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Abstract

Since the middle of the 20th century, a fierce
battle is being fought between symbolic and
distributed approaches to language and cog-
nition. The success of deep learning models,
and LLMs in particular, has been alternatively
taken as showing that the distributed camp has
won, or dismissed as an irrelevant engineer-
ing development. In this position paper, I ar-
gue that deep learning models for language ac-
tually represent a synthesis between the two
traditions. This is because 1) deep learning
architectures allow for both distributed/contin-
uous/fuzzy and symbolic/discrete/categorical-
like representations and processing; 2) models
trained on language make use of this flexibility.
In particular, I review recent research in inter-
pretability that showcases how a substantial
part of morphosyntactic knowledge is encoded
in a near-discrete fashion in LLMs. This line of
research suggests that different behaviors arise
in an emergent fashion, and models flexibly al-
ternate between the two modes (and everything
in between) as needed. This is possibly one
of the main reasons for their wild success; and
it makes them particularly interesting for the
study of language. Is it time for peace?

1 Introduction

Since the middle of the 20th century, a fierce bat-
tle is being fought between two antagonistic ap-
proaches to language and cognition. Although
the specifics vary, they can be broadly character-
ized as follows. Symbolic approaches typically
work with discrete, interpretable categories (like
“noun”, “verb” for parts of speech) and discrete,
interpretable rules to combine them (such as those
of formal grammars).! Distributed approaches in-
stead couple uninterpretable high-dimensional con-

'In early work in NLP, these approaches were paired with
top-down processing of linguistic data, through rule-based
systems defined by hand. In later work, the processing part

has instead been data-driven: data is manually annotated ac-
cording to a given representation system, and a processing

tinuous representations, such as vectors, with con-
tinuous functions to combine them, such as those
defined in the different components of a Trans-
former.”

The debate between the two approaches has
taken different forms in different fields: classicism
vs. connectionism in in cognitive science (Buckner
and Garson, 2019), symbolic / rule-based vs. data-
driven / Machine Learning-based approaches in
Al (Russell and Norvig, 2020), formalism / genera-
tivism vs. functionalism / cognitivism in linguistics
(Harris, 2021).3 The crux of the debate is that,
across all these fields, some researchers focus on
the rule-like behavior of language and cognition
and others on its slippery nature.

The advent of deep learning has added fuel to the
scientific fire. In some circles, the success of deep
learning models has been alternatively taken as
showing that the distributed camp has won, or dis-
missed as an irrelevant engineering development. A
prime example is Steve Piantadosi’s 2024 provoca-
tively titled article “Modern language models re-

algorithm is induced from the data via machine learning. The
latter includes modern neural networks trained for, e.g., de-
pendency parsing. This means that the border between sym-
bolic and distributed approaches is, quite fittingly with this
papper, blurry. Relatedly, within formal linguistics different
approaches have started softening the discreteness of both
categories and rules (see e.g. Erk, 2022, for a comprehensive
discussion of probabilistic approaches to semantics and prag-
matics). Still, even in these cases the most common approach
is to add probabilities or constraints to symbolically-defined
rules and categories.

% 1 use “symbolic” and “distributed” as umbrella terms,
with related notions being discrete/categorical/localist for the
former, and continuous/fuzzy/sub-symbolic for the latter. The
different terms touch on different properties that for the pur-
poses of this paper can be lumped together; I will make nu-
ances explicit when needed.

3Functionalists do not use distributed representations, but
the issues underlying the divide between formalists and func-
tionalists are very related to the general debate, as will become
clear during the article, so I am including functionalism in
the distributed camp. Also note that the respective positions
are rooted in the philosophical traditions of rationalism and
empiricism (Markie and Folescu, 2023).
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Figure 1: Schematic illustration of the contrast between symbolic formalisms and deep learning. Top: context-free
grammar and parse tree for the sentence "John gave a drink to Mary". Bottom: transformer architecture and circuit
for the fragment "When Mary and John went to the store, John gave a drink to", with prediction “Mary” (adapted
from Vaswani et al. (2017) and Ferrando et al. (2024), with permission). In the circuit, the representations are
continuous (vectors), but the different components function together in an interpretable algorithm, with attention
heads carrying operations such as copying (see text for details).

fute Chomsky’s approach to language” (Piantadosi,
2024) and the answers it has received, some as
heated as “Modern Language Models Refute Noth-
ing” (Rawski and Baumont, 2023); another is the
also provocative squib by the late Felix Hill, titled
“Why transformers are obviously good models of
language” (Hill, 2024, emphasis in the original). I
believe that these maximalist positions are sterile.

