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Abstract

Large Language Models trained on web-scale
text acquire language generation abilities that
can solve a wide range of tasks, particularly
when task knowledge is refined into the gen-
erative prior using in-context examples. How-
ever, spurious features learned from noisy data
hinder their generalizability. Supervised fine-
tuning can enhance task specificity but may
lead to data inefficiency. Prior studies indicate
that (i) noisy neural circuitries coexist with gen-
eralizable ones within LLLMs, and (ii) finetun-
ing typically enhances (or suppresses) existing
abilities without introducing newer ones. Build-
ing upon these, we propose TaRot, a novel
method for task adaptation. TaRot intervenes
in the neural circuitries using learnable rotation
matrices that are optimized using Bayesian op-
timization, on labelled samples in the order of
standard few-shot prompting examples. Experi-
ments on multiple classification and generation
tasks using LLMs of varying sizes reveal the ef-
ficacy of TaRot, improving upon both zero- as
well as few-shot performance, with average im-
provements (across models and tasks) of 15.6%
and 14%, respectively.

1 Introduction

Large Language Models (LLMs) acquire the ability
to associate different language concepts presented
in a sequential context by optimizing the predic-
tion probability of the next token given a context.
Despite its apparent simplicity, when scaled across
web-sized text corpora, such a learning strategy
introduces the ability to solve a wide range of tasks
presented in natural language. However, the web
contains almost everything humankind has written,
and therefore, it introduces spurious token associa-
tions that are irrelevant or even counter-productive
to the model to become generalized task-solvers.

“Work done as Research Assistant at IIT Bombay
"Equal contribution.

We observe phenomena like brittle few-shot perfor-
mance (Sclar et al., 2024), hallucination (Huang
et al., 2023), harmful text generation (Wen et al.,
2023), etc. as evidence of learning noisy pat-
terns. Remedial interventions like instruction tun-
ing (Zhang et al., 2024), alignment tuning (Shen
et al., 2023), etc. have been proposed. Recent re-
search has shown that such mediation only acts on a
superficial level — out-of-distribution inputs can re-
inforce noisy behavior and break the model (Ghosh
et al., 2024). Without an in-depth understanding
of the inner workings, remedial strategies become
wild goose chase.

Mechanistic disentangling of Transformer-based
language models has shed some light on this di-
rection (Elhage et al., 2021; Olsson et al., 2022;
Wang et al., 2023). Two recent investigations (Jain
et al., 2024; Prakash et al., 2024) on the effects
of fine-tuning confirm the inability of supervised
fine-tuning to alter fundamental abilities acquired
via pretraining. On a tangential investigation, Dutta
et al. (2024) recently confirmed the existence of
multiple parallel neural pathways of answer pro-
cessing within LLMs. Bhaskar et al. (2024) echoed
similar findings in the case of syntactic generaliza-
tion while pointing out that different components
acquire different generalization behaviors. These
findings lead us to the central research question of
this work: is it possible to edit the model behavior
by editing internal representations in a general-
izable manner? Prior work in this direction has
heavily relied on careful manual effort to localize
task-specific neural components and design inter-
vention techniques (Meng et al., 2022; Li et al.,
2024a). Two key shortcomings limit the scalabil-
ity of such methods: (i) Localization complexity
grows polynomially with model size, making it dif-
ficult to identify task-relevant components and de-
sign effective ablations; (ii) Redundant components
performing similar neural computations hinder the
generalizability of any single intervention.
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Our contributions. To this end, we propose a
novel intervention technique, TaRot — Task-aware
Rotation of token-association (see Figure 1 for a
representative depiction)!. We establish the con-
ceptual prior from Transformers’s implicit gradient
descent bias in next token prediction. Specifically,
we first show that attention-weighted averaging of
value vectors facilitates the memorization of token
association from pertaining data in individual atten-
tion heads, in the sense that each attention head acts
as a mini-language model. Due to the vast num-
ber of token associations present in the pretraining
corpus compared to the number of attention heads
in even the largest of the models, we hypothesize
that individual directions of these memorized as-
sociations remain in superposition, and removal
or downscaling of a head can counteract model
performance. Instead, we construct parametrized
rotations to align head outputs for task-adaptation.
The rotation parameters are then optimized using
Bayesian optimization. Furthermore, TaRot is ex-
tremely data- and compute-efficient: we use 6-20
supervised examples for each task and % rotation
parameters (where d is the model dimension and
L is the number of layers) for each different task.
This renders TaRot at par with standard few-shot
prompting in labeled data-efficiency.

We experiment with four different classifica-
tion tasks and two natural language generation
tasks; the choice of tasks seeks to investigate
general world knowledge (news topic classifica-
tion) as well as the ability to generalize beyond
imitation (BIG Bench tasks (BIG-bench authors,
2023)). TaRot demonstrates consistent improve-
ments over six different language models of vary-
ing sizes: Qwen2-1.5B-Instruct, Phi-3-mini-4k-
instruct, Mistral-7B-Instruct-v0.1, Meta-Llama-3-
8B-Instruct, Qwen2.5-14B-Instruct, and Qwen2.5-
32B-Instruct, in both zero-shot as well as few-shot
settings. Furthermore, we analyze the changes in
neural representation introduced by TaRot to un-
cover useful insights.

2 Related Work

Our work is primarily relevant to two broad ar-
eas of existing literature: adaptation of pretrained
language models to downstream tasks, and mecha-
nistic understanding and intervention techniques.

!The source code of TaRot is attached with the supplemen-
tary and will be made public upon acceptance of the paper.

