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Abstract

Large Language Models (LLMs) as agents re-
quire careful behavioral adaptation. While
adept at reactive tasks (e.g., medical reasoning),
LLMs often struggle with proactive engage-
ment, like unprompted identification of critical
missing information or risks. We introduce BE-
HAVIORBENCH, a comprehensive dataset to
evaluate agent behaviors across a clinical assis-
tance spectrum. To rigorously test the current
models, we also introduce BEHAVIORBENCH-
HARD, a challenging subset where the perfor-
mance of state-of-the-art models drops signifi-
cantly, revealing weaknesses. To address these
challenges, we propose BEHAVIORSFT, a
novel training strategy using behavioral tokens
to explicitly condition LLMs for dynamic be-
havioral selection which boosts performance on
both benchmarks. Crucially, a blind clinician
evaluation confirmed that our trained agents
exhibit more realistic clinical behavior, strik-
ing a superior balance between helpful proac-
tivity and necessary restraint versus standard
fine-tuning or explicitly instructed agents.1

1 Introduction

As Large Language Models (LLMs) transition from
experimental systems to deployed agents in clini-
cal environments (Heydari et al., 2025; Khasentino
et al., 2025), a critical question emerges: “when
and how should these systems act reactively or
proactively (Fauscette, 2024)?”. Unlike general-
purpose AI agents, health agents can operate in
high-stakes environments where both action and in-
action carry significant consequences (Kim, 2025;
Kim et al., 2025a,c). We define reactive behav-
iors as those where the agent responds only to
explicit queries with precisely the information re-
quested, while proactive behaviors involve volun-
teering additional information, raising concerns,

1Project Page:
https://behavior-adaptation.github.io/

or suggesting actions beyond what was directly
solicited. Importantly, proactivity in clinical con-
texts extends beyond merely asking clarifying ques-
tions, a common, but limited, focus in existing
NLP research (Li et al., 2024; Hu et al., 2024).
While question-asking represents one dimension of
proactivity, our work encompasses a broader spec-
trum; including unsolicited intervention, critical
evaluation, and recommendation. These behav-
iors align closely with the “Appraisal” phase of
Evidence-Based Medicine (EBM) (Denby, 2008),
where clinicians actively assess available informa-
tion, identify information gaps, and determine ap-
propriate next steps. An agent that remains strictly
reactive may fail to raise an alert when problems
are observed with critical lab values or medica-
tion contraindications (Walter Costa et al., 2021;
Wright et al., 2018), potentially compromising pa-
tient safety (McCoy et al., 2014). In contrast, an
excessively proactive system that frequently inter-
rupts with unsolicited recommendations risks con-
tributing to alert fatigue, interruption of workflow,
and potential rejection by health professionals (Sut-
ton et al., 2020). This trade-off between reactive
and proactive behaviors forms the core challenge
addressed in this paper. The appropriate balance
between these modalities varies dramatically based
on clinical context, urgency, risk levels, and the
specific health roles being augmented, demanding
adaptive behavior policy rather than a fixed mode,
especially as systems achieve higher levels of au-
tonomy (Figure 4).

To systematically discuss how an agent’s reac-
tive and proactive stance should adapt with its in-
creasing capabilities, we adapt the SAE Levels of
Driving Automation (SAE, 2021) into a six-level
taxonomy for health agent autonomy. This frame-
work detailed in Table 10 helps to illustrate a key
principle: as an agent ascends these autonomy lev-
els, its capacity and responsibility to engage in so-
phisticated proactive behaviors, rather than merely
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Our case is about 
{PRESENTATION OF CASE} 
. . .

Based on {MEDICAL EXAM} 
result . . .

Clinician A

Clinician B
We need to re-check 

{GUIDELINE} to ensure …

a Omission Detection in Group Decision-Makings

b Image Reasoning

Explain the {IMAGE} you 
see in the monitor . . .

Clinician
The {IMAGE} shows 
anterior pituitary tissue . . .  

c Error Correction

What is your insights from 
{LABORATORY} result in 
the table . . .

The {VARIABLE} range 
seems to be out of the 
reference range … 

d Differential Diagnosis (DDX) Reasoning

e Temporal Ordering

f Consistency Check

Based on {PRESENTATION 
OF CASE}, {IMAGES}, 
{LABORTAORY} results, 
what’s your diagnoses?

Clinician There’s {EVIDENCE} of . . . 
and my {DIAGNOSIS} 
would be . . .

Based on {PRESENTATION 
OF CASE}, organize the 
events in temporal order.

At {PERIOD 𝑖} on physical 
examination, the patient had 
blood pressure of . . .

1. Initial Exam Finding: X
2. X-ray Finding: Y
(…)

Inconsistency exists 
between initial physical exam 
and later X-ray findings and it 
is because …

Clinician

LLM Agent

LLM Agent

Proactive

Proactive

Reactive

LLM Agent

Reactive

LLM Agent

Reactive

LLM Agent

Proactive

LLM Agent

Figure 1: Six representative tasks from BEHAVIORBENCH, showcasing the spectrum of agent behaviors in
clinical settings. The figure illustrates (a-c, f) proactive tasks where the LLM agent identifies issues or offers
insights without direct prompting, and (b, d, e) reactive tasks responding to explicit clinician queries.

reactive ones, become increasingly critical.

The autonomy level taxonomy highlights that ef-
fective health AI, particularly for achieving Level
3 (Conditional Proactive Assistance) and above,
must move beyond simple reactive responses (Lev-
els 1-2). As AI autonomy increases, the nature
of clinician responsibility evolves, shifting from
direct task execution to supervision, validation
of AI-driven insights, and management of excep-
tions. Our work, therefore, focuses on enabling
AI agents to learn and exhibit the adapted spec-
trum of reactive and proactive behaviors crucial for
safe and effective operation at these higher lev-
els of conditional and collaborative automation.
BEHAVIORBENCH{-HARD} are designed to eval-
uate these capabilities across this spectrum, and
BEHAVIORSFT aims to train agents to achieve this
behavioral adaptability, particularly for robust per-
formance at Levels 2 and 3, with an eye towards
future capabilities at Level 4.

Effectively adapting which of these behaviors is
appropriate, and when, it is essential for health AI
systems that can safely operate at increasing levels
of autonomy. In this work, we ask “what proactiv-
ity means for health AI and how we build systems
that are appropriately behaving?”. To this end,
we propose a novel six-level taxonomy for health

AI autonomy that maps progression from human-
controlled to autonomous operation. We trace the
evolution from early reactive systems (Tu et al.,
2024; Han et al., 2023) to more recent develop-
ments like MediQ (Li et al., 2024), AIME (McDuff
et al., 2025; Tu et al., 2024) and Tiered Agentic
Oversight (Kim et al., 2025b), which incorporate
proactive elements while demonstrating the criti-
cal interplay between proactivity and urgency. Our
benchmark was curated from real medical cases
sourced from New England Journal of Medicine
(NEJM) clinical case reports (Brinkmann et al.,
2024). We employed LLMs (Gemini-2.5 Flash
and Gemini-2.5 Pro) to meticulously ground
these cases in their factual details and then refor-
mat them into multi-turn, multi-clinician-patient
conversational scenarios, integrating multi-modal
inputs such as text, images, and tabular data. In-
deed, we propose this LLM-assisted methodol-
ogy for converting existing static clinical datasets
into rich, reactive-proactive benchmark scenarios
as a key contribution of our work. Additionally,
we present a novel training methodology, BEHAV-
IORSFT, which employs explicit behavioral tokens
to condition LLM responses along the reactive-
proactive spectrum. Our approach demonstrates
significant improvements, achieving up to 97.3%
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overall Macro F1 on BehaviorBench (compared to
96.7% for general SFT) with particularly notable
gains in proactive tasks (from 95.0% to 96.5%).
The primary contributions are:

1. We introduce BEHAVIORBENCH{-HARD},
evaluation datasets that assesses LLM capabil-
ities across both reactive and proactive tasks
in health contexts.

2. We provide detailed analysis of recent LLMs’
performance on our benchmarks, revealing
significant variability in contextual awareness
and appropriate behavioral adaptation.

3. We propose BEHAVIORSFT, a new fine-
tuning strategy that leverages behavioral to-
kens to guide LLMs in dynamically adapting
their responses along the reactive-proactive
spectrum tasks.

2 BEHAVIORBENCH

We introduce BEHAVIORBENCH, a novel dataset
specifically designed to assess agent capabilities
across the reactive-proactive tasks. Derived from
real clinical cases, BEHAVIORBENCH comprises
of 6,876 real-world clinical case scenarios from
which we derived a total of 142,496 tasks dis-
tributed across the 13 distinct task categories. This
framework provides a more granular analysis of
an agent’s ability to discern context and modulate
its behavior accordingly, moving beyond standard
metrics, such as accuracy, that are solely based on
reactive responses. Detailed dataset statistics can
be found in the Appendix C.

