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Abstract

Retrieval-Augmented Generation (RAG) has
emerged as a widely adopted approach for
knowledge injection during large language
model (LLM) inference in recent years. How-
ever, due to their limited ability to ex-
ploit fine-grained inter-document relation-
ships, current RAG implementations face
challenges in effectively addressing the re-
trieved noise and redundancy content, which
may cause error in the generation results.
To address these limitations, we propose
an Efficient Dynamic Clustering-based docu-
ment Compression framework (EDC?-RAG)
that utilizes latent inter-document relation-
ships while simultaneously removing irrele-
vant information and redundant content. We
validate our approach, built upon GPT-3.5-
Turbo and GPT-40-mini, on widely used
knowledge-QA and Hallucination-Detection
datasets. Experimental results show that our
method achieves consistent performance im-
provements across various scenarios and exper-
imental settings, demonstrating strong robust-
ness and applicability. Our code and datasets
are available at https://github.com/
Tsinghua—-dhy/EDC-2-RAG.

1 Introduction

In recent years, large language models (LLMs)
have advanced rapidly, excelling in natural lan-
guage processing (NLP) tasks such as question an-
swering, code generation, and even medical diagno-
sis (Yasunaga et al., 2021; He et al., 2025; Yue et al.,
2023; Singhal et al., 2023; Li et al., 2024a). De-
spite their success, LLLMs face two key challenges:
expensive knowledge updates due to the large num-
ber of learnable parameters, and hallucinations that
lead to misleading content (Honovich et al., 2023;
Hu et al., 2023; Lin et al., 2024; Xu et al., 2024).
These issues impact the availability, reliability and
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consistency of LLMs (Zhou et al., 2024). Retrieval-
augmented generation (RAG) (Lewis et al., 2020;
Borgeaud et al., 2022; Izacard et al., 2022) ad-
dresses these problems by integrating retrieval
with generation, allowing LLMs to access external
knowledge without parameter updates, reducing
hallucinations, and improving reliability.

However, the implementation of RAG meth-
ods in real-world settings presents significant chal-
lenges. From a structural perspective, the effective-
ness of RAG frameworks derives from the informa-
tion augmentation of integrated databases(Lewis
etal., 2020). In practical applications, the databases
are often of limited quality due to the scarcity of
high-quality data and the high cost of data clean-
ing. Therefore, the candidate documents faced by
retrievers tend to exhibit the following frequently-
encountered quality flaws:

* Noise: irrelevant content to the query, which
may result in errors during generation.

* Redundancy: highly similar content between
documents, which will consume more tokens
and time in inference.

These issues can significantly reduce the effec-
tiveness of retrieval and compromise the quality
of the final generated output. Faced with these
practical challenges, it is increasingly significant to
build a reliable RAG system. However, current
RAG frameworks predominantly rely on query-
document similarity for retrieval, without explic-
itly addressing prevalent issues such as noise and
redundancy in real-world document corpora. To
solve the problems, we propose an efficient dy-
namic clustering-based compression method for a
reliable document retrieval.

Specifically, we first encode the documents to
get a denser content representation, then perform
clustering to aggregate semantically similar docu-
ments, mitigating content repetition. Subsequently,
we use prompt-based techniques to guide the LLMs

9833

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 9833-9849
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/Tsinghua-dhy/EDC-2-RAG
https://github.com/Tsinghua-dhy/EDC-2-RAG

Vanilla RALM
Docs: QSearcthnh Key Point

EEE Ee Retrieved Docs: )
\ EEEEBE) BEEEBH) Answer

Missing Green

Chunk Compression

Redundant with
Possible
Omissions

a EDC?-RAG(Ours)

Concise and
Accurate

Step1: Clustering

Docs:

ee E a e QClustering
=]=]=]=1=

— BEB

Figure 1: Comparison between our method and prior approaches. Unlike Vanilla RAG, which misses key information,
and Chunk Compression, which is redundant and incomplete, our method clusters and compresses documents to

extract concise and accurate answers.

in query-specific compression to improve informa-
tion density and eliminate noise. Finally, we con-
catenate the compressed content into the prompts
for response generation. In summary, our method
leverages the latent relationships between docu-
ments to reduce noise and redundant content.