Task adaptation of pretrained language mod-
els. The pretrain-finetune regime for adapting lan-
guage models to downstream tasks dates back to the
early approaches like BERT (Devlin et al., 2019) —
pretrain a language model (LM) on large unstruc-
tured text corpora using self-supervised objective,
followed by supervised fine-tuning on task-specific,
relatively smaller datasets. Despite the apparent
simplicity, the pitfalls of this regime have been
pointed out in terms of distribution shift (Kumar
et al., 2022). With the development of large-scale,
autoregressive Transformer-based language mod-
els and their ability to learn from in-context ex-
amples (Brown et al., 2020), a definitive shift has
happened in the more recent past. Current prac-
tices of using these models for downstream tasks
primarily rely on designing suitable prompt tem-
plates and labeled example retrieval for in-context
learning (ICL) (Liu et al., 2022; Rubin et al., 2022;
Tanwar et al., 2023); traditional techniques of fine-
tuning have taken a back seat due to the computa-
tional cost and catastrophic forgetting introduced
by small-scale task-specific data that hurts the pre-
trained abilities (Zhai et al., 2024). Instead, fine-
tuning to follow task instructions, aka instruction-
tuning (Zhang et al., 2024), has gained popular-
ity. Instruction-tuning has been shown to introduce
zero-shot task adaptation abilities in LLMs (Wei
et al., 2022). Additionally, different methods of
alignment tuning have been proposed with the pri-
mary goal being aligning the generative distribu-
tion of the language models with human values and
preferences (Shen et al., 2023; Wang et al., 2024b).
Despite the popularity of instruction and alignment
tuning, their ability to alter fundamental informa-
tion processing has been put in question in recent
literature. Jain et al. (2024) investigated the effects
of fine-tuning in toy models trained with formal
languages as well as precompiled ones; their find-
ings suggest that supervised fine-tuning does not
introduce any new ability into pretrained models
but only reinforces (or suppresses) existing ones.
Similar concerns have been raised upon investi-
gating entity tracking in the neural representation
space (Prakash et al., 2024). Ghosh et al. (2024)
identified multiple limitations of instruction tun-
ing, including the inability to introduce new knowl-
edge and deterioration of performance due to over-
reliance on pattern matching.

Mechanistic understanding and interven-
tions. The umbrella of mechanistic interpretabil-
ity broadly encompasses methods to disentangle
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(a) Transformer forward pass

(b) Self-attention

(c) Rotational intervention
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Figure 1: A conceptual illustration of TaRot. (a) Model generates an undesired next token ¢ upon an input token
sequence. (b) A certain attention head is responsible for associating certain input tokens with the undesired output.
(c) TaRot learns a parametrized rotation operator Rg that rotates h to the direction of the desired token (red to
blue). The intervention results in a change in the forward pass in (a) that outputs the desired token ¢j.

model behavior via reverse engineering the underly-
ing neural algorithm (Elhage et al., 2021; Ferrando
et al., 2024). Endeavors to mechanistically under-
stand Transformer-based language models trace
back to the seminal work by Elhage et al. (2021).
Their framework established attention heads as one
of the fundamental building blocks of language
model interpretation. Subsequent studies have
identified the functional roles of different atten-
tion heads in pretrained models: induction heads as
a primary mechanism of prefix matching (Olsson
et al., 2022), circuitries of attention heads respon-
sible for indirect object identification (Wang et al.,
2023), neural pathways that implement chain-of-
thought reasoning (Dutta et al., 2024), etc. Much
relevant to our analysis, Lv et al. (2024) found that
certain attention heads memorize the association
between country names and their capitals. On a tan-
gential line of investigation, Geiger et al. (2024) in-
troduced the Distributed Alignment Search (DAS)
framework for localizing interpretable features in
subspaces of the neural representations. Mechanis-
tic methods provide actionable insights that have
led to non-traditional techniques to edit model be-
havior. Elhage et al. (2021) experimented with key
propagation to elicit induction heads (and thereby,
prefix-matching ability) in single-layer attention-
only Transformers. Meng et al. (2022) used causal
tracing to locate factual associations in MLP neu-
rons and proposed a gradient-free approach to edit
factual recall patterns in pretrained language mod-
els. Li et al. (2024a) identified attention head cir-
cuitry that elicits toxic text generation in GPT-2;
mean-ablation of these circuits is shown to reduce

toxicity. Self-detoxification (Leong et al., 2023)
identifies toxic generation direction in the inter-
nal representation using trigger prompts and then
rewrites in the opposite direction to reduce toxicity.
Wang et al. (2024a) formulated toxicity reduction
as a knowledge editing task that can permanently al-
ter toxic behaviors instead of suppressive interven-
tions like supervised fine-tuning or RLHF-based
alignment. Lamparth and Reuel (2024) localized
backdoor mechanisms (i.e., vulnerabilities against
adversarial prompt injections) in early-layer MLPs
and proposed a low-rank substitution to improve ro-
bustness against such injections. Vergara-Browne
et al. (2024) employed attribution patching tech-
niques to identify and remove certain singular val-
ues in the parameter matrices to improve perfor-
mance.

In comparison with prior intervention approaches,
our work bears two fundamental differences: (i)
TaRot does not necessitate task-specific localiza-
tion of neural behaviors; this significantly reduces
intense manual effort and risk of over-localization,
eliciting efficient, generalizable interventions; (ii)
TaRot is gradient-free, parameter-efficient, and re-
quires supervised samples in the order of standard
ICL; this poses TaRot as a practical alternative to
intense prompt-engineering.

3 Methodology

In this section, we demonstrate the role of attention
heads in memorizing token associations. Next, we
lay out the working principles of TaRot.
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3.1 Attention heads as token-token maps

Inspired by Elhage et al. (2021), we dissect the
Transformer-based language models with the fol-
lowing assumptions: (i) each attention head reads
from and writes to the residual stream indepen-
dently in a linear fashion, and (ii) given that the
attention heads utilize hidden representation of di-
mensionality much smaller than the residual stream
(i.e., for a model with 16 attention heads, each
attention head uses 1/16-th of the dimension of
the residual stream), they typical operate on small
subspaces of the residual stream. This way, two
attention heads can operate on two distinct sub-
spaces and never interact with each other. These
two assumptions allow us to interpret the work-
ing of the attention heads meaningfully even while
treating each head in isolation. We start with identi-
fying what a single-head attention operation tends
to learn in isolation.

