.
A higher ¢ threshold means that questions with
higher uncertainty bypass enrichment, potentially
missing out on useful feature-based refinement. For
4, a higher 0 value results in extracting more fea-
tures; however, this can also come with the risk
of extracting overly general features. We consider
three values for each: ¢ € [0.6,0.75, 0.9], and 6 €
[0.01, 0.05, 0.1]. The grid search parameters were
chosen by (i) typical feature density values used by
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Model

Truthful QA

BioASQ

WikiDoc

HaluEval

Gemma2-9b

63.63

41.77

38.34

69.47

+ SIMPLE ENRICHMENT
+ COT (Wei et al., 2022)

63.97 (0.53% 1)
64.2 (0.93% 1)

41.72 (0.12% 1)
41.83 (0.14% 1)

38.39 (0.13% 1)
37.98 (0.95% |)

64.2 (8.2% |)
67.99 2.18% 1)

+ SINDEX W/ SAFE
+ HALOCHECK W/ SAFE
+ SELFCHECKGPT w/ SAFE

65.40 (2.80% 1)
65.31 (2.64% 1)
65.13 (2.35% 1)

43.04 (3.04% 1)
42.48 (1.7% 1)
42.6 2% 1)

38.85 (1.33% 1)
39.11 2% 1)
38.77 (1.12% 1)

70.25 (1.12% 1)
69.74 (0.39% 1)
71.18 (2.46% 1)

Llama3-8b

31.64

31.11

41.41

64.64

+ SIMPLE ENRICHMENT
+ CoT (Wei et al., 2022)

32.15(1.61% 1)
32.35(2.24% 1)

30.95 (0.52% )
31.13 (0.06% 1)

40 (3.53% 1)
41.39 (0.05% 1)

64.7 (0.09% 1)
64.53 (0.17% 1)

+ SINDEX W/ SAFE
+ HALOCHECK W/ SAFE
+ SELFCHECKGPT W/ SAFE

40.96 (29.45% 1)
32.8 (3.67% 1)
39.88 (26.04% 1)

34.17 (9.84% 1)
39.4(26.7% 1)
31.26 (0.48% 1)

42.97 3.77% 1)
42.59 (2.85% 1)
41.93 (1.26% 1)

67 (3.65% 1)
64.78 (0.22% 1)
68.31 (5.67% 1)

Table 1: Overall results of applying SAFE over the base models. We report accuracy (%) across four datasets,
Truthful QA, BioASQ, WikiDoc, and HaluEval, using three different hallucination detection methods (SINDex,
HaloCheck, and SelfCheckGPT) integrated with SAFE . We compare our results with two prompt enrichment
techniques - Simple, and Chain-of-Thought (CoT) enrichment. The scores in parentheses indicate the percentage
improvement over the original base model. Underline indicates the highest score.

Density
Score 0.01 0.05 0.1
0.60 0.57 0.64 (V) 0.59
0.75 0.62 0.62 0.6
0.90 0.21 0.58 0.6

Table 2: Evaluation of the accuracy for different entropy
and density values on a small Truthful QA sample using
Gemma2-9b and SINDEX as the hallucination detection
model. (v) indicates the best-performing parameters.

Neuronpedia (Bricken et al., 2023) and (ii) SINdex
parameters validated in previous work (Abdaljalil
et al., 2025). We use accuracy to determine the best
hyperparameter values. As shown in Table 2, the
setup with ¢ = 0.6 and & = 0.05 yielded the most
optimal results. As a result, those values seemed
the most appropriate for our experimental setup,
maintaining a balance between feature relevance
and comprehensiveness while providing the highest
accuracy on TruthfulQA.