In this position paper, I join more construc-
tive voices exploring what deep learning models
might contribute to linguistic theory (Manning,
2015; Warstadt and Bowman, 2022; Futrell and
Mahowald, 2025). In particular, I propose that
LLMs are actually a synthesis between symbolic
and distributed approaches to language (Figure 1).*

“T center the discussion on LLMs as the most widely

This view rests on two theses. The first is that
the debate exists precisely because language is
both symbolic (or discrete) and distributed (or
fuzzy)—and everything in between. Indeed, the
sustained debate between the two approaches sug-
gests that neither is able to capture language on its
own (Boleda and Herbelot, 2016); and it is neces-
sary to move towards integrated models that cap-
ture the full spectrum of language. The second
thesis is that modern LLMs are one such kind of
model, because they support both distributed and
(near-)symbolic representations and processing. In
my view, this is one of the main reasons for their
amazing success at language.

adopted type of model, but I will also touch on other kinds of
models, such as neural machine translation models.
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Now, the synthesis view of LLMs may come as a
surprise, since neural networks undoubtedly fall in
the distributed camp; however, what is often over-
looked in the debate is the fact that neural networks
do have the potential for near-symbolic represen-
tations and processing (Smolensky and Legendre,
2006, see Section 3 for discussion). Crucially, how-
ever, this potential still leaves open what newer-
generation neural network models will do with it
in practice. My argument is based on recent re-
sults in the interpretability literature which suggest
that, when deep learning models are exposed to
language data and are asked to do a predictive task
like language modeling, they develop near-discrete
representations and quasi-symbolic processes in
addition to distributed ones.

Figure 1 schematically illustrates the contrast
between symbolic formalisms and deep learning
architectures as I see it, with the example of syn-
tax: while symbolic formalisms are discrete, neural
networks afford both distributed and near-discrete
representations and processes.

The contributions of the paper are as follows:

* summarizing for the CL/NLP community the
ways in which language, as a phenomenon, ex-
hibits both regularity and messiness (Thesis 1;
Section 2);

* appraising recent interpretability work that
suggests that LL.Ms deploy near-symbolic rep-
resentations and processes in addition to dis-
tributed ones (Thesis 2; Section 3);

* explaining how this situates LLMs in a de-
bate that has permeated the study of cognition
since the 1950s (remainder of the paper).

2 Language is both regular and messy

Regarding Thesis 1, let’s start by exemplifying
clear cases of regularity. In morphosyntax, for
instance, it is common to posit that words be-
long to different parts of speech (such as noun
or verb).> Languages mark morphosyntax for-
mally, and the combinatorics of linguistic units
are governed by morphosyntactic properties. For
instance, the English suffix -ed marks tense, and
only verbs inflect for tense (follow/followed, but
before/*befored). Similarly, syntactic phrases can

>The exact shape that this takes depends on the theory,
with some theories placing more strength in the grammar and
others on the lexicon (see Borer, 2017, for discussion). The
difficulties discussed in this section surface in both kinds of
theories, though in different ways.

stand in different syntactic relations (such as sub-
ject, object, or indirect object), which can also be
formally marked. For instance, the indirect object
in English is marked by the preposition fo, as in
example (1). In many languages, different units
standing in a given syntactic relation display agree-
ment (Wechsler and Zlati¢, 2003). For instance,
in English, subjects and verbs agree in number; in
example (2), the singular subject (A student) must
appear with a singular verb (is). In Spanish, there is
gender and number agreement also within the noun
phrase: in example (3), the highlighted suffix -a on
the determiner and adjective mark feminine gender,
in agreement with the noun’s lexical gender.

(1) John gave a drink to/*for Mary
2) A student is/*are crossing the street

3) Las partes interesadas
the.F.PL party.PL interested.F.PL

‘The interested parties.’

In the syntax-semantics interface, a classic phe-
nomenon is anaphora, with syntactic constraints
determining the shape of anaphoric pronouns: for
instance, in (4), the pronoun him cannot refer to
Mark (Chomsky, 1981). As an example from com-
positional semantics, it is well known that adding
negation in a sentential context reverses polarity
(Zeijlstra, 2007, see example (5)).

@) Mark; combs himself;/*him;

(5) I will/will not come to lunch

All of these phenomena are categorical or discrete,
in that there is no “in between” state: verbs inflect
for tense, prepositions don’t; is is right and are
wrong in the context of singular subjects; not is a
like a binary switch for polarity; etc. Moreover, in
all of them, we find a systematic relationship be-
tween form and function, or grammar and meaning,
such as -ed marking past tense.

This kind of data is what spurred symbolic ap-
proaches, where discrete symbols are combined
via discrete rules relying on formal features, across
domains as different as phonology (Chomsky and
Halle, 1968; Prince and Smolensky, 1993), syn-
tax (Chomsky, 1957; Kaplan and Bresnan, 1982;
Langacker, 1987; Gazdar et al., 1985; Pollard and
Sag, 1994), semantics (Montague, 1974; Kamp
and Reyle, 1993; Partee et al., 1990; Pustejovsky,
1995), and pragmatics (Sperber and Wilson, 1995;
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Roberts, 2012; Webber, 2016).°

However, one needs only scratch the surface for
regularity to break down. The border between parts
of speech is notoriously fuzzy (Croft, 2001; Evans
and Levinson, 2009); there is no universal agreed
upon set of syntactic relations (Napoli, 1993; Van
Valin Jr, 2005); negation is far from being a binary
switch in many contexts (e.g., not unhappy does
not mean happy), and is hugely complex from a
semantic point of view (Zeijlstra, 2007); and even
agreement can break down (Wechsler and Zlatié,
2003).