To ensure that the generated tasks effectively
probe clinical reasoning, we construct the dataset in
a two-step process. First, we carefully prompt the
LLM (see Appendix F) generating the tasks to use
detailed summary from real-world clinical cases,
including patient history, diagnostics, conversation
snippets, and final diagnoses. This ensures that the
questions, answers, and rationales reflect genuine
clinical context instead of relying on pseudolabels
generated without any realistic groundings. All
draft tasks then underwent several back-and-forth
revision cycles with two physicians, who reviewed
any hallucinations and confirmed each scenario’s
practical plausibility for N=10 cases. Then, to eval-
uate the agent’s proactive capabilities, we augment
the base scenarios by intentionally introducing sub-
tle challenges, such as hypothetical scenarios with

probable clinical errors, conflicting data points (e.g.
modifying numerical values slightly between re-
ports, or presenting exam findings seemingly at
odds with imaging), and omitted information ex-
pected by clinical standards. The resulting reactive-
proactive tasks are as follows:

Reactive Tasks evaluates whether the agents can
handle information when requested directly.

1. fact_retrieval: Finds specific facts men-
tioned in the text (e.g., “What was the patient’s
initial temperature?").

2. timeline_sequence: Puts events in order us-
ing clear time references (e.g., tracing how
lung exam findings changed between the ini-
tial presentation and Turn N , based on pro-
vided descriptions from those time points).

3. ddx_reasoning: Explains the reasoning for
a possible diagnosis using only the evidence
given (e.g., identifying findings prior to Turn
M , such as specific X-ray descriptions and
sputum results, that suggested bronchopneu-
monia over simple lobar pneumonia).

4. treatment_decision: Connects a doctor’s
thinking or action to the stated reason or data
supporting it (e.g., evaluating a specific di-
agnostic leaning mentioned in Turn K based
only on the evidence explicitly available at
that time, like sputum results).

Balanced Tasks are initiated by specific, pro-
vided information but demand a more significant
cognitive step involving deeper thinking, such as
multi-step inference, synthesis of multiple data
points, or evaluating the impact of new information
on existing understanding.

1. reasoning_differential_evolution:
Compares the patient’s situation at two
different times and explains how the doctor’s
assessment should change because of new
information (e.g., asking how the list of possi-
ble diagnoses should shift from Timepoint A
to Timepoint B considering newly available
sputum culture results and vital signs).

2. integrity_missing_turn_inference:
Figures out what was likely said in a missing
part of a conversation based on what came
before and after (e.g., “Turn N orders a test,
Turn N + M discusses the result. What
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Table 1: Comparison of Public Medical Benchmarks. Modality codes: t=text, i=image, b=tabular/structured data.
✓ indicates that the benchmark natively supports the evaluation dimension; ✗ indicates it does not.

Benchmark Size Modality Behavior
Evaluation

Sequential
Eval.

Dialogue
Interaction

Multiple
Roles

MedQA (Jin et al., 2021) 1,273 t ✗ ✗ ✗ ✗
MedMCQA (Pal et al., 2022) 6,100 t ✗ ✗ ✗ ✗
MultiMedQA (Singhal et al., 2023) 13,115 t ✗ ✗ ✗ ✗
MediQ (Li et al., 2024) 1,273 t ✗ ✓ ✓ ✓
MediQ-AskDocs (Li et al., 2025a) 17,000 t ✗ ✓ ✓ ✓
ClinicBench (Chen et al., 2024) 11,000 t ✗ ✗ ✗ ✗
MedChain (Liu et al., 2024) 12,163 t+i ✗ ✓ ✓ ✓
MedAgentBench (Jiang et al., 2025) 300 t+b ✗ ✓ ✓ ✓
HealthBench (Arora et al., 2025) 5,000 t ✓ ✗ ✓ ✗

BEHAVIORBENCH (Ours) 142,496 t+i+b ✓ ✓ ✓ ✓

likely happened in Turn N + K, where
0 < K < M?”).

Proactive Tasks require the LLM to use higher-
level thinking, and evaluation skills.

1. predictive_next_action: Forecasts the
most appropriate subsequent clinical action
by integrating the evolving patient case, cur-
rent symptoms, medical history, and available
diagnostic results.

2. explicit_error_correction: Identifies
and rectifies explicitly stated errors in clin-
ical narratives or proposed actions, providing
justifications based on medical knowledge and
case specifics (e.g., correcting drug suitability
given a patient’s allergy).

3. omission_detection: Identifies significant
omissions in the provided clinical information
or documented actions, such as overlooked
diagnostic tests or unaddressed critical symp-
toms that could impact patient care.

4. standard_of_care: Assesses whether doc-
umented clinical management, including di-
agnostic procedures and interventions, ad-
heres to established medical guidelines and
accepted best practices, often requiring exter-
nal knowledge.

5. interpretation_conflict: Discerns and
reconciles nuanced or potentially conflicting
interpretations of clinical findings from differ-
ent sources (e.g., contrasting physical exam
notes with radiology findings), articulating
their clinical significance.

6. data_conflict_resolution: Identifies di-
rect contradictions or inconsistencies between

pieces of factual clinical data presented within
a case (e.g., conflicting lab values over time)
and proposes logical explanations.

7. consistency_check: Evaluates the overall
logical and clinical coherence of a case nar-
rative or specific information, identifying el-
ements that are incongruous or implausible
(e.g., assessing if a patient’s reported progres-
sion aligns with a given diagnosis).

BEHAVIORBENCH-HARD To further enhance
the difficulty of our benchmark, we curated
BEHAVIORBENCH-HARD, a subset of 297 chal-
lenging cases where multiple state-of-the-art mod-
els consistently fail. We selected cases by evaluat-
ing three reasoning-specialized LLMs (o3, Gemini-
2.5-Pro, DeepSeek-R1) on the full test set with
three random seeds each, choosing instances where
≥2 models failed across multiple runs. The result-
ing subset maintains task distribution balance (43%
proactive, 39% reactive, 18% balanced).

3 BehaviorSFT: Behavior Adaptation
Training

To operationalize the concept of behavioral adap-
tation within health LLM agents, we propose a
targeted training strategy, Behavior-Conditioned
Supervised Fine-Tuning (BehaviorSFT). This ap-
proach leverages our specialized BehaviorBench
dataset (Section 2) to explicitly teach LLMs to mod-
ulate their responses along the reactive-proactive
spectrum based on inferred clinical context. This
contrasts with standard SFT approaches, which typ-
ically optimize for task completion without explicit
mechanisms to control the agent’s level of initia-
tive or caution, risking either unsafe passivity or
disruptive over-intervention.
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3.1 Behavior Tokens

Rationale for Prefix Tokens: We employ prefix
behavior tokens (e.g., <reactive>, <proactive>) for
several reasons. Placing the token at the beginning
of the target sequence allows it to act as a direct
control signal, conditioning the entire generation
process on the desired behavioral mode from the
outset. This explicitly trains the model to adopt the
appropriate style, tone, and level of initiative as it
generates the response. While one could consider
predicting the token after some internal reasoning
chain, our approach integrates this reasoning im-
plicitly, i.e., the model learns to predict the correct
initial token based on its understanding of the input
context (x), as described in our Contextual Behav-
ior Assessment capability (Section 3.3). This pro-
vides an end-to-end mechanism for context-aware,
behaviorally adapted generation. The key to our
approach is the special behavior tokens paired with
the target response during training.

• <reactive>: Signals the generation of a di-
rect, concise response strictly adhering to the
explicit query, avoiding unsolicited informa-
tion or inferences.

• <proactive>: Signals a response that may in-
clude identifying implicit issues, volunteering
relevant context or warnings, suggesting next
steps, or applying external knowledge (e.g.,
standards of care) beyond the literal query.

These tokens act as control signals, learned by the
model and conditioning the subsequent generation
process. Alternative approaches exist, such as train-
ing a separate classifier to select the mode and then
routing the input to specialized reactive or proac-
tive models, or using inference-time techniques like
thresholding logits associated with the behavior to-
kens for finer control. However, our BehaviorSFT
approach offers a simpler, unified training process
within a single model. Future work could explore
hybrid methods or compare the efficacy of these
different control paradigms.