Following the standard terminology (Elhage
et al., 2021), we represent the embedding and un-
embedding matrices as Wg € RV and Wy €
RY*4 where d and V are the dimensionality of
the residual stream and the token space, respec-
tively, the query, key, value, and output projection
matrices denoted as Wy, Wi, Wy, Wp € Rxd
respectively. Given a sequence of input tokens as
one-hot column vectors T' = {t1,--- ,¢,}, the
forward pass for single-layer attention-only Trans-
former can be written as:

tni1 = Wy <WEtn +Wo > an,iWVWEti>
)

exp(t;[ wy WgRem,—iWKWEti)
>, exp(t;WgWérR@,n,jWKWEtj)
is the softmax-attention probability from source to-
ken t; to destination token t,, and an e RV
is the logit of the predicted next token. Upon
reparametrization of WyWoWy Wy as Wy,
we can rewrite Equation 1 as

where a,,; =

tnp1 = WyWgt, + > Wovti  (2)

Note that Wy € RV >V, denoted as OV-circuits
by Elhage et al. (2021), maps a distribution over
tokens to another distribution over tokens. If the
true token is ¢,,1 with I(¢,1) donating its index
(i.e., index of 1 in ¢,, 1), then the typical language

modeling loss can be calculated as:
~(I tn+
exp (tgﬁ(-l 1))>

oo (i0h)

L(tns1,tn1) = —log

3

We can compute the gradient dynamics of the OV-
circuit (with unit batch size and zero momentum)
using Equations 2 and 3 as follows:

-
s+1 S
Wé\j ) — W(()\)/ + tnt1 ( E an,iti>

-
—n SoftMax (t,,+1) <Z an,iti> “4)

where Wés‘)/ and W(()s‘j Y are the OV-circuit pa-
rameters before and after the s-th gradient update
step, respectively and 7 is the learning rate. The
positive incremental component in the right-hand
side of Equation 4 dictates that, when applied on a
attention-weighted linear combination of the con-
text tokens, OV-circuits learn to memorize a linear
combination of possible next tokens.

However, in a deep Transformer model with sev-
eral attention heads, MLP blocks and layer normal-
ization, we can not determine the exact token-token
map for the OV-circuits of attention head. More-
over, as Elhage et al. (2021) suggested, multiple
attention heads across different layers can construct
compositions, where the deeper heads use the out-
put of the shallower heads. Alternatively, we can
view each head as memorizing how to write in a
specific direction in the residual stream, given a
sequence of residual vectors—effectively acting as
a mini-LM. When pretrained on web-scale corpora,
these heads may memorize spurious token-token
associations that harm downstream performance or
introduce unsafe behaviors.

3.2 [Editing model behavior via attention
rotation

A natural conclusion from the prior discussion
would be that, by suppressing undesired associ-
ations for certain attention heads, we can improve
task performance. However, multiple token as-
sociations are expected to be memorized in each
attention head in superposition since the number
of attention heads is way smaller than the potential
token associations present in the pretraining data —
one cannot selectively switch off one certain associ-
ation. Prior research in mechanistic interpretability
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has shown that, although we can often localize
attention heads responsible for particular task, re-
moving the non-dominant attention heads does not
deliver the performance of the full model (Wang
et al., 2023; Dutta et al., 2024).

Instead, one can rotate the output of the at-
tention heads in order to maximize its alignment
with rows of Wy, corresponding to certain tokens
while near-orthogonalizing with certain undesired
tokens. This way, the model behaviour can be
edited without destroying the superposed associ-
ations. Defining the complete space of d x d
rotation matrices and optimizing them can be-
come computationally challenging. Instead, we
utilize the fact that any d X d orthonormal matrix
is similar to a block- diagonal matrix Rg, where

© = {01, ,04/2} C [0, 27r) defined as:
B(#;) 0 0
m-| 0P e
0 0 B(6,2)
where ) "
o= izt ]

Given the multi-head attention with H heads at
layer [ € [L], where L is the total number of layers
in the Transformer, defined as:

Wo || Z“ )y ) g 0

(h D and

W‘(/ ) denote the attention probability between
source and destination residual streams at layer [
a:( ) and :B(l) and the value projection matrix corre-
spondlng to the attention head with index h € [H]
at layer [, respectively; we define the rotated atten-
tion as:

where || is the concatenation operator, a,,

RotAttn; (x ()I[acﬁ”, L al]) =
WoRY, H S dwPa) ()
h=1 1

Note that the block-diagonal definition of R® in
Equation 5 implies that applying R on the con-
catenated head outputs is equivalent to applying

H-distinct Ré/ 7 on each of the head outputs.

Without prior knowledge of which attention
heads are responsible for memorizing undesired
token associations, we need to apply the interven-
tion defined in Equation 6 on a set of attention
blocks at layers [ € L (see Section 4 for the choice
of the set ). Then, the intervened forward pass is
denoted as:

n+1 MRotated ({tl tn}|60, @R{@l“ € H;})

(M

where Og is the set of pretrained model parame-
ters, and Oy are the parameters of rotations, and
MRotated denote the function representing the lan-
guage model upon the designed intervention.