In my view, messiness comes from two main
sources. First, fuzzy borders between categories
like those of parts of speech are pervasive across lin-
guistic domains (Croft, 2001; Dowty, 1991; Haspel-
math, 2007).” Continuing with the example of parts
of speech (see Appendix A for other examples),
in many Indo-European languages there is much
fuzziness between adjectives and nouns, nouns and
verbs, and adjectives and verbs; so much so that,
when manually POS-tagging a corpus, a common
recourse is to allow for multiple tags (Marcus et al.,
1993). An example is shown in (6), where fright-
ened could be either a verbal participle, interpreted
as in (6-a), or an adjective denoting an emotional
state, as in (6-b) (analogous to sad, happy).t

(6) The frightened child

a. The child who was frightened by
something/someone
b.  The child feeling fright

The other way in which languages resist symbolic
treatment is by breaking down the systematic re-

8T will mainly discuss morphosyntax and semantics, for
two reasons: Because these domains are representative of
the issues that underlie the debate between symbolic and dis-
tributed approaches, and because most of the work on LLM
interpretability is in these domains (and the latter is the litera-
ture that provides the empirical basis for the synthesis view).
However, in Appendix A I also briefly discuss phonology and
morphology. Also note that I will also mostly use English
examples for space reasons. Nothing in my argument hinges
on this choice.

"To the point that scholars have often questioned the ex-
istence of many categories (see e.g. Croft, 2001, for parts of
speech). There is an important theoretical distinction between
ascertaining the existence of a given theoretical construct (e.g.
in the mind/brain) and gauging its usefulness as a scientific
tool. The discussion in this paper is aimed at the former; but
the data I discuss cannot distinguish between the two levels.

8While context often disambiguates, discussing the manual
annotation of the Penn Treebank, Marcus et al. (1993, p. 316)
note that “even given explicit criteria for assigning POS tags
to potentially ambiguous words, [sometimes] the word’s part
of speech simply cannot be decided” (my emphasis).

lationship between form and function. Clear ex-
amples are irregular or semi-regular morphological
forms, arising from historical processes (Matthews,
1991). For instance, in many English verbs the past
tense is not marked by -ed, but by an irregular form
(went, was) or a semi-regular pattern (e.g. the so-
called ablaut pattern in forms such as sang, drank,
began).

While these are purely formal irregularities,
most form-function mismatches actually result
from an interaction between grammar and meaning.
Example (7) showcases agreement ad sensum: In
sharp contrast to (2) above, here a plural verb is al-
lowed despite the fact that the subject is headed by
a singular noun. Agreement ad sensum usually hap-
pens with singular head nouns that denote sets or
pluralities, such as group —i.e., cases where there
is a mismatch between grammatical and semantic
features.

(7 A group of students from New Zealand
is/are crossing the street

This kind of semantic leakage into syntax poses
a hurdle to symbolic approaches based solely on
formal features. Within a symbolic framework,
it is still possible to add constraints that take
into account the semantics of the head noun in
computing agreement, for instance by adding a
DENOTES-PLURALITY feature to the representa-
tion of the noun. And, while approaches to this
phenomenon in formal linguistics are highly sophis-
ticated, they involve integrating semantics along
these lines (Wechsler and Zlati¢, 2003). This is an
apparently easy fix, which however opens a path
fraught with difficulties, as encoding conceptual
aspects of meaning in a discrete way is arguably
unfeasible (see below).

In formal linguistics, the difficulty has been han-
dled by strictly distinguishing semantic features
that are grammatically relevant from those that
“merely” constitute world knowledge, and circum-
scribing the empirical scope of linguistic theory to
the former (Jackendoff, 1990; Levin, 1993). How-
ever, as pointed out in functional approaches like
cognitive linguistics, interactions between gram-
mar and conceptual aspects of meaning are per-
vasive in language; and there is no clear dividing
line between semantic properties that are relevant
vs. irrelevant for grammar (Langacker, 1987; Fill-
more et al., 1988; Goldberg, 1995). Thus, the strict
division betweeen linguistic-semantics and other-
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semantics is questionable. Moreover, it narrows
the empirical scope of linguisticy theory, delegat-
ing many language phenomena to other disciplines.
Conversely, the risk in functional approaches, given
the difficulties involved in encoding the relevant
factors, is to forfeit the predictive power of linguis-
tic theories, thus staying at a descriptive level.

And so we enter the ultimate messy place in lan-
guage: conceptual aspects of meaning. The clear-
est example is word meaning, which is notoriously
fuzzy, vague, and slippery (Wittgenstein, 1953; Kil-
garriff, 1997; Boleda, 2020). For instance, in con-
trast to cases like (1) and (2) above, the similarities
and differences between fast and swift are subtle,
and there is no hard and fast rule to determine when
to use one and when to use the other. Trying to de-
limit a word’s meaning is similarly challenging;
Wittgenstein (1953) famously discussed the case
of game, concluding that there are no necessary
and sufficient conditions determining what counts
as a game, and all we can ask for is some kind of
“family resemblance”. This is why dealing with lex-
ical semantics in terms of discrete features, such as
DENOTES-PLURALITY, is fraught with difficulties.