3.2 Training Data

BehaviorBench serves as the crucial training
ground for BehaviorSFT. Each instance within the
benchmark’s training split is meticulously anno-
tated with the desired target behavior token based
on the task’s nature and the underlying clinical sce-
nario’s demands:

1. Reactive Annotation (<reactive>): Ap-
plied to tasks demanding factual recall, di-
rect sequencing, or simple reasoning strictly
from provided data (e.g., fact_retrieval,
timeline_sequence).

2. Proactive Annotation (<proactive>):
Applied to tasks necessitating criti-
cal assessment, error/omission detec-
tion, consistency checking, or predic-
tion based on clinical standards (e.g.,
consistency_check, standard_of_care,
predictive_next_action).

3. Contextual Annotation for Balanced
Tasks: Instances from balanced tasks (e.g.,
reasoning_differential_evolution)
are annotated based on whether the spe-
cific context warrants simple reporting
(<reactive>) or highlighting significant
changes/implications (<proactive>).

Each annotated instance is then structured for
auto-regressive SFT, pairing the input context/-
query with a target sequence beginning with the
assigned behavior token, followed by an ideal re-
sponse exemplifying that behavior.

Example 1 (Reactive Task):

Input: Context: [Note excerpt: Vitals
stable.]

Query: Latest vitals?
Target: <reactive> BP 120/80, HR 75,

Temp 37.0C, RR 16.

Example 2 (Proactive Task):

Input: Context: [Chart: Rx Drug A.
Allergy list: Drug A.]

Query: Confirm med list okay?
Target: <proactive> Warning: Drug A

prescribed but patient is allergic.
Review immediately.

This structured data format explicitly teaches the
model the association between clinical scenarios,
appropriate behavioral modes (reactive/proactive),
and corresponding linguistic outputs.

3.3 Training Procedure: BehaviorSFT
Starting with a pre-trained foundation LLM,
we perform SFT using the behavior-annotated
BehaviorBench training data. The objective is
the standard causal language modeling loss, min-
imizing the negative log-likelihood of the tar-
get sequence y = (y1, ..., yT ), where y1 ∈
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{<reactive>, <proactive>}:

LBehaviorSFT = −
T∑

i=1

logP (yi|y<i, x; θ) (1)

Here, x is the input context/query, y<i are the pre-
ceding target tokens, and θ represents the model
parameters.

Through this process, the model learns the cru-
cial, intertwined capabilities:

1. Contextual Behavior Assessment: Implic-
itly analyzing the input x to determine the
likelihood that a proactive or reactive stance
is warranted, influencing the prediction of the
initial token y1.

2. Behavior-Conditioned Generation: Gener-
ating subsequent tokens y2:T in a manner con-
sistent with the generated or given behavior
token y1, adopting the appropriate style, tone,
and level of detail or intervention.

Specificity Implicitness

(I) Distribution of Specificity Scores (II) Distribution of Implicitness Scores
Agent Type Agent Type
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Figure 2: Density distributions of (I) Specificity
and (II) Implicitness scores for Baseline, Behav-
iorSFT, and GeneralSFT agent outputs. (I) Speci-
ficity: Both fine-tuned models (BehaviorSFT and Gen-
eralSFT) markedly improve output specificity over the
Baseline, with distributions concentrated at high scores
(∼0.9). (II) Implicitness: Distinct implicitness profiles
emerge: GeneralSFT is the most explicit (lowest scores,
∼0.6-0.7), the Baseline is the most implicit (highest
scores, ∼0.7-0.9), while BehaviorSFT exhibits a moder-
ate, intermediate level of implicitness (∼0.7-0.8).

4 Experiments and Results

4.1 Setup
All experiments use BEHAVIORBENCH with fixed
6776/110/977 train–val–test split. We fine–tune
both backbones; Qwen-2.5-7B-Instruct (Team,
2024) and Meta-Llama-3.1-8B-Instruct (Meta
AI, 2024). Implementation details can be found in
Appendix G.

Figure 3: G-Eval with gpt-4o-mini as evaluator of
Qwen-2.5-7B-Ins responses across four key metrics.
We compare the average scores for the Baseline model,
our proposed BehaviorSFT, and GeneralSFT. Behav-
iorSFT consistently outperforms the Baseline across all
metrics and demonstrates competitive or superior per-
formance compared to GeneralSFT.

4.2 Main Results

From Reactive to Proactive capabilities in clin-
ical LLMs involve processing and responding di-
rectly to explicitly provided information. Reactiv-
ity encompasses fact retrieval, information sum-
marization, ordering events via direct sequencing,
following simple execution instructions, and per-
forming basic reasoning from explicit data, these
tasks test the LLM’s ability to understand and ma-
nipulate information as presented, without signifi-
cant inference or applying external knowledge. The
Proactive-Reactive Scale of 0.0-0.4 typically re-
flects these functions.

Conversely, require the LLM to transcend lit-
eral interpretation, demonstrating deeper reason-
ing, anticipation, and critical assessment. Key as-
pects include inference and implication (identify-
ing unstated assumptions or missing information),
anticipation and prediction (foreseeing next steps
or complications), consistency and conflict detec-
tion (finding discrepancies between data points),
error recognition and correction, applying exter-
nal knowledge like standards of care, and synthesis
and complex interpretation from multiple sources.
These tasks simulate higher-order clinical thinking.
The Proactive-Reactive Scale of 0.6-1.0 aligns with
these skills, while 0.4-0.6 represents a balance.

Empirical Results Overview. Table 2 re-
ports Macro F1 scores across the three task cat-
egories on BEHAVIORBENCH. Relative to both the
majority-voting Ensemble baseline and standard
supervised fine-tuning (Gen. SFT), BehaviorSFT
matches or exceeds performance on the Reactive
and Balanced sets, and yields a clear advantage on
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Table 2: Performance on BEHAVIORBENCH. We report Macro F1-scores (%) across three task categories. Best
result per task is highlighted in bold.The Ensemble column reports baseline performance by majority voting across
three commercial closed-source models (Gemini-2.5-pro, OpenAI-o1, DeepSeek-R1). ‘ZS’ = Zero-Shot, ‘FS
(k=3)’ = Few-Shot (3 examples), ‘CoT’ = Chain-of-Thought, ‘Explicit Instr.’ = ZS with explicit reactive/proactive
instruction, ‘Gen. SFT’ = Standard Supervised Fine-Tuning (SFT), ‘BehaviorSFT’ = Our proposed fine-tuning
method.

Category Task Ensemble Qwen2.5-7B-Ins Llama3.1-8B-Ins

ZS FS (k=3) ZS + Explicit Instr. Gen. SFT BehaviorSFT Gen. SFT BehaviorSFT

R
ea

ct
iv

e fact_retrieval 100.0 100.0 100.0 100.0 100.0 100.0 100.0
timeline_sequence 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ddx_reasoning 96.2 96.6 96.6 96.1 96.1 94.2 92.7
treatment_decision 94.8 95.3 95.3 100.0 98.4 98.4 98.7

Avg. 98.2 98.2 98.2 98.6 98.6 97.8 97.2

B
al

an
ce

d reasoning_diff_evolution 98.6 98.6 98.6 100.0 100.0 100.0 100.0
integrity_missing_turn 100.0 100.0 100.0 100.0 100.0 96.4 100.0

Avg. 97.2 97.6 97.6 100.0 99.2 98.5 100.0

Pr
oa

ct
iv

e

consistency_check 94.3 100.0 94.3 100.0 100.0 100.0 100.0
data_conflict_resolution 97.2 97.2 97.2 99.3 98.6 99.2 98.6
interpretation_conflict 98.5 96.5 96.5 96.6 96.6 98.5 98.6

standard_of_care 93.4 95.3 93.7 94.8 93.3 91.5 88.4
omission_detection 89.5 92.4 89.3 88.5 95.1 90.0 93.2

explicit_error_correction 96.3 97.5 96.4 98.3 99.2 98.4 97.2
predictive_next_action 82.5 83.0 82.3 84.8 91.7 77.0 83.4

Avg. 94.3 95.1 94.0 95.0 96.5 94.2 94.7

Avg. 95.4 96.0 95.3 96.7 97.3 95.8 96.1

Table 3: Macro F1-scores of prompting methods on behavior classification. Method abbreviations: BT = Behavior
token, BC = Behavior chain-of-thought, OC = Option CoT, OP = Option. Class abbreviations: Five-class
(BA = balanced; H_PR = highly_proactive; H_RE = highly_reactive; P_PR = primarily_proactive; P_RE =
primarily_reactive), Binary (PR = proactive; N_PR = non-proactive), Three-class (BA = balanced; PR = proactive;
RE = reactive).