3.3 Optimization of rotation parameters

With the rotational interventions defined, all that
we are left with is to optimize the rotational pa-
rameters. Let D := {T},Y;|j € [D]} be a set of
D supervised examples for a given task, with T3,
Y referring to the sequence of tokens correspond-
ing to the input and gold output, respectively. If
Y, = {y;} is a single label token, the cost function
to optimize becomes straightforward:

Héixzp (MRotated (Tj|607 6R{®l|l € ]I:}) = yj)
J

®)
where © C [0, 27). For NLG tasks, maximizing
the aggregate probability of all the generated to-
kens can be a solution. However, the goal of our
rewiring method is to minimize undesired behav-
iors. When a model demonstrates such behaviors,
depending upon the task, not all tokens equally
correspond to the behavior under inspection. The
pretrained model is trained using teacher-forcing
and is generally able to generate grammatically cor-
rect responses. Hence, trying to align the model
generation to a single reference response does not
make much sense. Instead, we opt for a surro-
gate scoring function s : {Y;} — R that scores
the “desirability” of a generated response. We let
the model with rotation intervention to generate
a complete response given an input, compute the
score for the generated response, and seek to min-
imize the aggregate score across D. We imple-
ment Bayesian optimization (Snoek et al., 2012)
to solve the optimization problem depending upon
the task. However, standard Gaussian Process with
Matern kernel fails to scale to high dimension in-
put space (Li et al., 2024b). Instead, Infinite-width
Bayesian Neiral Networks (I-BNN), proposed by
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Lee et al. (2017), has shown to scale effectively
with high-dimensional parameter space”. The I-
BNN covariance function does not rely on Eu-
clidean distance, enabling the Gaussian Process to
model non-stationary functions, an advantage since
rotational effects may vary across the configuration
space.

4 Experiment Setup

Training setting. Dutta et al. (2024) previously
found that token associations corresponding to pre-
trained knowledge primarily resides in the initial
half of the model. Since the rotational interven-
tion designed in Equations 6 and ?? are primarily
targeted towards undesired token associations ac-
quired through pretraining, we restrict L. to the
initial half only. Therefore, the total number of pa-
rameters to optimise becomes %. Since we want
to optimise the rotation matrix for a particular task,
only a small subset of training samples is required,
i~ea 6 < Dtraimng < 20.

Models. Six different instruction-tuned models
with varying size are used for all experiments:
Qwen2-1.5B-Instruct (Yang et al., 2024), Phi-
3-mini-4k-instruct (Abdin et al., 2024) (2.8 bil-
lion parameter), Mistral-7B-Instruct-v0.1 (Jiang
et al., 2023), Meta-Llama-3-8B-Instruct (Dubey
et al., 2024), Qwen2.5-14B-Instruct (Team, 2024),
and Qwen2.5-32B-Instruct (Team, 2024); we re-
fer to these models as Qwen2-1.5B, Phi-3-mini,
Mistral-7B, Llama-3-8B, Qwen2.5-14B, and
Qwen2.5-32B, respectively.

Tasks. We experiment with four different clas-
sification (i.e., single token generation) tasks and
two NLG tasks. Classification tasks used are as
follows: AG News (Zhang et al., 2015), Entailed
Polarity (Srivastava et al., 2022), Navigate (Sri-
vastava et al., 2022), and Winowhy (BIG-bench
authors, 2023). The generation tasks used include
Imdb Positive Review (Maas et al., 2011), and-
Detoxify (Gehman et al., 2020) Further details and
examples of tasks are available in Appendix A.1

Baselines. We compare TaRot with four differ-
ent baselines: Base model, Eigen Pruning (Vergara-
Browne et al., 2024), RED (Representation EDit-
ing) (Wu et al., 2024), and Rescaling (additional

*Here the term “high dimension” is relatively used. Our
method seeks to optimize only the rotation configurations that
scales as O(Ld), which is substantially low-dimensional if
compared to the parameter space of the LM itself.

Details in Appendix A.2).

Evaluation metrics. For NLG tasks, Imdb and
Detoxify, two different types of reward models are
used. To calculate the fluency of the generated text,
GPT4 (Achiam et al., 2023) is used as an oracle.
For both the tasks, the average of fluency and the
score from the reward models are reported. Further
details are present in Appendix A.3

5 Results

Tables 1 and 2 summarize the performance of var-
ious methods across classification tasks in zero-
and 6-shot settings, respectively. Eigen Pruning
is included only in zero-shot comparisons, per its
original design. Table 3 presents results for NLG
tasks.

Consistent improvement with TaRot. Across
LLMs of varying sizes, TaRot consistently ranks
as the best or second-best method across all
tasks. Notably, it achieves relative gains in
task-wise average F1 scores of 13.7%, 1.1%,
8.9%, 13%, 3.2%, and 1.3% over the base ver-
sions of Qwen2-1.5B, Phi-3-mini, Mistral-7B,
Llama-3-8B, Qwen2.5-14B, and Qwen2.5-32B,
respectively, in the zero-shot setting (see Ta-
ble 1). The only exceptions are the Entailed
polarity task with Qwen2-1.5B and Winowhy
with Qwen2.5-32B, where TaRot slightly under-
performs (e.g., 0.98 F1 vs. perfect score). In
contrast, baseline methods like Eigen Pruning and
Rescaling suffer from inconsistency—while they
may improve performance in some cases, they of-
ten cause severe drops without any clear task- or
model-specific patterns. For instance, Eigen Prun-
ing improves Qwen2-1.5B on all but one task, yet
fails on all tasks with Phi-3-mini.

In-context examples vs. TaRot. Unlike Eigen
Pruning (or even, traditional fine-tuning), TaRot is
optimized with a mixture of M-shot inference to
avoid zero-shot bias. Consequently, we can observe
the improvement over the base model achieved via
TaRot while provided with in-context examples, ex-
cept with Mistral-7B on AG News and Navigate
(c.f. Table 2). Specifically, we observe improve-
ments with Qwen2-1.5B on AG News, Entailed
Polarity, and Winowhy; and with Phi-3-mini,
Llama-3-8B, Qwen 2.5 14B, and Qwen 2.5 32B
across all tasks. For Mistral-7B, gains are limited
to Entailed Polarity and Winowhy.

Importance of rotation over rescaling atten-
tion heads. Comparing TaRot with the rotation-
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Method AG News Entailed polarity Navigate Winowhy | Avg.