For these reasons, if a fully symbolic approach
to parts of speech is problematic, a fully symbolic
approach to lexical semantics has been argued to
be ultimately unfeasible; very prominently in our
community (Boleda, 2020), but also in other tra-
ditions from philosophy (Wittgenstein, 1953; Gar-
denfors, 2014) to lexicography (Kilgarriff, 1997;
Hanks, 2000). And, indeed, despite monumental
efforts building lexical resources like WordNet, or
developing systems for tasks like Word Sense Dis-
ambiguation, our community could not model word
meaning at scale until distributed methods came
along.

That being said, even within this messy domain
we still find categorical distinctions. For instance,
while different word senses are often impossible
to delineate precisely (Kilgarriff, 1997), in some
cases the distinction is very clear, e.g. the ANI-
MAL and COMPUTER DEVICE senses of mouse; and
some concepts are crisper than others (e.g. FIVE vs.
FAST). And other aspects of semantics are largely
discrete and symbolic, notably reference (Frege,
1892). We use language to talk about the world
and, from a linguistic point of view, there is noth-
ing fuzzy in the distinction between, say, two peo-
ple with the same name. Thus, whether Elizabeth
Blackburn won the Nobel prize is true will depend
on which Elizabeth Blackburn we’re talking about

in the given context.’

To sum up, this overview suggests that language
is indeed both discrete and fuzzy; and that there
is no neat discrete/fuzzy divide, nor any area of
language that is completely discrete or completely
fuzzy. At the same time, there are clearly areas
that are more discrete (such as morphosyntax) and
areas that are fuzzier (such as word meaning).

Crucially, no scholar questions any of the empir-
ical data I have discussed so far; what changes is
the way they are appraised. Some traditions focus
on the regularities and consider the rest as either
special cases or phenomena outside the purview of
linguistic theory; whereas others sustain that the
ubiquity of these “special cases” makes the reg-
ularities an epiphenomenon at best (Weissweiler
et al., 2025). These are conscious choices that
are based on carefully considered theoretical po-
sitions. The clearest example of this dichotomy
is the aforementioned generative vs. cognitive di-
vide, with generative linguistics tending towards
the former (Chomsky, 1957; Kaplan and Bresnan,
1982; Montague, 1974, among many others) and
cognitive linguistics towards the latter (Langacker,
1987; Fillmore et al., 1988; Goldberg, 1995, again
among many others). My tenet here is that both
properties are fundamental, and we cannot re-
duce language to one or the other. Therefore, we
need models that natively encompass both regular-
ity and messiness.

3 LLMs and regularity

To my knowledge, it has not been contested that
neural networks in general, and LLMs in particular,
can do fuzzy processing of the sort required for
e.g. lexical semantics. Therefore, here I will place
my emphasis on regularity (Appendix B briefly dis-
cusses non-symbolic and non-compositional pro-
cessing in LLMs).

Indeed, the main criticism of neural networks has
historically been their inadequacy in handling rule-
like linguistic behavior (see e.g. Manning, 2015
and Pinker and Prince, 1988). However, the dis-
tributed camp has long argued that the architec-
ture of neural networks affords symbolic-like pro-
cessing (Rumelhart and McClelland, 1986; Minsky
and Papert, 1988; Smolensky and Legendre, 2006;
Smolensky, 2012). Recall from above that dis-
tributed approaches couple high-dimensional rep-

% As of 2025, according to the internet there are at least two
Elizabeth Blackburns: a Nobel laureate and a judge in Florida.
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Figure 2: Non-linear functions such as the sigmoid pro-
vide the potential for both continuous and near-discrete
behavior.

resentations with continuous functions to combine
them; importantly, however, some of these func-
tions are nonlinear, and this is what gives neural
networks the potential for rule-like behavior (Min-
sky and Papert, 1988). Take the sigmoid as an
example (Figure 2): when its input falls near 0, the
value passed on will be continuous; but when its in-
put is larger or smaller, it will be quasi-binary. This
allows networks to learn to combine their inputs in
a way that leverages non-linearities to build more
or less distributed representations and processing,
as needed.

If we put this potential together with the proper-
ties of language discussed in the previous section,
we can expect LLMs to exploit this potential when
trained on language. And this is indeed what recent
literature on interpretability suggests.

However, what counts as near-symbolic behav-
ior in the context of neural networks? While this
is a very difficult notion to pin down, in this pa-
per I count as near-symbolic the existence of small
sub-units of the network that are causally involved
in encoding or processing a single linguistic con-
struct.' This sub-unit can be at different levels of
description, from single neurons to larger compo-
nents like attention heads.

It has been known for close to a decade that neu-
ral LMs encode non-trivial knowledge of syntax, in-
cluding its hierarchical nature (Linzen et al., 2016;
Gulordava et al., 2018; Futrell et al., 2019; Rogers
et al., 2021). However, most earlier work used tech-
niques such as probing, which could show THAT
they encode syntactic knowledge, but not HOW.
Newer methods in interpretability (see Ferrando

10This definition does not imply that this sub-unit need be
the only one involved in the relevant behavior; see Section 4
for discussion.

et al., 2024, for a survey) focus on precisely this
question, and it is these methods that have provided
the clearest evidence for near-discreteness in some
aspects of linguistic processing in deep learning
models.'! Most studies focus on morphosyntactic
properties or syntactic relations.