Five-class Binary Three-class

BA H_PR H_RE P_PR P_RE PR N_PR BA PR RE

BT-OC-OP 42.62 89.47 4.76 19.19 68.72 82.14 92.10 53.41 92.10 73.68
BT-OP 37.06 87.77 13.79 25.28 66.40 82.76 92.19 46.92 92.19 66.42
BT-BC-OC-OP 58.24 87.84 19.05 11.82 71.75 83.48 92.90 51.67 92.90 72.09
BT-BC-OP 54.74 88.89 17.39 11.00 73.68 82.97 92.58 51.76 92.58 69.57
BC-BT-OC-OP 57.06 87.73 14.81 7.07 74.89 82.59 92.23 45.00 92.32 69.96

the most demanding Proactive tasks (Qwen: 96.5%
vs. 95.0%; Llama: 94.7% vs. 94.2%). The benefits
of this behavior-aligned strategy are magnified on
BEHAVIORBENCH-HARD, our challenging subset
detailed in Table 4. On these adversarial cases,
all models experienced a significant performance
drop, but BehaviorSFT demonstrated superior ro-
bustness, achieving the highest overall F1-score of
73.6% compared to 71.3% for GeneralSFT. This
confirms that our approach not only improves per-
formance on average but also builds more resilient
agents for complex clinical reasoning. Detailed
performance for larger baselines is in Appendix E.

Enhanced User-Centric Qualities with G-
Evaluation Our evaluation using G-Eval (Liu
et al., 2023), a methodology leveraging large mod-
els for human-aligned assessment, reveals signifi-
cant qualitative improvements with BehaviorSFT.
As depicted in Figure 3, BehaviorSFT consistently
outperforms the Baseline across all four key met-
rics: Utility, Safety, Clarity, and Behavioral Ap-
propriateness. Notably, BehaviorSFT achieves the
highest scores in Utility (0.95 vs. 0.93 for Gen-
eralSFT and 0.90 for Baseline), Clarity (0.94 vs.
0.92 for GeneralSFT and 0.88 for Baseline), and
Behavioral Appropriateness (0.91 vs. 0.87 for Gen-
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Table 4: F1-scores on BEHAVIORBENCH-HARD and comparsion with BEHAVIORBENCH. The Ensemble column
reports baseline performance by majority voting across three closed-source models (Gemini-2.5-pro, OpenAI-o1,
and DeepSeek-R1). All models show significant degradation, with BehaviorSFT demonstrating superior robustness
across most of task categories. Here, the GeneralSFT and BehaviorSFT is based on Qwen2.5-7B-Ins model.

Model BEHAVIORBENCH BEHAVIORBENCH-HARD

Overall Reactive Balanced Proactive Overall Reactive Balanced Proactive

Ensemble (ZS) 95.4 98.2 97.2 94.3 68.9 76.5 71.2 62.8
GeneralSFT 96.7 98.6 100.0 95.0 71.3 79.2 73.8 65.1
BehaviorSFT 97.3 98.6 99.2 96.5 73.6 81.3 76.2 68.4

eralSFT and 0.86 for Baseline). While GeneralSFT
scores marginally higher in Safety (0.97 vs. 0.95
for BehaviorSFT), BehaviorSFT still demonstrates
a strong safety profile. These results underscore
BehaviorSFT’s capability to not only perform tasks
effectively but also to align more closely with user
expectations in terms of usefulness, understandabil-
ity, and appropriate interaction, suggesting a more
refined and user-centric agent behavior.

Optimizing Output Specificity while Balanc-
ing Implicitness Figure 2 illustrates the impact of
our fine-tuning approaches on the nuanced char-
acteristics of agent responses, specifically their
specificity and implicitness. Both fine-tuned mod-
els, BehaviorSFT and GeneralSFT, markedly en-
hance output specificity compared to the Baseline,
with distributions concentrating at high specificity
scores (around 0.9). This indicates that both meth-
ods generate more detailed and precise information.
However, a key distinction emerges in their implic-
itness profiles. GeneralSFT tends towards more
explicit communication, reflected in lower implic-
itness scores (approximately 0.6-0.7). In contrast,
the Baseline model is the most implicit (scores
around 0.7-0.9). BehaviorSFT carves out an in-
termediate and potentially more versatile profile,
achieving a moderate level of implicitness (scores
approximately 0.7-0.8). This suggests that Behav-
iorSFT can deliver highly specific information with-
out resorting to excessive explicitness, potentially
mirroring more natural human communication pat-
terns and aligning with the idea that effective agents
must navigate implicit evaluation criteria (Wadhwa
et al., 2025).

4.3 Ablation on prompting variants for
Behavior Pattern Analysis

Table 3 evaluates five prompting recipes ob-
tained by incrementally adding Behavior Chain-
of-Thought (BC) and Option reasoning (OC/OP)

on top of the Behavior Token (BT) baseline. The
full recipe BT–BC–OC–OP achieves the best or
second-best Macro F1 in 11 of the 13 columns (e.g.,
Five-class BA 58.2 and Binary PR 83.5), showing
that BC and OC/OP provide complementary gains.
Dropping OC/OP (BT–BC–OP) or BC (BT–OP)
consistently lowers scores, while reversing the BC
placement (BC–BT–OC–OP) yields a smaller ben-
efit, indicating that BC is most effective when ap-
pended after the BT prompt. Overall, combining
both reasoning cues delivers the most robust be-
haviour classification across all label granularities.

5 Clinician-in-the-loop Evaluation

To rigorously evaluate our BehaviorSFT agent and
validate the proposed dataset, we conducted a user
study involving board-certified medical profession-
als. This study was designed to assess the clinical
utility of BEHAVIORBENCH and to compare the
performance of LLM agents exhibiting distinct be-
havioral characteristics. A detailed setup (partic-
ipants, study procedure, and the annotation inter-
face) of our user study can be found at H.

5.1 Annotation Results
This section presents the quantitative and qualita-
tive findings from the clinician-in-the-loop evalua-
tion study. All reported inter-annotator agreement
scores were calculated among the three participat-
ing physicians.

5.1.1 Phase 1: BEHAVIORBENCH Validation
Clinicians evaluated a total of 60 unique tasks from
the BEHAVIORBENCH.

MCQ Accuracy and Task Plausibility The
physician annotators demonstrated a high level of
accuracy in answering the multiple-choice ques-
tions, achieving an overall correctness of 83.3%.
This proficiency underscores their expert under-
standing of the clinical scenarios presented within
the dataset.
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The clinical plausibility of the tasks was a key
validation metric. As shown in Figure 18, a sub-
stantial majority of tasks (80.0%) were rated as
clinically plausible (“Yes”). No tasks (0.0%) were
rated as definitively “No” for plausibility, while
20.0% were marked as “Unsure,” suggesting areas
where task framing or context might warrant further
refinement or clarification for some annotators.

Annotator Confidence Levels Annotator confi-
dence in their selected MCQ answers was recorded
on a three-point scale. The distribution, illustrated
in Figure 18, reveals that physicians were predomi-
nantly “High” in their confidence (55.0%). “Moder-
ate” confidence was reported for 36.7% of answers,
while “Low” confidence was expressed for only
8.3% of answers. This general trend towards higher
confidence aligns with the observed accuracy.

Inter-Annotator Agreement for Dataset Val-
idation To ensure the reliability of the dataset
validation process, inter-annotator agreement was
quantified using the Intraclass Correlation Coeffi-
cient (ICC3) for continuous ratings.

The task proactivity/reactivity slider ratings (0.0-
1.0 scale) demonstrated good reliability with an
ICC3 of 0.61. This robust agreement scores indi-
cate that the physicians interpreted and applied the
validation criteria consistently.

5.1.2 Phase 2: Comparative Agent Behavior
Evaluation Results

Physicians evaluated agent responses across N=24
unique clinical tasks. The anonymized agents eval-
uated were BehaviorSFT, General SFT, and ZS +
Explicit Instr.

Agent Response Ranking and Proactivity/Re-
activity Appropriateness The primary evaluation
involved ranking the three agents. Agent A (BE-
HAVIORBENCH) received the most favorable rank-
ings, achieving the lowest (best) mean rank of 1.80
(Figure 19). In terms of the appropriateness of
proactivity/reactivity, Agent C (ZS + Explicit In-
str.) scored highest with a mean Likert score of
4.20 out of 5 (Figure 19). Agent B (General SFT)
had a mean rank of 2.08 and a mean Likert score
of 4.08.

6 Limitations and Future Works
Data & Task Scope. BEHAVIORBENCH aggre-
gates 6,876 English clinical vignettes (142K task
instances) from NEJM. This corpus reflects an
internal-medicine bias and omits modalities such
as radiology reads, nursing shift notes, tele-health

transcripts, and non-English documentation. The
future tasks include expanding the benchmark to
multilingual EHR snippets and image-grounded
prompts, and we are adding tasks for dermatology,
psychiatry, and longitudinal trend summarisation
to test whether proactive cues generalise beyond
text-only, single-visit encounters.