Base 0.691 1.000 0.173 0.389 0.563

Owen2-1.58 Eigen Pruning 0.720 0.919 0.290 0415 0.586
’ Rescaling 0.796 0.719 0.214 0.458 0.547

TaRot 0.778 0.980 0.515 0.547 0.705

Base 0.729 1.000 0.470 0.588 0.697

Phi-3-mini Eigen Pruning 0.519 0.878 0.392 0.099 0.472
Rescaling 0.739 0.921 0.273 0.629 0.641

TaRot 0.740 1.000 0.491 0.600 0.708

Base 0.653 0.762 0.140 0.618 0.543

Mistral-7B Rescaling 0.437 0.896 0.550 0.683 0.642
TaRot 0.721 0.823 0.216 0.767 0.632

Base 0.662 0.980 0.155 0.568 0.591

Llama-3-88 RED ‘ 0.688 0.980 0.957 0.236 0.715
Rescaling 0.636 0.544 0.550 0.255 0.496

TaRot 0.718 1.000 0.464 0.701 0.721

Base 0.753 0.763 0.424 0.723 0.666

Qwen 2.5 14B | Rescaling 0.738 0.517 0.463 0.506 0.556
TaRot 0.754 0.826 0.480 0.732 0.698

Base 0.808 0.901 0.717 0.788 0.803

Qwen 2.5 32B | Rescaling 0.803 0.892 0.625 0.593 0.728
TaRot 0.824 0.927 0.734 0.767 0.813

Table 1: Overall performance in zero-shot regime. Performance of methods with different LLMs in terms of
F1 scores are presented across different tasks and on average. Bold-faced number denote the best method. For
Mistral-7B, Llama-3-8B, Qwen 2.5 14B and Qwen 2.5 32B, Eigen Pruning resulted in OOM and RED codebase
is only compatible with LLaMA architecture. Further details in Appendix A.5

Method AG News Entailed polarity Navigate Winowhy | Avg.

Base 0.680 0.902 0.173 0.393 0.537

Qwen2-1.5B Rescaling 0.662 0.765 0.314 0.576 0.579

TaRot 0.695 0.902 0.494 0.544 0.659

Base 0.745 0.974 0.440 0.604 0.691

Phi-3-mini Rescaling 0.732 0.980 0.196 0.562 0.618

TaRot 0.764 0.991 0.494 0.647 0.724

Base 0.691 0.921 0.236 0.790 0.660

Mistral-7B Rescaling 0.746 0.698 0.196 0.580 0.555

TaRot 0.684 0.960 0.196 0.790 0.658

Base 0.524 0.950 0.645 0.651 0.693

Llama-3-8B Rescaling 0.444 0.702 0.196 0.577 0.480

TaRot 0.638 1.000 0.727 0.761 0.782

Base 0.749 0.868 0.527 0.691 0.709

Qwen 2.5 14B | Rescaling 0.739 0.807 0.362 0.422 0.583
TaRot 0.752 0.888 0.605 0.759 0.751

Base 0.877 0.950 0.791 0.647 0.816

Qwen 2.5 32B | Rescaling 0.844 0.941 0.715 0.674 0.793
TaRot 0.882 0.966 0.802 0.688 0.835

Table 2: Overall performance in few-shot regime. Performance of methods with different LLMs in terms of F1
scores are presented across different tasks (and on average). Bold-faced numbers denote the best methods.

Method Imdb | Toxicity

Base 0.677 0.566

Qwen2-1.5B | Rescale | 0.252 0.161
TaRot 0.708 0.581

Base 0.707 0.536

Phi-3-mini Rescale | 0.686 0.416
TaRot 0.749 0.564

Base 0.708 0.571

Llama-3-8B | Rescale | 0.669 0.566
TaRot 0.729 0.579

Table 3: Performance comparison on NLG tasks.

Performance of Imdb review and toxicity task. The
reported score are the average of the fluency and reward
scores. A higher score indicates better performance on
both NLG tasks.

free Rescaling approach highlights key differences
in intervention effectiveness. Rescaling is often
brittle, with no consistent performance pattern. For
instance, in zero-shot Entailed Polarity prediction,
Rescaling significantly outperforms both the base
model and TaRot on Mistral-7B (Table 1), but
fails to scale in the few-shot setting (Table 2) and
deteriorates performance across most other mod-
els. Two factors explain this: (1) As discussed
in Section 3.2, attention head token associations
exist in superposed states, making direct scaling
or ablation unreliable; (2) large fluctuations intro-
duced by Rescaling hinder optimization. While
Rescaling requires fewer parameters—H per layer
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Method AG News  Average

SFT 0603 0362

Quen2-1.58 | 1.Rot 0655 0447
hiosmini | SET 0677 0745
TaRot 0738 0614

SFT 0693 0,661

Llama=3-88 | 1 oot 0744 0.520

Table 4: Generalizaibility of TaRot. Performance of
supervised fine-tuning (SFT) and TaRot when trained
on the AG News dataset and evaluated on both AG
News and the average of two other tasks (Winowhy and
Navigate).

vs. g in TaRot —the difficulty arises from the pol-
ysemantic nature of OV-circuits. In some cases,
downscaling all associations in a head helps, likely
due to non-interacting associations, but this varies
unpredictably across tasks and models. In contrast,
TaRot ’s rotational alignment offers fine-grained
control and robust, consistent performance. Fu-
ture work can develop a formal theoretical frame-
work to directly compare rotation-based (TaRot)
and rescaling-based interventions, potentially by
analyzing their effects on the residual stream. In
case of NLG tasks, the combined score of the in-
dividual task specific reward model and fluency,
is higher for both the tasks across the models.We
believe that combining reward model and fluency
scores provides a more comprehensive evaluation —
the reward model captures task alignment, and flu-
ency ensures the outputs remain coherent and natu-
ral. This combination better reflects overall perfor-
mance (details in Appendix A.4). Table 3 presents
TaRot’s results on IMDDb and toxicity tasks, where
it consistently outperforms both the base model
and the rescaling approach. The reported scores
reflect the combined metric, with higher values
indicating better performance. On average, the per-
formance of TaRot is improved on IMDb by 3.1%
over the base model and 1.7% on toxicity tasks.
However, on observing fluency and reward score
separately. we see that solely in terms of reward
values, Rescaling performs better than TaRot, and
both interventions perform better than the original
model. However, TaRot delivers more fluent re-
sponse in terms of evaluation by GPT-4, pointing
towards the more drastic edits of rescaling as com-
pared to TaRot (see Appendix A.4 for complete
results).