To validate the effectiveness of our approach, we
selected two types of widely used datasets: KQA
tasks and hallucination detection tasks. Systematic
experiments conducted on GPT-3.5-Turbo demon-
strate that our method achieves significant per-
formance improvements across different settings.
Meanwhile, our method also exhibits strong robust-
ness and generalization potential to other scenarios.
These findings indicate that by deeply exploring
and utilizing fine-grained relationships among doc-
uments, RAG methods can reach new performance
heights, providing a novel direction for addressing
the hallucination problem and knowledge update
challenges in LLMs.

The main contributions of our work are:

* To the best of our knowledge, we are the first
to apply similarity-based semantic clustering
in the post-retrieval stage to address practical
challenges in in-the-wild RAG systems.

* Our method effectively improves the perfor-
mance and robustness of the RAG systems and
also enhances their long context capability.

* As a post-retrieval method, our approach is
plug-and-play, requiring no additional training,
and can be integrated into various pipelines.

2 Related Works

Reranking and Compression. Post-retrieval
methods for frozen large language models (LLMs)
can be categorized into reranking and compression
approaches (Gao et al., 2023b). Reranking refines
the order of retrieved documents to improve LLMs-
generation performance. Re3val (Song et al., 2024)
uses reinforcement learning (RL) and targeted
queries, while REAR (Wang et al., 2024) utilizes
LLaMA 2 (Touvron et al., 2023) for reranking,
enhancing response quality. Compression meth-
ods condense retrieved content, primarily through
fine-tuned models(Xu et al., 2023; Liu et al., 2023;
Yu et al., 2024) or LLMs native capabilities. For
instance, SURE (Kim et al., 2023) generates and
selects the best answer by summarizing multiple
responses. However, existing methods rarely ad-
dress document noise and redundancy issues,
whereas our approach tackles them with dynamic
clustering and prompt-guided compression.

Retrieval Semantic Relation Modeling. Be-
yond post-retrieval methods, some studies focus on
refining relationships between documents, chunks
or entities. Recent approaches frame RAG as
a multi-agent collaboration, where each agent
processes a subset of retrieved content. Long
Agent (Zhao et al., 2024) supports large con-
texts through chunk-level conflict resolution, while
MADAM-RAG (Wang et al., 2025) uses agents to
address conflicting responses. Multi-agent RAG is
also applied to data integration (Salve et al., 2024),
but these methods increase inference costs and la-
tency, limiting real-world applicability. Knowledge
Graphs (KGs) structure document information by
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Phase 1: Initialization

1: Input: Document set V = {dy,da,...,dn},
query g, similarity function sim(, -), embedding
model f(-), initial cluster size 7, threshold A
Output: Clusters {C1,C2,...,Ci}
Compute query embedding: vq + f(q)
foralld; c V do
Compute embedding: v; < f(d;)
end for
Select initial cluster root:
C.Ry < argmaxgcy sim(vg, v;)
8: foralld; € V do
9: Compute similarity: s; < sim(vg g, , Vv )
10: end for
11: Form C; with top-7 documents from V sorted
by Sj
12: Remove C7 members from V'

SRR

Phase 2: Iterative Subgraph Formation

1: kK« 2
2: while V # 0 do
3: Select new root:
C.Ry, < arg maxgcy sim(vq, v;)
4: foralld; c V do

5: Compute similarity:
S5 sim(vC,Rk,vj)

6: end for

7: Determine cluster size:
size < min(2 x |Cx_1|,A)

8: Form C}, with top-size documents from V'
sorted by s;

9: Remove C)}, members from V'

10: k+k+1
11: end while

Algorithm 1: Efficient Dynamic Graph-based Document Clustering

providing contextual relationships (Ji et al., 2021).
KAPING builds a KG for retrieval (Baek et al.,
2023), while G-Retriever queries subgraphs (He
et al., 2025). Despite their effectiveness in entity-
rich tasks, KG-based methods face scalability
and adaptability challenges and often require
substantial resources on the corpus processing
side (Peng et al., 2023; Li et al., 2024b), and so
does RAPTOR (Sarthi et al., 2024). Our method
dynamically constructs semantic relationships post-
retrieval, avoiding multi-agent systems and pre-
built graphs, thereby improving retrieval quality by
reducing redundancy and noise.