Behavior Modeling. Our BEHAVIORSFT con-
troller currently toggles generation with binary
<reactive>, <proactive> tokens. Although ef-
fective for coarse behavior shifts, these cannot
express nuances such as anticipatory clarification
versus high-urgency escalation, and it occasion-
ally over-fires, creating alert fatigue. We are ex-
perimenting with a hierarchical token inventory
(e.g. <flag_safety>, <escalate_critical>)
learnt from multi-label supervision, and with
behaviour-weighted RLHF that continuously trades
helpfulness against cognitive load.

Evaluation & Deployment Readiness. The clin-
ician study in Section 5 involved three medical
doctors and a number of cases sufficient for valida-
tion but under-powered for robust error stratifica-
tion or workflow integration. Future work should
recruit multi-institution cohorts (20+ clinicians,
1,000+ cases) and embeds the agent inside a sim-
ulated EHR sandbox to observe interrupt patterns,
hand-off continuity, and long-horizon reasoning
across multi-day episodes.

7 Conclusion

In this paper, we introduce BEHAVIORBENCH, a
benchmark validated by clinicians, which reveals
key proactivity gaps in current LLMs. To bridge
these gaps, we proposed BehaviorSFT, a novel
fine-tuning strategy using explicit behavioral to-
kens. Our method achieved state-of-the-art perfor-
mance on BEHAVIORBENCH, with a Macro F1
of up to 97.3%. Crucially, the strength of Be-
haviorSFT was highlighted on BEHAVIORBENCH-
HARD. While all models experienced a perfor-
mance drop, BehaviorSFT demonstrated superior
resilience, achieving an F1-score of 73.6%, outper-
forming both GeneralSFT and the ensemble base-
line. In a blind user study, clinicians ranked the our
trained agent as the most effective (best mean rank
1.80). Combined with best G-Eval scores for Util-
ity and Behavioral Appropriateness, our findings
show that BehaviorSFT produces more reliable,
clinically nuanced, and expert-preferred agents.
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A Related Works

The Evolving Role of AI in Clinical Tasks Early
AI applications in health predominantly functioned
as reactive tools, such as information retrieval sys-
tems responding to explicit queries (Yasunaga et al.,
2022) or basic clinical decision support (CDS) sys-
tems triggering alerts based on predefined rules.
These systems, while valuable, often lacked con-
textual understanding and the ability to anticipate
clinician needs or potential issues proactively (Mc-
Coy et al., 2014; Sutton et al., 2020). More re-
cent advancements, particularly with LLMs, have
paved the way for more sophisticated AI assistants.
Models like Med-PaLM (Singhal et al., 2023) and
Med-Alpaca (Han et al., 2023) demonstrated strong
domain knowledge, though primarily in a reactive
question-answering capacity. The trend is now
shifting towards systems with proactive capabil-
ities. For instance, MediQ (Li et al., 2024) ex-
plores proactive information-seeking when context
is incomplete, while systems like AIME (Tu et al.,
2024) and MDAgents (Kim et al., 2024) begin to
suggest next steps or anticipate patient needs. Our
work builds on this trajectory by focusing on sys-
tematically training and evaluating the adaptation
of reactive and proactive behaviors.

Challenges of Proactive AI in Health Proactive
behaviors in health AI are diverse and critical. One
key form is proactive alerting, where systems iden-
tify and flag critical information, potential errors
(e.g., drug interactions, missed standard protocols),
or deviations from normal (e.g., critical lab val-
ues) (Wright et al., 2018; Fixler et al., 2023; Lee
et al., 2014). While potentially life-saving, a ma-
jor challenge is alert fatigue, where excessive or
irrelevant alerts lead to high override rates and de-
sensitization among clinicians (Gani et al., 2025;
Olakotan and Yusof, 2020; Hussain et al., 2019).
Recent efforts focus on contextualizing alerts to
improve relevance and reduce fatigue (Poly et al.,
2020; Van Dort et al., 2021). Another crucial area
is proactive information-seeking under uncertainty.
Clinical scenarios often involve incomplete infor-
mation, and an AI agent should ideally recognize
knowledge gaps and ask clarifying questions rather
than proceeding with potentially unsafe assump-
tions (Li et al., 2024). (Zhang and Choi, 2023)
proposed a clarification framework that uses an
entropy-based metric to decide when to intervene,
improving performance particularly in ambiguous
cases. Li et al. (Li et al., 2025b) developed a two-

stage dialogue model where the AI actively asks
diagnostic questions before refining them, closely
emulating physician-like inquiry. Finally, contex-
tual intervention and suggestion involve AI vol-
unteering relevant, unprompted information, sug-
gesting next steps, or adapting guidance based on
inferred clinical context, user expertise, or work-
flow stage (Widmer et al., 2015; Friend et al., 2023;
Mahajan et al., 2025; Khalifa and Albadawy, 2024).
This can manifest as just-in-time proactive guid-
ance (Chiou et al., 2020; Gebreab et al., 2024). The
core challenge, which our work directly addresses,
is adapting when and how to intervene to be help-
ful without being disruptive or unsafe (Fauscette,
2024).

Controllable Generation for health LLMs
Controlling the behavior of LLMs beyond sim-
ple task completion is an active research area.
Techniques range from inserting learnable con-
trol signals like prefix-tuning or using special to-
kens (Goyal et al., 2023; Dathathri et al., 2019)
to preference-based fine-tuning (e.g., RLHF) to
encourage specific interaction styles. Instruction
fine-tuning has also been widely used to align mod-
els to desired behaviors. (Chen et al., 2023) showed
that large LMs can adopt initiative-taking or sup-
portive dialogue strategies through prompt design
alone, without additional model tuning. Several
benchmarks exist for evaluating LLMs in medicine,
such as MedQA (Jin et al., 2021), PubMedQA (Jin
et al., 2019), MedMCQA (Pal et al., 2022), and
more recent ones like MedAgentBench (Jiang et al.,
2025) or ClinicBench (Chen et al., 2024). These
primarily focus on knowledge accuracy, reason-
ing over medical facts, or agentic task completion.
While some, like MediQ (Li et al., 2024), touch
upon aspects of proactivity (information-seeking),
there is a lack of systematic frameworks to eval-
uate and train LLMs specifically on their ability
to dynamically adapt their behavior along the full
reactive–proactive spectrum in diverse clinical con-
texts. BEHAVIORBENCH aims to fill this gap
by providing tasks that explicitly require either re-
active or proactive responses, and Behavior-SFT
offers a method to train for this adaptability.

B Ethical Implications
Safety & Accountability. Proactive agents
can prevent omission errors, yet incorrect or
over-confident interventions may induce commis-
sion errors that are harder to detect. We therefore
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plan to release model checkpoints after careful re-
views. Post-deployment, we advocate continuous
monitoring with an audit trail that logs every proac-
tive trigger and its downstream clinical action for
root-cause analysis.

Fairness & Bias Mitigation. Because bench-
mark data are skewed toward North-American
populations, behaviour triggers may under-fire on
minority phenotypes or over-fire on stigmatised
conditions, reinforcing disparities. We are plan-
ning to conduct stratified error analysis by age,
sex, race, language, and insurance status. Future
releases will contain group-specific performance
cards and debiasing adapters that minimise dis-
parate false-negative / false-positive rates while
preserving recall on the majority group.

Data Privacy & Responsible Release. All med-
ical cases are available for those institutions who
purchased NEJM license; nonetheless, fine-tuned
models might memorize private strings when
trained on institutional EHRs. We will publish
an Ethical Usage Card outlining intended tasks,
known failure modes, monitoring hooks, and sun-
set clauses for model retirement, and we encourage
downstream users to adopt the same safeguards.

C Dataset Statistics

The final BEHAVIORBENCH dataset consists of
6,876 real-world clinical case scenarios from which
we derived a total of 142,496 tasks distributed
across the 13 distinct task categories described in
Section 2.

C.1 Simulated Conversations

The simulated conversations in the BEHAVIOR-
BENCH dataset are derived from real-world clinical
case reports published in the New England Jour-
nal of Medicine (NEJM). Each conversation recon-
structs the clinical reasoning process among health
professionals, encompassing diagnostic delibera-
tion, treatment planning, and communication with
patients and caregivers.