Generalizability of TaRot. TaRot applies fine
grained intervention to the model attention heads,
without altering the performance on remaining
tasks. To show this, we perform supervised fine tun-
ing(SFT), keeping the size of the train set similar to

that of TaRot. We choose AG news as the train task
as this is the only multi-class classification prob-
lem. Table 4 compares the performance of SFT
and TaRot trained on the AG News dataset across
three different models: Qwen2-1.5B, Phi-3-mini,
and Llama-3-8B. The results indicate that TaRot
outperforms SFT on the trained tasks. We observe
strong generalization in smaller models but weaker
gains in larger ones (e.g., LLaMA-3-8B), due to
two main factors: (1) TaRot removes spurious fea-
tures but cannot inject new task-specific or syntac-
tic knowledge; (2) the high-dimensional rotation
space in larger models makes optimization harder.
Moreover, since all tasks are classification-based,
SFT, being explicitly task-driven, offers stronger
supervision, reducing TaRot’s relative impact at
scale. This explains the performance boost from
SFT even on unseen tasks. Future work can fo-
cus on enhancing TaRot ’s robustness for larger
models.

Ablation studies. To assess the robustness of
our approach, we conduct two ablation studies. (1)
Hyperparameter L.: Using the Qwen 2.5-14B
model, we apply the rotation transformation on
varying layers of the model by changing the hyper-
parameter L. Results show that applying Bayesian
optimization to the initial layers yields the best
performance with minimal parameters (see Ap-
pendix A.6.1 for details). (2) System Prompt: To
guide the model towards accurate outputs, we use a
fixed system prompt per task. We evaluate TaRot’s
robustness to prompt variation on AG News us-
ing Qwen 2.5-14B with three different prompts.
Despite fluctuations in base model performance,
TaRot consistently outperforms it and reduces vari-
ance. Full results are in Appendix A.6.2.

6 Conclusion

In this work, we proposed TaRot, a novel, gradient-
free, mechanistic intervention method for editing
language models. TaRot builds on observations
from implicit gradient descent bias of causal atten-
tion and applies parametrized rotation on the at-
tention output to minimize the effects of undesired
memorizations, doing away with effort-intensive
localization steps and task-specificity of prior inter-
vention techniques. Using Bayesian optimization
of the rotational parameters, TaRot renders as data-
efficient as in-context learning; yet, across a variety
of tasks and language models of different sizes and
families, robust improvement is observed. In a nut-
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shell, TaRot can pave the path for general-purpose
model editing methods in the future beyond super-
vised fine-tuning.

7 Limitations and Ethical Considerations

TaRot is designed to perform when the model has
a generalization ability that is suppressed by noisy
memorization. In that sense, it is limited by the
boundaries of pretraining and cannot be used for
domain adaptation. Fundamentally, it is not ap-
plicable to proprietary models. Finally, similar to
any intervention technique, TaRot can be used in
reverse to bypass alignment tuning and reinforce
undesired behaviors. Future work can be to address
the potential misuse of TaRot for bypassing align-
ment. One can develop detection mechanisms to
identify whether TaRot or similar transformations
have been applied to manipulate a model’s behavior.
Incorporating regularization strategies that penal-
ize rotations leading to toxic, biased, or otherwise
misaligned generations would further ensure that
the optimization process remains consistent with
ethical Al principles. These directions can help mit-
igate potential misuse of TaRot and similar model
editing techniques.
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A Appendix
A.1 Task Details

We experimented with five different classification
(i.e., single token generation) tasks and two NLG
tasks. Below are the details of the tasks with their
prompt templates used:

AG News: The goal of the task is to categories
new articles into one of the four predefined cate-
gories.

* World — News about global events, interna-
tional politics, and worldwide issues.

* Sports — News related to sporting events, ath-
letes, competitions, and sports industry devel-
opments.
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* Business - News focusing on the economy,
financial markets, companies, and business
trends.

* Science & Technology — News about techno-
logical advancements, scientific discoveries,
and research.

System prompt used for AG News task: You
are a news classification model. Your task is to
classify news articles into one of the following four
categories: World, Sports, Business, or Science.
You should respond with only the category name
and no other characters.

Entailed polarity: The Entailed Polarity task is
a yes/no question-answering task (Srivastava et al.,
2022). Given a fact and a question, the goal is to de-
termine whether the fact entails a yes or no answer
to the question. The task tests the model’s ability
to infer whether the factual statement logically sup-
ports the answer in terms of polarity (positive or
negative). Example:

* Fact: “Ed remembered to go.”
* Question: “Did Ed go?”
* Answer: “Yes”

System prompt used for Entailed Polarity
task: Follow the instructions below and answer
with Yes / No.

Navigate: The objective is to follow a set of di-
rectional or spatial instructions and determine if,
after following those steps, the entity returns to the
starting point. The answer is either True or False,
depending on whether the instructions guide the
entity back to where they started. Example:

¢ Instruction: “If you follow these instructions,
do you return to the starting point?”

* Steps: “Always face forward.", “Take 7 steps
left.", “Take 2 steps backward.", “Take 7 steps
backward.", “Take 7 steps backward.", “Take
3 steps forward."