3 Problem Definition

Consider a set of retrieved documents V' =
{di,ds,...,d,}, where each document d; is as-
sociated with a query q. These documents are re-
trieved based on their relevance to g, but their exact
utility in answering q is initially unknown. Fur-
thermore, there may exist potential overlaps and
redundancies among the documents in V', as some
documents may share similar or identical informa-
tion, while others may provide complementary or
conflicting details.

Let E = {e;;} represent the relationships be-
tween pairs of documents d; and d;, where ¢, j €
{1,2,...,n}. These relationships can be catego-
rized as:

 Overlapping: ¢;; = Overlap, indicating that

d; and d; share redundant or highly similar
content.

* Complementary: ¢;; = Complementary, indi-
cating that d; and d; provide distinct but rele-
vant information to q.

Additionally, let U = {uq,ug,...,u,} denote
the utility scores of the documents, where u; repre-
sents the degree to which d; contributes to answer-
ing g. These scores are initially unknown and must
be inferred based on the relationships F and the
content of the documents.

The goal is to effectively utilize the retrieved
documents V, their relationships F, and their in-
ferred utilities U to construct a comprehensive and
accurate response to the query ¢. This involves
addressing the challenges of redundancy, inconsis-
tency, and varying utility among the documents,
while ensuring that the final output maximizes rele-
vance and minimizes noise.

4 Method

4.1 Overview

The core of our approach involves clustering docu-
ments using embedding models guided by prede-
fined rules, followed by applying compression tech-
niques to eliminate noise. These refined documents
are then integrated into the prompt, enabling the
LLM to more effectively utilize the information and
enhance its performance. Our methodology is pre-
sented in accordance with the processing workflow,
and Figure 1 provides a comparative visualization
of our method against current RAG frameworks.
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4.2 Efficient Dynamic Clustering of
Documents

In RAG frameworks, retrieved documents often
contain redundancy and noise, which can nega-
tively impact the reasoning quality of LLMs. Tra-
ditional post-retrieval methods primarily rely on
reranking or compression strategies to refine re-
trieved results, but they often fail to fully utilize the
fine-grained relationships between documents.

To address this, we propose an efficient dynamic
clustering-based approach to structure the retrieved
documents before further processing. By organiz-
ing documents into clusters based on similarity, we
aim to reduce redundancy and group related content
together, creating a more coherent input for down-
stream tasks. Specifically, we prioritize documents
with high similarity to the query, as these are most
likely to contribute valuable information. Addition-
ally, we adopt a dynamically expanding clustering
strategy, where the cluster size increases iteratively,
ensuring efficient grouping while keeping compu-
tational costs manageable. In our experiments, we
set 7 = 3 and A = 20.

4.3 Query-Aware Compression

After constructing the subgraphs Cy,Co, ..., Ck,
it is essential to further refine the retrieved content
by eliminating redundancy and distilling key infor-
mation. While clustering helps organize documents
based on similarity, it does not inherently resolve
the issue of overlapping or extraneous details.

To address this, we introduce a compression
step that leverages a large language model (LLM)
to generate concise yet informative summaries.
Specifically, we concatenate each C; (i € [1,k])
with the query ¢ and prompt the LLM to produce a
query-aware summary, ensuring that only the most
relevant and essential content is preserved. The
goal of this step is to maximize the information
density of retrieved documents while removing re-
dundant or marginally relevant details, preparing a
high-quality input for final generation.

Importantly, this summarization process is
highly efficient as all summaries can be gener-
ated in parallel, allowing the system to scale effec-
tively with the number of clusters while maintain-
ing low latency. An example prompt is as follows:

Few-shots:
{example 1}

{example 2}
{...}

Instruction:

Given a question and a set of reference documents,
extract only the verifiable, relevant information that
directly supports the question.