Table 5 and Figure 6 and 7 provide descriptive
statistics of the conversation data, illustrating the
natural variability and complexity of the simulated
dialogues. These range from brief exchanges to
extended multidisciplinary discussions and span
a wide array of communicative intents, including
history taking (e.g., eliciting chief complaint, symp-
tom duration, and past medical history), physical

examination interpretation, diagnostic reasoning,
and family updates. This breadth offers a robust
foundation for evaluating both reactive and proac-
tive behaviors of LLMs in diverse clinical dialogue
settings.

Table 5: Summary Statistics of Simulated Clinical
Conversations. This table reports average structural
properties of the conversations in the dataset, including
the number of dialogue turns, total dialogue length in
characters, and number of unique participants per case.

Metric Value

Avg. # of turns per conversation 33.3
Avg. len of dialogue per conversation 6194.3
Avg. # of participants per case 8.7

The richness of these simulated conversations
supports the construction of a broad range of behav-
iorally annotated tasks. These tasks underpin our
evaluation framework, which is designed to assess
not only reactive capabilities, such as information
retrieval, but also proactive competencies such as
anticipatory reasoning and clinical foresight.

C.2 Tasks

The distribution of individual task types varies, re-
flecting both the diversity of the source clinical
cases and the targeted evaluation of a range of agent
capabilities. Figure 8 presents detailed counts for
the ten most prevalent task types.

The dataset is deliberately structured to empha-
size the evaluation of proactive and complex rea-
soning abilities; capabilities essential for the de-
velopment of safe and effective clinical agents,
while still maintaining coverage of reactive func-
tions. This emphasis is evident in the distribution
across broader behavioral categories (Appendix
Figure 12): the largest group comprises highly
proactive tasks (73,810 instances), followed by pri-
marily proactive tasks (35,782 instances). Primar-
ily reactive (5,544 instances) and highly reactive
(2,491 instances) tasks ensure comprehensive cov-
erage of reactive tasks. Additionally, balanced
tasks (24,869 instances) ensure that the full spec-
trum is represented.

We also categorize tasks by complexity, broadly
distinguishing between ‘intermediate’ tasks (often
corresponding to simpler reactive functions) and
‘advanced’ tasks (typically involving proactive or
complex balanced reasoning). The dataset heavily
features ‘advanced’ tasks (127,927 instances) com-
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pared to ‘intermediate’ tasks (14,569 instances),
as shown in Figure 9, where the advanced tasks
feature a higher proactive score of above 0.8 com-
pared to intermediate tasks with an average of 0.4
proactive score (Figure 10 in Appendix).

Furthermore, a continuous behavior score (rang-
ing from 0.0 for fully reactive to 1.0 for fully proac-
tive, defined in Section 4) was assigned during an-
notation. The distribution of these scores (Figure 11
in Appendix) shows a concentration towards higher
proactivity (0.6-1.0), confirming the dataset’s focus
on proactive scenarios, but also includes substan-
tial density in the balanced range (0.4-0.6) and
coverage of reactive cases (0.0-0.4), making it suit-
able for evaluating an agent’s behavioral adaptation
across the entire spectrum.

D The Landscape of health AI

The capabilities of Artificial Intelligence (AI) sys-
tems in health are rapidly advancing, moving be-
yond simple information retrieval towards more
autonomous and complex task handling. Figure 4
provides a visual representation of this evolving
landscape, positioning various contemporary health
AI Systems and Enabling Frameworks/Concepts
based on two key dimensions: their operational
Task Scope and their level of System Autonomy.

The System Autonomy axis is rigorously
grounded in the Six-Level Taxonomy for health
AI Agent Autonomy (detailed in Table 10 in the
Appendix). This taxonomy delineates capabilities
from Level 0-1 (No Automation/Clinician Assis-
tance), where AI provides reactive information or
simple alerts, through Level 2 (Partial Automa-
tion/Reactive Support), where AI executes specific
clinician-commanded tasks.

A critical transition zone, often referred to as the
"Behavioral Chasm," exists as systems aim to move
from Level 2 to Level 3 (Conditional Automation/-
Contextual Proactivity). At Level 3, AI systems
begin to perform proactive tasks and make some de-
cisions within a limited, well-defined clinical con-
text or Operational Design Domain (ODD), such as
suggesting differential diagnoses or recommending
next steps based on the ongoing clinical situation.
This shift demands robust behavioral adaptation
capabilities to ensure that proactive interventions
are safe, appropriate, and effective. Our work on
BehaviorSFT and the BehaviorBench evaluation
framework is specifically aimed at addressing the
challenges of training and assessing these crucial

Level 3 behaviors, which are vital for the devel-
opment of reliable AI co-pilots and assistants. As
illustrated in Figure 4, many contemporary applied
systems such as MediQ (Li et al., 2024), AIME (Tu
et al., 2024), and Med-Gemini (Saab et al., 2024)
are operating at or pushing the boundaries of Level
3 capabilities.

The higher autonomy levels, L4 (High Automa-
tion/Proactive Decision Support) and L5 (Full Au-
tomation/Autonomous Operation), represent the
current research frontier for AI in health. Systems
like AI Co-Scientist (Gottweis et al., 2025) and AI
Scientist v2 (Yamada et al., 2025), while focused
on scientific discovery, demonstrate capabilities
that conceptually align with L4 by making signifi-
cant decisions and taking proactive actions within
their research ODDs with minimal human over-
sight for extended periods. Achieving this level of
robust autonomy in dynamic, direct clinical care
across broad domains remains a significant long-
term aspiration for the field.

Enabling frameworks such as AutoGen (Wu
et al., 2023) and general concepts like the Proac-
tive Agent (Lu et al., 2024) are instrumental in this
progression. They provide the tools and paradigms
to build more sophisticated and autonomous AI
agents capable of navigating higher levels of task
complexity and autonomy. The continued devel-
opment in this field underscores the critical impor-
tance of ensuring that as AI systems become more
autonomous, their behaviors are rigorously evalu-
ated and remain aligned, safe, and beneficial within
the complex and high-stakes domain of health.

E Baseline Performance

Tables 6, 7, and 8 compare o1, Gemini-2.5 Pro,
and DeepSeek-R1 under three prompting regimes—
Zero-Shot (ZS), Few-Shot with three examples
(FS), and ZS augmented by explicit reactive/proac-
tive instructions. All models score near-ceiling on
the Reactive and Balanced subsets, but diverge on
the harder Proactive tasks, where DeepSeek-R1 at-
tains the highest average accuracy (95%), edging
out Gemini and o1 (both ≈ 93%). Across mod-
els, FS generally yields the most consistent gains;
especially on items such as predictive next action,
while explicit instructions benefit DeepSeek yet
can slightly reduce performance for Gemini and
o1. These results underscore that, although lower-
level clinical reasoning is largely saturated, proac-
tive reasoning remains the principal differentiator
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Figure 4: The Landscape of health AI Systems and Enabling Frameworks. Systems are positioned based on
their primary Task Scope (Narrow, Medium, or Broad) and their demonstrated level of System Autonomy. The
autonomy levels are derived from the Six-Level Taxonomy for health AI Agent Autonomy (detailed in Table 10),
ranging from L0-L1 (Assistance & Reactive Info) through L3 (Conditional Automation/Contextual Proactivity) to
L4-L5 (High/Full Automation). Current systems demonstrating L4-L5 capabilities are typically within research
frontiers for tasks like scientific discovery rather than direct, broad clinical deployment. Model placement reflects
their predominant operational capabilities as described in recent literature (2023-2025). The progression towards
higher autonomy, particularly the transition from L2 (Reactive Support) to L3 (Contextual Proactivity), necessitates
significant advancements in behavioral adaptation to ensure safe and effective operation in nuanced health contexts.
Enabling frameworks and general proactive concepts are also shown, indicating their potential to facilitate the
development of more autonomous systems.

among state-of-the-art LLMs.

F Prompt Template

BehaviorSFT Prompt

You are a helpful medical assistant.

Medical Information:
The patient’s history of present illness includes treat-
ment with salve, Alpine lamp, intravenous and intra-
muscular injections, and Fowler’s solution.

Question:
Based on the information in the case summary, how

did the patient’s treatment for his skin condition evolve
from the initial presentation of ‘eczema’ to the adminis-
tration of Fowler’s solution (arsenic)?

Options:
A: "Initially treated with topical steroids...
B: "Initially treated with herbal ...
....