Neurons. Several studies have identified neurons
that selectively respond to morphosyntactic proper-
ties such as part of speech, number, and tense (Bau
et al., 2019; Durrani et al., 2023; Gurnee et al.,
2023, 2024). For instance, Durrani et al. (2023)
find neurons sensitive to part of speech in three
multi-lingual LLMs (BERT, RoBERTa, and XL-
Net), such as neuron 624 in layer 9 of RoBERTa
responding to verbs in the simple past tense and
neuron 750 in layer 2 to verbs in the present con-
tinuous tense. Moreover, some morphosyntactic
neurons are “universal” (Gurnee et al., 2024), in the
sense that they can be found across different instan-
tiations of the same auto-regressive LLM. This sug-
gests that language data provide a strong pressure
for neurons encoding morphosyntactic properties
to arise.

Other studies look at the effects of specific neu-
rons on the output (Geva et al., 2022a,b; Ferrando
et al., 2023). Geva et al. (2022b) identified neu-
rons that drastically promote the prediction of to-
kens with specific features, some of which are mor-
phosyntactic in nature; for instance, neuron 1900
in layer 8 of GPT2 increased the probability of
WH words (e.g. “which”, “where”, “who”) and
neuron 3025 in layer 6 of WikiLM the probability
of adverbs (e.g. “largely”, “rapidly”, “effectively”).
Relatedly, Ferrando et al. (2023) identified a small
set of neurons that are functionally active in mak-
ing grammatically correct predictions (for instance
in subject-verb agreement) in models of the GPT2,
OPT, and BLOOM families.

My favorite example regarding neurons is Bau
et al. (2019), who analyzed neurons associated to
morphosyntactic properties in a neural Machine
Translation model from the pre-transformer era.
Altering the values of these neurons changed the
morphosyntactic properties of the translations. For
example, altering the activation of a single encoder
neuron changed the translation of the whole phrase
The interested parties into Spanish, switching its
gender from feminine to masculine (cf. (8), with
the highlighted feminine -a vs. masculine -o gender

""The vast majority of results in this literature concerns
English; in what follows, I'll refer to results for English.
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suffixes). Remarkably, both translations are correct,
but they convey different meanings: the feminine
noun parte is a general equivalent of party, and the
masculine partido in this context implies specifi-
cally a political party.

(8) The interested parties
Original: Las partes interesadas
Modified: Los partidos interesados

Attention heads. Attention heads with special-
ized syntactic functions have also been widely
found in LL.Ms and neural MT models (Raganato
and Tiedemann, 2018; Clark et al., 2019; Htut et al.,
2019; Voita et al., 2019; Krzyzanowski et al., 2024).
Figure 3(a) shows the activations of BERT’s head
7 in layer 6 for the sentence many employees are
working at its giant Renton, Wash., plant. This
head specializes in the possessive construction; in
the example, the possessive determiner (its) sharply
attends to its head noun (plant), in a dependency
relation that has 5 intervening tokens in the surface
structure. Other heads highlighted in this literature
correspond to a wide range of syntactic relations
such as subject, object, prepositional complement,
adjectival modifier, or adverbial modifier. Note that
all heads are near-discrete; Figure 3(b) depicts a
head with a broad attention pattern. The existence
of these broad heads again suggests the need for
distributed processing of other properties, which
are however more difficult to interpret.

Circuits. In recent years, more evidence has
emerged around the notion of “circuit”, or sub-
graphs within neural networks (Cammarata et al.,
2020).!? A particularly relevant example for us
is Wang et al. (2023), which describes in detail a
circuit in GPT2-small governing the prediction of
the indirect object of a sentence. Figure 1 (bot-
tom right) contains a schematic depiction of the
circuit for the sentence When John and Mary went
to the store, John gave a drink to __, where the
LLM predicts Mary. This interpretable circuit cor-
responds to an algorithm that identifies the names
in the sentence (in the example, John and Mary), re-
moves the names that appear in the second sentence
(John), and outputs the remaining name (Mary).

2More specifically a circuit is “A subgraph of a neural
network. Nodes correspond to neurons or directions (linear
combinations of neurons). Two nodes have an edge between
them if they are in adjacent layers. The edges have weights
which are the weights between those neurons [...]” (Olah et al.,
2020).
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[SEP]
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Figure 3: Near-discrete and continuous attention heads
in BERT (adapted from Clark et al. (2019), CC-BY
license; line thickness is proportional to amount of at-
tention). (a) Head 7 in layer 6 tracks dependencies
between possessive determiners and their head nouns
dependency in a near-discrete fashion: the determiner
“its”, highlighted in red, sharply attends to its head noun
“plant”. (Note that most tokens have near-discrete atten-
tion to the [SEP] token. Clark et al. (2019) interpreted
this as a no-op signal.) (b) Head 1 in layer 1 instead
presents a broad attention pattern with no clear interpre-
tation.

The model does this through different attention
heads with specialized functions.