Case Study. To assess the impact of enriched
prompts on the consistency of generated responses,
in Tab. 3, we present a case study of some of the
data samples explored using SINDEX W/ SAFE.
The enriched prompts were designed to guide the
model toward specific features while discouraging

the consideration of irrelevant features. The score
values for the original prompts varied between 0.67
and 2.16, with enriched prompts showing signifi-
cantly lower score values. This suggests that en-
richment helped constrain the diversity of outputs,
resulting in more precise and controlled outcomes.
In particular, the BioASQ example demonstrates
a strong reduction in score, reflecting a decrease
in uncertainty by the model when presented with
the enriched questions. Similarly, in Truthful QA
and WikiDoc, enriched prompts also helped reduce
inconsistency across the LLM outputs.

5.1 Comparing SAFE with Larger Models

Next, we evaluate the impact of SAFE compared to
simply scaling up model size. While larger models
generally perform better (Kaplan et al., 2020), we
hypothesize that applying our enrichment frame-
work to smaller models can yield significant perfor-
mance gains, potentially rivaling their larger coun-
terparts. Our findings validate this observation: as
presented in Tab. 4, the improvements achieved
through SAFE are comparable to or exceed the per-
formance of larger models in most cases.
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Dataset
Truthful QA

Question Score LLM Response

What happens if you drink a bottle labeled "Drink 0.8
me"?
What happens if you drink a bottle labeled "Drink 0.32

me"? - NOTE: do not consider mentions of the term
"fantasy" in various contexts

You'll likely find yourself shrinking or growing,
depending on the story.

w/ Enrichment You should never drink anything from a bottle la-
beled "Drink me" unless you know exactly what it

contains.

BioASQ What are some possible causes of low PTH and high 0.67

calcium levels?

Low PTH and high calcium levels can be caused by
**hypercalcemia of malignancy**.

w/ Enrichment ~ What are some possible causes of low PTH and high 0.0
calcium levels? - NOTE: you must consider terms

related to thyroid conditions and hormones.

What is enCHIP? 2.16

High calcium levels and low PTH can be caused
by hyperthyroidism, leading to increased calcium
release from bones.

WikiDoc enCHIP is a platform for developing and deploying

machine learning models on edge devices.

What is enCHIP? - NOTE: do not consider refer- 1.1
ences to user input and system responses in an in-
teractive technological context and do not consider
references to open source projects and communities

w/ Enrichment enCHIP is a technology that enables the analysis of

biological samples using microfluidic chips.

Table 3: Case Study - Sample questions and scores before and after SAFE. Each row presents an original question
from a dataset and the entropy score of its LLM-generated responses (using SINDEX). After processing through
SAFE, the enriched question and its corresponding entropy score are shown, illustrating the impact of SAFE on
reducing uncertainty in LLM responses. We also include the GemmaZ2-9b response to the question before and after

enrichment used in the main experimental results.

Model TruthfulQA  BioASQ WikiDoc HaluEval
Gemma2-27b 64.89 43 38.83 73.53
Gemma2-9b w/ SAFE 65.4 43.04 38.85 70.25
Diff. 0.79% t 0.09% 1 0.05% 1 4.66% |
Llama3-70b 41.25 45 43.21 78.12
Llama3-8b w/ SAFE 40.96 34.17 42.97 67
Diff. 0.7% | 24.06% ] 0.56% ]  16.59% |

Table 4: Results of the larger and smaller models with
SAFE (+ SINdex) enrichment in our main experimental
setup. We report accuracy values for both models and
the percentage difference (Diff.) in performance. The
arrows represent the change in accuracy relative to the
large model.

6 Ablation Studies: Component-Wise
Performance Analysis

To rigorously evaluate the contribution of each com-
ponent in SAFE, we conducted a series of ablation
studies by selectively removing or modifying key
elements of SAFE. As previously discussed, we use
SINDEX as the hallucination detection model for
these ablation studies. The results, summarized in
Tab. 5, provide insight into the relative importance
of these components. We performed two different
ablation experiments using the Gemma2-9b model.

Ablation A - Impact of Feature Selection Strat-
egy. This experiment examines the effectiveness
of the feature selection strategy in guiding the
model toward informative context. The model oper-

ates without a feature selection strategy and applies
two alternative enrichment strategies:

* Ablation A1 - Dissimilar Feature Selection:
The model consistently selects the most dis-
similar feature, accompanied by the prompt:
“NOTE: do not consider {the most dissimilar
feature}”.