Instruction:
According to the previous information, give me the
behavior first (highly_reactive, primarily_reactive, bal-
anced, highly_proactive, primarily_proactive), then the
Rationale and answer in <answer></answer>, later is
the detailed option.
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G Implementation Details

Our BehaviorSFT has been trained with one
epoch using the adamw_torch optimizer (β1=0.9,
β2=0.95, ϵ=10−8). The peak learning rate is
1×10−4, decayed with a cosine schedule after a 5 %
warm-up. Training runs in bfloat16 on 4×H200
GPUs with an effective batch size of 64 (per-GPU
batch 4, gradient accumulation 4); weight decay is
0.01 and gradients are clipped to a max-norm of
1.0. For BEHAVIORSFT we add the special tokens
<reactive> and <proactive> and attach LoRA
adapters (rank 8, α = 32) to all linear layers. The
best checkpoint, selected by validation accuracy
every 100 steps, is reported.

H Clinician-in-the-Loop Evaluation

H.1 Participant Recruitment and Profile

We recruited three medical doctors and each physi-
cian underwent a standardized orientation session
to familiarize them with the study objectives, anno-
tation tasks, and the custom-developed user inter-
faces.

H.2 Study Design and Procedure

The study was structured into two principal phases,
each targeting specific evaluation objectives:

Phase 1: Dataset Validation

In this phase, clinicians were tasked with vali-
dating a randomly selected subset of tasks (N=30)
from the BEHAVIORBENCH. The primary goal was
to ascertain the clinical soundness and appropriate-
ness of the dataset components. For each presented
task, which included a clinical ‘Task Context’, a
specific ‘Question’, and multiple-choice ‘Options’
(as illustrated in Figure 14), clinicians utilized a
dedicated evaluation panel (Figure 13). Their eval-
uation encompassed:

• Correctness of Ground Truth: Verifying
the accuracy of the designated correct answer
among the provided options.

• Annotator Confidence: Rating their confi-
dence in their selected answer on a three-point
scale (Low, Moderate, High).

• Task Proactivity Level Assessment: Evalu-
ating the inherent proactivity level of the ques-
tion itself on a continuous scale ranging from
0.0 (Reactive) to 1.0 (Proactive). This aimed
to capture the degree to which the question

prompted an anticipatory or forward-looking
response.

• Clinical Plausibility: Determining if the task
(question and options combined) was clini-
cally plausible and relevant within the given
case context, with options "Yes," "No," or
"Unsure."

To ensure comprehensive understanding, clinicians
had access to the broader ‘Case Context’, including
a ‘Case Presentation Summary’, the ‘Full Conver-
sation’ transcript leading to the task, and an option
to refer to the original medical case for in-depth
review (Figure 15).

Phase 2: Comparative Agent Behavior Evalua-
tion

This phase focused on evaluating the quality and
safety of responses generated by three distinct LLM
agent archetypes when presented with N=10 clin-
ical tasks from BEHAVIORBENCH. The agents
included: (1) BehaviorSFT: An agent fine-tuned
using our proposed BEHAVIORBENCH approach.
(2) General SFT: An agent subjected to general
supervised fine-tuning without specific behavioral
guidance. (3) ZS + Explicit Instr.: An agent op-
erating in a zero-shot setting, guided by explicit
instructions on desired behavior.

For each scenario, clinicians were first presented
with the ‘Question Posed to AI’ and the ‘Task Op-
tions’ (with the correct answer highlighted for their
reference). Subsequently, the responses from the
three LLM agents were displayed side-by-side (Fig-
ure 17). The identity and order of these agents
(Agent A, B, C) were anonymized and randomized
for each task to mitigate bias. Using the feedback
panel shown in Figure 16, clinicians performed the
following evaluations:

• Comparative Ranking: Ranking the three
agent responses from best (1st) to worst (3rd)
using a drag-and-drop mechanism.

• Safety Assessment: Identifying and describ-
ing any instances of clinically unsafe informa-
tion, critical errors, or significant omissions in
any of the agent responses.

• Proactivity/Reactivity Appropriateness:
Rating the appropriateness of each agent’s
proactivity or reactivity level on a 5-point
Likert scale (1: Very Inappropriate, 3:
Neutral, 5: Very Appropriate).
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H.3 Interface Design for Annotation Tasks
Custom-designed web-based interfaces were de-
veloped to ensure a standardized, intuitive, and
efficient annotation experience for the participating
clinicians. The interfaces were tailored to the spe-
cific requirements of each study phase (see Figure
13, 14, 15, 16 and 17).
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Figure 5: Performance comparison on BEHAVIORBENCH for Few-Shot (k=3); Gen. SFT, and our proposed
BehaviorSFT. Tasks are colored based on task category: Reactive, Balanced, and Proactive. The radar plot illustrates
that our BehaviorSFT achieves best or second-best performance across all task categories. While all methods
perform strongly on Reactive and Balanced tasks, the gains from BehaviorSFT are most pronounced in complex
Proactive scenarios, highlighting its effectiveness in enhancing nuanced behavioral capabilities of agents beyond
standard fine-tuning approaches.

Table 6: Performance Evaluation on BEHAVIORBENCH. Accuracy (%) across task categories. Best result per
task in bold. Baseline LLM is o1. ‘ZS’ = Zero-Shot, ‘FS (k=3)’ = Few-Shot (3 examples), ‘Explicit Instr.’ = ZS
with explicit reactive/proactive instruction.

Category Task Baseline

ZS FS (k=3) ZS + Explicit Instr.

R
ea

ct
iv

e fact_retrieval 100.00 100.00 100.00
timeline_sequence 100.00 100.00 100.00

ddx_reasoning 93.92 91.96 91.92
treatment_decision 91.88 93.78 91.88

Average 96.45 96.43 95.95

B
al

an
ce

d reasoning_diff_evolution 98.05 100.00 100.00
integrity_missing_turn 100.00 98.46 100.00

Average 99.03 99.23 100.00

Pr
oa

ct
iv

e

consistency_check 95.23 95.24 90.12
data_conflict_resolution 96.52 96.44 95.11
interpretation_conflict 98.48 98.30 98.29

standard_of_care 91.47 91.79 94.87
omission_detection 81.87 82.00 81.61

explicit_error_correction 96.30 98.12 95.54
predictive_next_action 78.03 82.88 78.30

Average 93.31 92.11 90.55

Average 93.86 94.25 93.55
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Table 7: Performance Evaluation on BEHAVIORBENCH. We report Accuracy (%) across different task categories.
Best result per task is highlighted in bold. Baseline LLM used is Gemini-2.5 Pro. ‘ZS’ = Zero-Shot, ‘FS (k=3)’ =
Few-Shot (3 examples), ‘CoT’ = Chain-of-Thought, ‘Explicit Instr.’ = ZS with explicit reactive/proactive instruction.

Category Task Baseline

ZS FS (k=3) ZS + Explicit Instr.

R
ea

ct
iv

e fact_retrieval 100.00 100.00 100.00
timeline_sequence 99.10 78.65 99.10

ddx_reasoning 95.33 93.99 94.56
treatment_decision 94.77 93.88 94.29

Average 97.30 91.63 96.99

B
al

an
ce

d reasoning_diff_evolution 98.59 82.33 97.26
integrity_missing_turn 98.46 98.05 96.56

Average 98.53 90.19 96.91

Pr
oa

ct
iv

e

consistency_check 94.29 96.34 94.29
data_conflict_resolution 97.18 97.24 98.53
interpretation_conflict 96.70 95.11 94.95

standard_of_care 95.32 96.80 92.11
omission_detection 81.57 90.10 79.12

explicit_error_correction 96.34 94.23 95.55
predictive_next_action 77.88 81.55 73.25

Average 91.33 93.05 89.69

Average 94.27 92.17 93.04

Table 8: Performance Evaluation on BEHAVIORBENCH. We report Accuracy (%) across different task categories.
Best result per task is highlighted in bold. Baseline LLM used is DeepSeek-R1. ‘ZS’ = Zero-Shot, ‘FS (k=3)’ =
Few-Shot (3 examples), ‘CoT’ = Chain-of-Thought, ‘Explicit Instr.’ = ZS with explicit reactive/proactive instruction.

Category Task Baseline

ZS FS (k=3) ZS + Explicit Instr.

R
ea

ct
iv

e fact_retrieval 100.00 100.00 100.00
timeline_sequence 100.00 100.00 100.00

ddx_reasoning 93.16 91.16 94.25
treatment_decision 94.22 95.70 94.77

Average 96.84 96.71 97.26

B
al

an
ce

d reasoning_differential_evolution 98.59 98.59 98.59
integrity_missing_turn_inference 100.00 100.00 100.00

Average 99.29 99.29 99.29

Pr
oa

ct
iv

e

consistency_check 94.29 94.29 100.00
data_conflict_resolution 97.18 95.68 97.88
interpretation_conflict 100.00 96.53 98.22

standard_of_care 93.52 95.32 94.67
omission_detection 93.78 90.75 93.57

explicit_error_correction 97.50 97.52 98.26
predictive_next_action 78.54 80.86 82.69

Average 93.54 92.99 95.04

Average 95.49 94.96 96.10
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Table 9: Extended evaluation across diverse model types on BEHAVIORBENCH. Medical-purpose models are
domain-specific LLMs. Agent-based systems (MedAgents (Tang et al., 2023), MDAgents (Kim et al., 2024)) use
Gemini-2.5 Pro as the backbone LLM. No model achieves saturation, particularly on proactive tasks, validating the
benchmark’s continued utility for driving future research.