Merullo et al. (2024) further provide evidence
that this circuit is robust (they identify the same cir-
cuit in a larger GPT2 model) and generalizes: some
of its individual components are reused for a task
that is different both semantically and syntactically
(it involves the generation of a word denoting the
color of an object described among other objects
in the preceding context). This suggests that the
uncovered circuit is at a quite high level of abstrac-
tion in terms of linguistic knowledge. Ferrando and
Costa-jussa (2024) contribute further evidence of
abstract generalization in circuits. They show that
one and the same circuit is responsible for solving
subject-verb agreement in English and Spanish in
the multi-lingual LLM Gemma 2B.

To sum up, the interpretability literature provides
evidence for near-symbolic morphosyntactic pro-
cessing in different sub-units of LLMs (neurons,
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Figure 4: BERT’s attention head tracks co-reference
dependencies (head 5 in layer 4); adapted from Clark
et al. (2019). The anaphoric pronoun ‘“her” sharply
attends to antecedent “she”.

attention heads, circuits). Much less attention has
been devoted to other domains, such as composi-
tional semantics and the syntax-semantic interface,
but the existing evidence points in the same di-
rection. For instance, BERT has attention heads
specializing in co-reference, in which anaphoric
mentions sharply attend to their antecedent (Clark
etal., 2019, see Figure 4); and one of the aforemen-
tioned “universal neurons” in Gurnee et al. (2024)
selectively responds to negation. '3

4 Discussion

The preceding section has explored the near-
symbolic encoding and processing of linguistic in-
formation within LLMs. However, as mentioned
in the introduction, deep learning models can flexi-
bly switch between discrete and distributed modes,
and everything in between. In this, they are very
different from formalisms and representations used
in theoretical linguistics.

Indeed, as emphasized throughout this paper,
while representations in theoretical linguistics are
discrete, in LLMs they are at most near-discrete.
Moreover, there is wide variation in the degree of
discreteness (!) exhibited with respect to different
phenomena, or even within a phenomenon. For
instance, in the work cited above, Durrani et al.
(2023) found drastically fewer neurons responding
to the POS of function words (like determiners or
numerals) than to the POS of content words (like
nouns and verbs). They conjectured that the rep-

3The emergence of discrete behavior, and prominently cir-
cuits, has been related to what has been called “grokking”
(Power et al., 2022), that is, the sudden appearance of gener-
alization capabilities in symbolic tasks. See e.g. Nanda et al.
(2023) and Varma et al. (2023) for discussion. Here I focus on
symbolic behavior in linguistic representations and processing,
but of course its emergence in learning is an exciting topic for
further study.

resentation of POS in the networks may be more
distributed in the latter than in the former case. Sim-
ilarly, Bau et al. (2019) find that gender and number
are represented in a more distributed fashion than
tense in the NMT model they analyze.

Another crucial difference with classical for-
malisms in linguistics is the fact that in neural net-
works there is a high degree of redundancy (Durrani
et al., 2023). For instance, when Wang et al. (2023)
ablated some of the heads that they identified in the
indirect object circuit explained above, they found
that the circuit still worked to some extent. They
subsequently went on to identify back-up heads that
replaced the role of the initially identified heads.
Redundancy is a well-known property of neural
networks, and one crucial for their functioning, as
it allows for graceful as opposed to catastrophic
degradation in behavior (LeCun et al., 1989).

The flip side of redundancy is polysemanticity,
that is, the fact that units respond to different prop-
erties (Rumelhart et al., 1986). For instance, in
many (but not all) cases a neuron that responds
to, say, tense, will also respond to some other
unrelated property. In a fine-grained analysis of
GPT2-small attention heads including manual an-
notation, Krzyzanowski et al. (2024) found that
around 90% are polysemantic. There are advan-
tages to polysemanticity, such as the fact that it
allows networks to represent more features than
they have dimensions (Elhage et al., 2022, call this
“superposition”).

If we put the two features together (redundancy
and polysemanticity), we see that each feature is
represented across different individual neurons and
neurons are responsible for different features. By
definition, this is what makes a representation dis-
tributed (Hinton et al., 1986). So why am I argu-
ing that LLMs are a synthesis between continuous
and discrete approaches? Because, as a matter of
fact, even if they could represent and process ev-
erything in a distributed fashion, they do not. They
learn to process some aspects of language in a near-
symbolic manner, to the point that specific inter-
pretable algorithms can be reverse-engineered (Fer-
rando and Costa-jussa, 2024). The 90% figure just
mentioned, from Krzyzanowski et al. (2024), im-
plies that 10% of the attention heads analyzed are
monosemantic —when they would not need to be,
and in fact polysemanticity has advantages, as men-
tioned above. Similarly, most of the “universal
neurons” identified by Gurnee et al. (2024) are
monosemantic, and they have clear functional roles
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in circuits, such as deactivating attention heads.
This stands in stark contrast to, for instance, the
much more distributed representation of words in
static or contextualized word embeddings. And, in-
deed, the evidence for near-discrete behavior over-
whelmingly comes from domains where symbolic
formalisms have been the most successful, such as
grammar.