* Question: “Do you return to the starting

point?"
e Answer: False

System prompt used for the task: Answer the
following question and output only True/False.

Winowhy: This task (Srivastava et al., 2022) re-
quires models to identify the correct reasons be-
hind the answers to the Winograd Schema Chal-
lenges(Zhang et al., 2020).

This task is based on the original Wino-
grad Schema Challenge (WSC) dataset and 4095
WinoWhy reasons (15 for each WSC question) that
could justify the pronoun coreference choices in
WSC. The model is presented with a passage that
contains a pronoun and an explanation of which
word or entity the pronoun refers to. The model’s
job is to assess whether the explanation given is
correct or incorrect based on the context of the
passage.

* Text: “Fred is the only man alive who still
remembers my father as an infant. When Fred
first saw my father, he was twelve years old.
The *he’ refers to Fred because, in his own
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words, he is ‘a very odd man’.
* Question: “The above reasoning is:”
* Answer: “Incorrect”.

System prompt used for Winowhy task: Fol-
low the instructions and output Correct/Incorrect.

Imdb: Tune model to generate positive movie re-
views using a BERT (Kenton and Toutanova, 2019)
sentiment classifier as a reward function. The re-
ward model evaluates the sentiment of the gener-
ated reviews, and the goal is to maximize the likeli-
hood of generating reviews classified as positive.

* Dataset Used: imdb (Maas et al., 2011)

e Reward Model: lvwerra/distilbert-imdb,
a fine-tuned version of distilbert-base-
uncased (Sanh, 2019) on the imdb dataset.

Detoxify: Involves reducing the toxicity of lan-
guage model outputs. The toxicity evaluation is
done using a classifier, such as facebook/roberta-
hate-speech-dynabench-r4-target, which distin-
guishes between “neutral” and “toxic" text. The
classifier provides feedback (reward or penalty)
based on the toxicity of the model’s output, guiding
the model to produce less toxic text. The dataset
used is allenai/real-toxicity-prompts (Gehman
et al., 2020).

A.2 Experimental Setup Details

Bayesian optimization. We use I-BNN with 12
hidden layers, and LogExpectedlmprovement as
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the acquisition function. We use a mixture of M-
shots generation to avoid biasing the intervention,
with M chosen randomly from O to 6. Each task
was optimized for 150 iterations.

Baselines. We compare TaRot with four different
baselines: (1) Base model denotes the pretrained
LLM (zero-shot or few-shot) without any interven-
tions. (2) Eigen Pruning (Vergara-Browne et al.,
2024) removes singular values from weight ma-
trices in an LLM to improve its performance in
a particular task. (3) RED (Representation EDit-
ing) (Wu et al., 2024), which modifies the repre-
sentations generated at some layers through the
application of scaling and biasing operations. To
have a fair comparison, we also use a maximum
of 20 prompts in its training phase. (4) Rescaling
ablates attention heads by scaling their output in
the unit interval instead of rotating their outputs;
we use the same optimization technique to figure
out the optimal scaling configuration.

Evaluation metrics. For Imdb positive
review tasks, a sentiment analysis reward
model, lvwerra/distilbert-imdb® is used.

Roberta-hate-speech-dynabench-r4-target*
is used for detoxification. For fluency
GPT4 (Achiam et al.,, 2023) is used as an
oracle to assign a value between 1 and 5, 1 being
the least and 5 being the highest.

A.3 Fluency

To evaluate the fluency of a given text, the follow-
ing prompt was used with GPT4 (Achiam et al.,
2023):

System prompt used: Please rate the fluency of
the following text on a scale of 1 to 5, where 1 is
least fluent and 5 is most fluent: text. Provide only
the number.

where text is the output from the model.

A4 NLG tasks performance

Table 3 presents the performance of TaRot on
IMDB sentiment classification and toxicity detec-
tion, where it consistently outperforms both the
base model and rescaling-based methods. The ta-
ble reports a combined score of fluency and reward
model outputs, where a higher score indicates bet-
ter performance for both tasks.

3https://huggingface.co/lvwerra/
distilbert-imdb

4https://huggingface.co/facebook/
roberta-hate-speech-dynabench-r4-target

Imdb Detoxify
Method Reward [ Fluency [ Reward | Fluency
Qwen2-1.5B
Base -0.80 — 4.50 —
Rescaling 0.72 1.25 2.29 1.26
TaRot -0.25 2.24 4.01 4.56
Mistral-7B
Base -0.05 — 4.31 —
Rescaling 0.19 2.12 3.18 4.12
TaRot 0.16 2.5 4.01 4.30
Llama-3-8B
Base -0.31 — 4.05 —
Rescaling 0.28 2.56 3.18 4.76
TaRot .002 2.38 3.90 4.24

Table 5: Performance comparison on NLG tasks.

A.4.1 Combing score of reward mode and
fluency

Evaluation Setup of the two NLG tasks and fluency
is described below:

* Fluency: Assessed using GPT-4, which as-
signs a score from 1 to 5 (where 1 = least
fluent and 5 = most fluent).

e IMDB Sentiment Reward Model: We use
lvwerra/distilbert-imdb, where higher scores
indicate better sentiment classification.

* Toxicity Reward Model: We use RoBERTa-
hate-speech-dynabench-r4-target, where
higher scores indicate higher toxicity.

The scoring methodology of the NLG tasks and
fluency combined is described below:

* IMDB + Fluency: Both scores were normal-
ized to [0,1] and summed to obtain the final
score.

* Toxicity + Fluency: The toxicity score was
normalized and inverted (so that lower toxicity
results in a higher score), then combined with
fluency.

Thus, in both cases, a higher final score reflects
improved overall performance (i.e., better fluency
and alignment with task objectives). The complete
breakdown of the toxicity and fleuncy of the NLG
tasks is shown in Table 5.