Category Model Overall Reactive Balanced Proactive

Medical-purpose

Meditron-7B 58.3 64.7 59.2 52.8
AlphaCare-7B 66.7 72.3 67.5 61.2
AlphaCare-13B 71.4 76.8 72.3 66.9
Meditron-70B 85.5 89.2 86.1 82.1

Reasoning models
o4-mini 83.3 86.7 84.2 80.4
gemini-2.5-Pro 83.3 87.1 83.8 79.6
o3 95.0 96.2 94.8 93.1

Agent-based
MedAgents (gemini-2.5-pro) 86.1 89.3 86.7 83.2
MDAgents (gemini-2.5-pro) 87.8 90.6 88.3 85.0

Figure 6: Distribution of total dialogue length (in characters) per conversation. This metric captures the overall
verbosity of clinical discussions. Most conversations range between 3000 and 5000 characters in length, indicating
substantial detail per case.

Figure 7: Distribution of the number of dialogue turns per conversation. Each conversation represents a
real-world clinical case discussion, with turns corresponding to speaker exchanges. The majority of cases fall
between 15 and 30 turns.
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Figure 8: Distribution of instances across specific task types in BEHAVIORBENCH. Each bar represents the
frequency of a task type, colored by its average behavior score (blue = reactive, red = proactive). This illustrates the
diversity of evaluation scenarios, spanning a wide range of communicative functions and behavioral expectations.

Figure 9: Distribution of instances by task complexity level in BEHAVIORBENCH. Tasks are broadly categorized
as either ’intermediate’ or ’advanced’ based on reasoning depth and contextual demands. The dataset skews toward
advanced tasks, aligning with the goal of evaluating high-autonomy agent behavior.
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Figure 10: Average proactive score by task complexity level in BEHAVIORBENCH. Tasks labeled as ‘advanced’
exhibit a significantly higher average proactive score (above 0.8) compared to ‘intermediate’ tasks (around 0.4),
highlighting the alignment between task complexity and expected behavioral autonomy in clinical reasoning.

Figure 11: Distribution of continuous behavior scores across all tasks in BEHAVIORBENCH. The behavior
score ranges from 0.0 (fully reactive) to 1.0 (fully proactive), with the distribution skewed toward higher scores,
indicating a dataset emphasis on proactive clinical reasoning.

9811



Figure 12: Distribution of tasks across discrete behavior categories in BEHAVIORBENCH. Tasks are grouped
into five categories, ranging from ‘highly reactive’ to ‘highly proactive’ to support structured evaluation of agent
behavior along the autonomy spectrum.

Figure 13: Interface for Dataset Task Validation: Annotator’s Evaluation. Medical doctors used this panel to
provide their confidence in the selected answer for a given task, assess the task’s inherent proactivity level on a
continuous scale (0.0 Reactive to 1.0 Proactive), and confirm the clinical plausibility of the task (question and
options) within the provided case context.
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Figure 14: Interface for Dataset Task Validation: Task Presentation. This view provided clinicians with the ‘Task
Context‘ (relevant excerpts from the case), the specific ‘Question‘ being posed for the BehaviorBench task, and the
multiple-choice ‘Options‘, one of which was the ground truth answer they were validating.
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Figure 15: Interface for Dataset Task Validation: Case Context Provision. To ensure comprehensive understand-
ing, clinicians had access to the broader ‘Case Context‘, including a ‘Case Presentation Summary‘ (if available
from the task file), the ‘Full Conversation‘ transcript leading up to the point of the task, and an option to download
the original case PDF for in-depth review.

Figure 16: Interface for Agent Behavior Evaluation: Clinician Feedback Panel. After reviewing the task and agent
responses (shown in Figure ??), medical doctors used this panel to: (1) Rank the three anonymized agent responses
(Agent A, B, C) from best to worst via drag-and-drop. (2) Identify and describe any clinically unsafe information or
critical errors/omissions presented by any agent. (3) Rate the appropriateness of the proactivity/reactivity level for
each agent’s response on a 5-point Likert scale (from Very Inappropriate to Very Appropriate).
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Figure 17: Interface for Agent Behavior Evaluation: Task and Agent Response Display. For each evaluation
scenario, clinicians were presented with the ‘Question Posed to AI‘ and the ‘Task Options‘ (with the correct answer
highlighted for reference). Below this, the distinct responses from three anonymized LLM agents (Agent A, B, C),
including their rationales, were displayed side-by-side for comparative assessment.

Figure 18: (a) Over half (55.0%) of the responses were marked as ‘High’ confidence, while ‘Moderate’ confidence
accounted for 36.7%. ‘Low’ confidence was the least frequent category, representing only 8.3% of responses. (b)
The vast majority (80.0%) of responses affirmed the clinical plausibility (‘Yes’) of the generated MCQs. A smaller
portion (20.0%) of responses were ‘Unsure’, and no responses found the MCQs implausible (‘No’).

9815



Figure 19: (a) Mean appropriateness scores for agent proactivity/reactivity (5-point Likert scale, higher is better).
(b) BehaviorSFT received the lowest (best) mean rank (1.80), suggesting it was most frequently ranked highest by
evaluators. Gen. SFT had a mean rank of 2.08, while ZS w/ explicit instruction had the highest (worst) mean rank
of 2.12 in a system where lower ranks are better.
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Table 10: Six-Level Taxonomy for Health Agent Autonomy

Level Category Agent’s Role Human Clinician’s Role

0 No Automation The AI system provides no assistance or
automation for any clinical task.

Performs all tasks and makes all
decisions related to patient care. The AI
system is not involved.

1 Clinician Assistance The AI system may provide information,
simple alerts based on predefined rules
(e.g., drug interaction warnings,
out-of-range lab value notifications), or
basic data visualization. It does not
perform any part of the dynamic clinical
task itself.

Performs all dynamic decision-making
and actions. Uses the AI as a passive
information source or a simple alerting
tool. Responsible for interpreting
AI-provided information.

2 Partial Automation (Re-
active Support)

The AI system can execute specific,
well-defined reactive sub-tasks under
direct human supervision based on
explicit clinician queries or predefined
triggers (e.g., retrieving specific patient
history, summarizing recent lab results,
performing image segmentation on
request). It does not manage the overall
clinical situation.

Actively monitors the AI’s execution of
sub-tasks, provides necessary inputs, and
must intervene if the AI’s output is
incorrect or inappropriate. Responsible
for the overall task and integrating AI’s
contribution.

3 Conditional Automation
(Contextual Proactivity)

The AI system can perform certain
proactive tasks and make some decisions
within a limited, well-defined clinical
context or Operational Design Domain
(ODD) (e.g., suggesting differential
diagnoses based on current symptoms,
flagging potential omissions in a standard
care plan, recommending next tests). It
can handle some dynamic aspects of the
task.

Monitors the AI and the clinical
environment. Must be ready to take over
control if the AI encounters a situation it
cannot handle, if its suggestions are
inappropriate, or if the situation goes
outside the AI’s ODD.

4 High Automation
(Proactive Decision
Support)

The AI system can make significant
clinical decisions and take proactive
actions in most situations within its
designed ODD without human oversight
for extended periods (e.g., autonomously
adjusting medication dosage based on
real-time patient data within set
parameters, initiating standard protocols
for common conditions, triaging patients
based on urgency).

Primarily acts as a fallback, intervening
only in complex, novel, or out-of-ODD
scenarios. Relies on the AI for most
routine decisions and actions within the
ODD. May oversee multiple AI-managed
cases.

5 Full Automation (Au-
tonomous Operation)

The AI system can perform all clinical
tasks and make all decisions that a human
health professional can, under all
conditions within its defined scope of
operation. It can adapt to novel situations
and operate entirely autonomously,
potentially even taking on roles currently
performed by specialized clinicians.

May not be required for tasks within the
AI’s full operational scope. Human role
shifts to high-level oversight, system
management, or handling tasks entirely
beyond the AI’s designed capabilities or
ethical boundaries.

ODD: Operational Design Domain - The specific conditions under which a given AI system or feature is designed to function.
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