In the context of this paper, it is important to
distinguisth between symbolic and interpretable.
This paper’s metareviewer remarked that “the pa-
per proposes symbolic representations that lack the
properties that make symbolic representations ap-
pealing to most researchers, namely that they are
interpretable by humans. The authors need to either
make the point that the semi-discrete representa-
tions and rules in LLMs are actually interpretable
in the way that traditional symbols and rules are, or
make a case for symbolic representation separate
from interpretability.” My view falls squarely on
the latter side. I do not think we can expect LLMs
to ever amount to a complete symbolic framework;
nor that they should, because in my view language
is not completely symbolic either. Therefore, the
implication of my paper in this regard is that, if we
aim at obtaining more understandable and trans-
parent model architectures, we cannot simply aim
at reducing LLM:s to symbolic systems.'# Instead,
we need to devise methods that embrace the full
symbolic-to-distributed spectrum. Since (as far as
I can tell) these methods do not exist yet, the only
roadmap I can offer at present is to point out that
we need to find new roads.

Relatedly, in using models to elucidate how lan-
guage works, we should remember that the ulti-
mate testing ground for theories of language and
cognition is the brain. Recent work suggests that
there may be analogies between LLM and brain
encoding of language (Tuckute et al., 2024). How-
ever, while research in neuroscience has yielded
quite robust results on the different brain regions
where language encoding takes place, and some
of their roles, it has made much less progress on
the properties of linguistic representations and the
computations that are carried out during process-
ing (Tuckute et al., 2024), namely, on the topic of
this paper. This is another very exciting avenue for
further work.

“We can of course still extract symbolic knowledge for
specific phenomena, and this can be very useful, the same way
that symbolic frameworks are very useful in many domains.

5 Conclusion

I started this piece by pointing out that a fierce
battle is being fought, since the second half of the
20th century, between symbolic and distributed ap-
proaches to language and cognition. And I actually
find it worrying that much of this discussion is
being led by scholars outside the CL/NLP commu-
nity. Since we know the most about LLMs, we
should participate in ascertaining what they tell us
(and what they can’t tell us yet) about how lan-
guage works. One of the motivations of my paper
is precisely to foster this kind of debate within our
community.

The view I have put forth in this paper is that
LLMs are a synthesis between the two approaches;
they allow us to integrate regularity and messiness
into a single modeling tool, thus overcoming the
difficulties faced by symbolic-only or distributed-
only systems. Importantly, more and less dis-
tributed representations and processing arise in an
emergent fashion; LLMs learn to behave in a quasi-
symbolic fashion at times, in a highly fuzzy and
distributed fashion at others, because that allows
them to perform better at linguistic tasks, that is,
they do so responding to pressures from language
data.

So, may it be time for peace? The research I
have surveyed has only scratched the surface, and
we need everyone on board to continue to make
progress in our collective understanding of how lan-
guage works. In particular, we need methods that
go beyond specific, cherry-picked phenomena and
allow a systematic exploration of the models (Fer-
rando and Voita, 2024, is a relevant step in this
direction); a better systematization of the empirical
landscape to be explored (e.g., Weissweiler et al.,
2025, propose to broaden the benchmarks by which
we evaluate the linguistic abilities of LLMs); and
a stronger engagement with theory when evaluat-
ing the implications of deep learning models of
language.

Limitations

I am aware that my definition of what counts as
near-symbolic in LLMs is, ironically, fuzzy. I think
that, given the present state of the art (mechanistic
interpretation of deep learning models is still in its
infancy), the best I can do is offer an initial defi-
nition and many examples of the kind of behavior
that I think provides support for my position. De-
lineating it more precisely is a pressing need for
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the future.

As a reviewer pointed out, the interpretability
literature “has not yet shown that these localized
mechanisms truly function as symbolic compo-
nents in a larger sense, nor has it demonstrated
how they can scale to capture the kinds of gener-
alizable rules or logical inferences that symbolic
systems have historically handled”. While this is
falls outside the scope of the article, it is worth
stating that there is much less research in these
kinds of phenomena. Interestingly, however, there
is at least some tentative evidence for parts of mod-
els working as symbolic components. The study
of Merullo et al. (2024) discussed above suggests
systematic component reuse; similarly, Lindsey
et al. (2025) show how Claude 3.5 Haiku performs
multi-hop reasoning re-using components across a
range of phenomena. One of the cases they discuss
is “addition circuitry [that] generalizes between
very different contexts”. This circuitry selectively
activates in contexts where it’s useful to perform
implicit addition, and includes mechanisms to “rep-
resent and store intermediate computations for later
use”. These are just preliminary findings, and this
is certainly another area where much more research
is needed, as is research on the interplay between
linguistic and reasoning abilities more generally.
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A Regularities and messiness across
domains

As mentioned in the main section of the paper, we
find regularity and messiness throughout the differ-
ent aspects and domains of language. Syntax and
semantics were discussed in the main text; here we
add some brief notes about phonology and mor-
phology.

