@inproceedings{balestrucci-etal-2025-large,
title = "Can Large Language Models Personalize Dialogues to Generational Styles?",
author = "Balestrucci, Pier Felice and
Dusek, Ondrej and
Anselma, Luca and
Mazzei, Alessandro",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.5/",
pages = "64--77",
ISBN = "979-8-89176-335-7",
abstract = "We investigate how large language models (LLMs) can produce personalized dialogue responses, specifically focusing on whether they reflect linguistic styles pertaining to different generations: Baby Boomers, Generation X, Generation Y, and Generation Z. We create P-MultiWoZ, a personalized, generation-specific version of MultiWOZ 2.2, by prompting LLMs, and validate its alignment with the original dataset through automatic and human evaluations. To validate the appropriateness of generational linguistic traits, we introduce GeMoSC, a corpus of generation-annotated movie dialogues. Linguistic analysis and perplexity test suggest that P-MultiWoZ reflects patterns consistent with GeMoSC. Finally, a human evaluation reveals that annotators were able to mostly correctly identify the generation behind P-MultiWoZ dialogues, based only on a single query-reply pair."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="balestrucci-etal-2025-large">
<titleInfo>
<title>Can Large Language Models Personalize Dialogues to Generational Styles?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pier</namePart>
<namePart type="given">Felice</namePart>
<namePart type="family">Balestrucci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Dusek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luca</namePart>
<namePart type="family">Anselma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Mazzei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>We investigate how large language models (LLMs) can produce personalized dialogue responses, specifically focusing on whether they reflect linguistic styles pertaining to different generations: Baby Boomers, Generation X, Generation Y, and Generation Z. We create P-MultiWoZ, a personalized, generation-specific version of MultiWOZ 2.2, by prompting LLMs, and validate its alignment with the original dataset through automatic and human evaluations. To validate the appropriateness of generational linguistic traits, we introduce GeMoSC, a corpus of generation-annotated movie dialogues. Linguistic analysis and perplexity test suggest that P-MultiWoZ reflects patterns consistent with GeMoSC. Finally, a human evaluation reveals that annotators were able to mostly correctly identify the generation behind P-MultiWoZ dialogues, based only on a single query-reply pair.</abstract>
<identifier type="citekey">balestrucci-etal-2025-large</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.5/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>64</start>
<end>77</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can Large Language Models Personalize Dialogues to Generational Styles?
%A Balestrucci, Pier Felice
%A Dusek, Ondrej
%A Anselma, Luca
%A Mazzei, Alessandro
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F balestrucci-etal-2025-large
%X We investigate how large language models (LLMs) can produce personalized dialogue responses, specifically focusing on whether they reflect linguistic styles pertaining to different generations: Baby Boomers, Generation X, Generation Y, and Generation Z. We create P-MultiWoZ, a personalized, generation-specific version of MultiWOZ 2.2, by prompting LLMs, and validate its alignment with the original dataset through automatic and human evaluations. To validate the appropriateness of generational linguistic traits, we introduce GeMoSC, a corpus of generation-annotated movie dialogues. Linguistic analysis and perplexity test suggest that P-MultiWoZ reflects patterns consistent with GeMoSC. Finally, a human evaluation reveals that annotators were able to mostly correctly identify the generation behind P-MultiWoZ dialogues, based only on a single query-reply pair.
%U https://aclanthology.org/2025.findings-emnlp.5/
%P 64-77
Markdown (Informal)
[Can Large Language Models Personalize Dialogues to Generational Styles?](https://aclanthology.org/2025.findings-emnlp.5/) (Balestrucci et al., Findings 2025)
ACL