A.5 Additional baselines

Eigenpruning and RED were used as baselines in
our study. Below, we outline the key challenges
that prevented us from incorporating additional
baselines:

Eigenpruning:

9699


https://huggingface.co/lvwerra/distilbert-imdb
https://huggingface.co/lvwerra/distilbert-imdb
https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target
https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target

Method | Layer | AG News Navigate Winowhy
Base NA 0.753 0.424 0.723
TaRot 0-6 0.752 0.45 0.723
TaRot 0-12 | 0.757 0.432 0.715
TaRot 0-24 | 0.754 0.480 0.732
TaRot 0-32 | 0.743 0.439 0.712

Table 6: Zero Shot Performance with TaRot applied on
different layers.

Method | Layer | AG News Navigate Winowhy
Base NA 0.749 0.527 0.691
TaRot 0-6 0.755 0.549 0.733
TaRot 0-12 | 0.75 0.556 0.73
TaRot 0-24 | 0.752 0.605 0.759
TaRot 0-36 | 0.757 0.601 0.735

Table 7: Few Shot Performance with TaRot applied on
different layers.

* Eigenpruning requires fine-tuning the model
before identifying circuits, which is a compu-
tationally expensive process.

* Given our resource constraints, we were un-
able to perform the necessary fine-tuning steps
required for a fair comparison.

RED:

* The methodology and code for RED have only
been demonstrated on GPT-2 and LLaMA
models.

* The publicly available codebase lacks imple-
mentation details for extending RED to other
model architectures.

As aresult, we were only able to run RED on the
LLaMA model for comparison.

A.6 Ablation Study

A.6.1 Hyperparameter I

Previous studies indicate that token associations
related to pretrained knowledge primarily reside in
the first half of the model. Based on this insight,
we applied the rotation transformation only to the
first half of the model. However, we acknowledge
that an ablation study on this hyperparameter is
necessary to fully assess the robustness of our
approach.

To address this, we conducted an ablation study
on the Qwen 2.5-14B model, which has 48 layers.
We tested different layer ranges for applying the
rotation matrix: 0-6, 0-12, 0-24, and 0-36. The
tables below report zero-shot and few-shot F1
scores across three tasks: AG News, Navigate, and

Winowhy. Table 6, 7 shows the performance zero
shot and few shot performance respectively.

Key Observations

* For Navigate and Winowhy, the best perfor-
mance was achieved when applying TaRot to
the first 24 layers (0-24).

* Ideally, 0-32 layers should also perform well,
but the increased parameter space dimension-
ality makes it harder for Bayesian optimiza-
tion to converge effectively.

* For task AG news we see comparable perfor-
mance of TaRot optimized on the first half of
the model with the best performing setting.

Therefore we see that applying optimization on
the first half provides with us with the best perfor-
mance.

A.6.2 System Prompt

We tested the model with three semantically equiva-
lent but syntactically different prompts. TaRot was
optimized on each of these prompts separately to
evaluate its effectiveness in mitigating performance
fluctuations.

Prompt 1:

System prompt: You specialize in classifying news
articles into distinct categories. Given a news arti-
cle, determine whether it belongs to World, Sports,
Business, or Science. Only provide the category
name as a response.

Question: News Content: <review>

Query: What is the most suitable category for this
news piece?

Prompt 2:

System prompt: You are an expert in news topic
classification. Your role is to analyze articles and
assign them to one of these four categories: Sports,
World, Business, or Science. Do not add extra
text—respond with just the category name.
Question: Text: <review>

Question: Which of the four categories (World,
Sports, Business, or Science) does this article be-
long to?

Prompt 3:

System prompt: Your function is to categorize news
articles into one of four groups: World, Sports,
Business, or Science. Given a news article, de-
termine its category and respond using only the
category name.

Question: News Article: <review>
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Method Prompt1 Prompt2 Prompt3
Base (Zero Shot) 0.724 0.815 0.73
TaRot (Zero Shot) | 0.772 0.832 0.768
Base (Few Shot) 0.67 0.792 0.697
TaRot (Few Shot) | 0.7 0.792 0.715

Table 8: Ablation of different prompt used for
Qwen/Qwen2-1.5B-Instruct on AG News Tasks.

Task: Identify the correct category for this article.

Table 8 shows the performance of TaRot in
zero and few shot settings compared with the base
model. The model used is Qwen/Qwen2-1.5B-
Instruct and the dataset is Ag News. The results
demonstrate that the base model exhibits consid-
erable fluctuation across different prompts, indi-
cating a high sensitivity to prompt phrasing. In
contrast, TaRot consistently outperforms the base
model across all prompt settings, showcasing its
reliability and robustness. This consistency high-
lights TaRot’s ability to generalize better and re-
main stable despite variations in input structure.
Notably, while the base model suffers a significant
absolute drop of 0.145 in few-shot performance
between prompts (from 0.815 to 0.67), TaRot sub-
stantially minimizes such performance degradation.
This suggests that TaRot enhances the model’s re-
silience to prompt perturbations, reducing brittle-
ness and improving reliability. Furthermore, by
demonstrating improved performance across var-
ied prompt templates, the experiment effectively
addresses the reviewer’s concern—confirming that
TaRot’s improvements are not limited to a single
prompt instance but instead generalize across dif-
ferent prompt structures.

A.7 System Prompt Used

For each system custom system prompts were used
to help guide the model to output the final answer
directly. We ensured that system prompts were only
used when necessary—for instance, they were not
applied in tasks like Entailed Polarity, where the
model naturally follows the desired output struc-
ture, i.e output the final answer directly. The system
prompt used for each tasks are as follows:

» Task Navigate: Prompt: “If you follow these
instructions, do you return to the starting
point?”

* Task Entailed Polarity: Prompt: “Given a
fact, answer the following question with a yes
or ano.”
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» Task Winowhy: Prompt: “Please answer the
following questions about which words cer-
tain pronouns refer to.”

* Task AG News: Prompt: “News Article: re-
view: Question: What category does this news
article belong to?”