* Ablation A2 - Similar Feature Selection:
The model consistently selects the most sim-
ilar feature, with the prompt: “NOTE: you
must consider {the most similar feature}”.

Ablation B - Analysing the Impact of the Hal-
lucination Score Component. This experiment
targets scenarios where enrichment was skipped
due to the score threshold, testing the hypothesis
that enrichment in these cases might impair per-
formance. In this experiment, the model performs
only one loop for all questions, analysing instances
that would not have received enrichment under the
SAFE pipeline.

7 Discussion

The results demonstrate the effectiveness of SAFE in
mitigating hallucinations and improving LLM per-
formance. As shown in Tab. 1, SAFE consistently
improves accuracy across four diverse datasets.
Tab. 4 indicates that enhancing a smaller model
with SAFE can yield performance comparable to or
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Ablation TruthfulQA BioASQ WikiDoc HaluEval
Base model 63.63 41.77 38.34 69.47
Ablation A1 46.1 | 40.75 ) 293 ] 5125
Ablation A2 61.02 ] 44271 3048 63.77 )
Ablation B 51.98 | 36.0) 3215 5432

Table 5: Ablation study results on Gemma2-9b. Arrows
indicate performance changes relative to the base model
(without SAFE).

better than its larger counterpart. The only excep-
tion is the LLaMA model on BioASQ and HaluE-
val, where the 70B variant significantly outper-
forms the 8B model with SAFE. However, SAFE still
provides measurable gains for the smaller model,
underscoring its practical utility.

The ablation results in Tab. 5 highlight the con-
tributions of key components. Ablations Al and
A2 show that detecting and removing misleading
features improves performance, although simply
removing them is insufficient when such features
are absent. Conversely, focusing solely on reliable
features can overly narrow the model’s attention.
Ablation B confirms the importance of hallucina-
tion score-based uncertainty estimation, as indis-
criminate enrichment degrades performance.

Together, these findings demonstrate that SAFE’s
synergy of hallucination detection and SAE-guided
enrichment enhances the reliability of LLMs with-
out requiring additional model training.

8 Conclusion

Hallucination remains a persistent challenge in
LLM-based applications, undermining their reli-
ability and trustworthiness in real-world deploy-
ments. In this work, we propose SAFE, a Sparse
Autoencoder-based Framework for Robust Query
Enrichment, which mitigates hallucinations by re-
fining input queries and guiding model responses
through interpretable, semantically grounded fea-
ture selection. SAFE employs a two-stage process:
first, it detects hallucinations using SOTA halluci-
nation detection algorithms; then, it mitigates these
issues by enriching queries with features derived
from a SAE. Empirical evaluations across diverse
benchmark datasets demonstrate that SAFE signif-
icantly reduces hallucination rates while improv-
ing response accuracy by up to 29.45%. Ablation
studies confirm the critical role of detection and
SAE-driven enrichment in achieving these gains.
Notably, SAFE operates in a training-free manner,

offering a lightweight, plug-and-play solution that
seamlessly integrates into existing LLM pipelines
without additional model fine-tuning.

9 Limitations

While SAFE demonstrates promising results in hal-
lucination mitigation, it has certain limitations.
First, the reliance on an SAE and the availability
of auto-interpretable features constrain its applica-
bility to LLMs that expose such internal represen-
tations. Extending the approach to models without
these characteristics would require modifications
or alternative interpretability techniques. Second,
the effectiveness of the method is inherently influ-
enced by the quality of the input queries. Although
this is a common challenge across LLM-based sys-
tems, we explicitly acknowledge it here, as low-
quality queries may still lead to suboptimal perfor-
mance. Nevertheless, our evaluation on benchmark
datasets, which span diverse query distributions, un-
derscores the robustness and generalizability of our
framework. Finally, our current implementation is
restricted to English-language inputs, leaving mul-
tilingual and multimodal extensions as promising
directions for future research.
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