In phonetics and phonology, “there is accumu-
lating evidence that the categorical and continuous
aspects of speech are deeply intertwined” (Roes-
sig et al., 2019). A basic aspect is a language’s
phonological inventory, i.e. the set of phonemes
that constitute it. Phonemes are “the smallest con-
trastive sound unit[s] in a language that can distin-
guish meaning”; for instance, in Catalan, /I/ and /t/
are phonemes (e.g. cara means ‘face’, cala ‘small

bay’), but in Japanese they are allophones, that is,
different phonetic realizations or pronunciations of
the same phoneme. There is ample evidence of cat-
egorical conceptualization of continuous speech by
speakers into phonemes, but also equally ample evi-
dence for challenges to a purely symbolic treatment
of phonology, analogous to those discussed in the
main text for parts of speech (Pierrehumbert, 2016).
Similarly, different phonemes combine according
to phonotactic rules or constraints (e.g. in English,
but not Catalan, the sequence of phonemes /sp/ can
begin a syllable, e.g. in the word spa), and those
face difficulties analogous to those of syntax, with
semantics leaking into phonotactics (e.g. Baroni,
2001).13

As for morphology, a basic notion such as that of
word is as common as it is controversial and chal-
lenging to delimit (Haspelmath, 2011). Similarly,
inflection and derivation are considered fundamen-
tally different kinds of processes, but their border
is again fuzzy (Copot et al., 2022; Haley et al.,
2024). Moreover, we find that derivational mor-
phology, like inflectional morphology, presents per-
vasive regularities together with irregularities and
semi-regularities (Matthews, 1991). For instance,
the English suffix -ion selects for verbal roots and
produces nouns referring to actions, processes, or
results (create/creation, operate/operation, donate/-
donation). However, this pattern has many excep-
tions due to historical borrowing, primarily from
Latin and French. Many verbs and their corre-
sponding nouns were borrowed into English as
separate words, preserving irregularities from the
original language (destroy/*destroyion/destruction,
from Latin destructio admit/*admition/admission,
from Latin admissio). Remember that we discussed
an analogous case with irregular verbs in English in
the main text. Furthermore, derivational morphol-
ogy also displays the semi-regular match between
form and meaning that we found in morphosyn-
tax (Lieber, 2004; Boleda, 2020).

B Non-symbolic and non-compositional
linguistic processing in LLMs

In the main text I have taken for granted that LLMs
can do non-symbolic and non-compositional lin-
guistic processing. Here I am presenting evidence
for the latter, for completeness. The realm with
the richest evidence of non-symbolic processing
is that of conceptual aspects of meaning, which as

SIn Catalan, spa is pronounced /os'pa/.
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discussed in the paper defy symbolic treatment. 1
discuss two representative examples, lexical seman-
tics and sentential semantics, but the evidence is
vast.

As for lexical semantics, recall that, to account
for a word’s meaning and usage, symbolic methods
like those in traditional Word Sense Disambigua-
tion define a set of senses for each word and assign
each use of a word in context to one of the senses.
This has long been known to be problematic, as
many sense boundaries are blurry and word usages
can be more and less similar to each other (Kilgar-
riff, 1997). LLMs provide instead graded repre-
sentations for words in context, and this has been
linked to their leap in success. Among the many
papers about this, let me point to two specific anal-
yses using BERT: Gari Soler et al. (2019) show
that BERT-estimated similarity between word us-
ages corresponds to human similarity scores; and
Gari Soler and Apidianaki (2021) show that “BERT
representations offer good estimates of the parti-
tionability of words into senses”, that is, to how
easy or difficult it is to define different senses for a
given word.

As for sentential semantics, similarly, while
logic-based relations between sentences like en-
tailment are more discrete in nature, similarity rela-
tions between sentences are clearly on a continuum.
LLMs are good at modeling this continuum, as
measured in the Semantic Textual Similarity task
(STS). One of the tasks in the GLUE benchmark
is STS, using data from (Cer et al., 2017), which
consists of pairs of sentences and human-annotated
similarity scores. All top 20 models in the leader-
board of GLUE achieve a correlation of 0.91 or
more with the human data (both Spearman and
Pearson);'® human correlation is 0.93. Note that
GLUE evaluates models simultaneously on a range
of linguistic tasks; these models perform well at
STS while at the same time performing well on
a range of other natural language tasks, including
entailment (NLI, RTE). This is further evidence for
the synthesis view, this time from the point of view
of model behavior rather than internal representa-
tions and processing.

Turning to non-compositional linguistic process-
ing, a phenomenon that has received a lot of at-
tention in NLP are so-called Multi-Word Expres-
sions (Villavicencio et al., 2005) like United Arab

Yhttps://gluebenchmark.com/leaderboard, retrieved
Sept 19 2025. GLUE is described in (Wang et al., 2018).

Emirates, which have syntactic structure but of-
ten function as a single linguistic unit. LLMs per-
form well at MWE-related tasks like MWE detec-
tion (Tayyar Madabushi et al., 2022); moreover,
Ide et al. (2025) show that a fine-tuned LLM out-
performs the previously best system at MWE iden-
tification in a varied MWE corpus. This previ-
ous system included a rule-based component and
a specifically trained neural network component;
again, this suggests that LLMs implicitly imple-
ment more symbolic and more distributed process-
ing, and this is benefitial for non-compositional and
semi-compositional phenomena. Similarly, LLMs
show strong performance at Named Entity Recog-
nition (Malmasi et al., 2022), another well-studied
non-compositional phenomenon. Taken together,
this suggests that LLMs do non-trivial processing
of non-compositional aspects of language, too.
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