Avoid inferences or conclusions.

If nothing is relevant, output: "No content to
extract".

Question:
{query}

Documents:
{docs}

Extracted Summary:
{to be filled}

4.4 Generation

After clustering and compression refine the doc-
uments, the system generates a contextually rele-
vant response. Our query-aware integration ensures
the output is based on coherent, information-rich
content tailored to the query. To accommodate di-
verse dataset characteristics, our method flexibly
adapts the generation process. In scenarios where
compression may risk omitting critical details due
to LLM limitations (such as in KQA tasks), we
strategically integrate response generation with the
compression phase, allowing the system to dynam-
ically refine answers. This approach enhances the
retention of essential information and improves re-
sponse accuracy, particularly in complex question-
answering tasks. If compression yields poor sum-
maries, the system falls back to original documents,
ensuring robustness.

Unlike traditional RAG methods, which often
rely on loosely structured retrieved documents,
our approach enhances the informativeness of re-
trieved content by distilling critical insights in a
query-driven manner. This structured input en-
ables the LLM to reason more effectively, reducing
hallucinations and improving response precision.
Moreover, our method efficiently balances com-
putational costs and performance by limiting the
number of API calls required for summarization,
ensuring practical deployment feasibility.

By optimizing the input for the final response
generation step, our method improves both the pre-
cision and efficiency of the system, leading to more
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reliable and contextually relevant outputs while re-
ducing computational overhead.

5 Experimental Settings

5.1 Overview

To validate the effectiveness of our method, we
employe three types of datasets in the experiments:
Knowledge-QA datasets, Hallucination-Detection
datasets, and Redundancy dataset built by us. The
retrieval settings and implementation details for
these datasets vary slightly, which are presented in
Appendix B.

We utilize GPT-3.5-Turbo-1106 and GPT-40-
mini-2024-07-18 as the backbone LLMs. For sim-
plicity, we refer to GPT-3.5-Turbo-1106 as ”Chat-
GPT” and GPT-40-mini-2024-07-18 as "GPT-40-
mini”. The decoding temperature is fixed at O for
reproducibility, with the exception of Long Agent
and KQA sampling steps in our methods, where
0.7 is used to enhance output diversity.

5.2 Datasets

Knowledge-QA Datasets: Knowledge Question
Answering (KQA) datasets assess a LLM’s ability
to reason over retrieved external knowledge sources
from knowledge graphs or textual corpora. We use
three common KQA datasets (Yu et al., 2024; Lv
et al., 2024; Song et al., 2025): WebQ (Berant et al.,
2013) (single-hop), and 2WikiMultiHopQA (Ho
et al., 2020) (hereafter referred to as 2Wiki) plus
Musique (Trivedi et al., 2022) (both multi-hop). To
analyze noise robustness, following prior work (Lv
et al., 2024; Yu et al., 2024), we employ DPR re-
trieval and its reader to identify noisy documents,
constructing cases with varying noise proportions
by filtering samples from these three datasets. De-
tails are in the Appendix B.1.

Redundancy dataset: To evaluate the capability
of our method in handling redundancy, we used
DPR to retrieve Top-20 documents per question
from the WebQ dataset. The redundancy rate r is
defined as:

number of rewritten documents

T =
20
Implementation details are provided the in Ap-
pendix B.1.

Hallucination-Detection Datasets: Hallucina-
tion Detection is an NLP task that verifies whether
generated or stated content—Ilike summaries or
answers—is factual or nonfactual by checking
against available information sources. We conducte

experiments on three widely used fact-checking
tasks (Li et al., 2024c; Lv et al., 2024): the FELM
World Knowledge Subset (Chen et al., 2023), the
WikiBio GPT-3 Dataset (Manakul et al., 2023), and
the HaluEval Dataset (Li et al., 2023). Details are
in the Appendix B.2.

5.3 Baselines and Evaluation Metrics

We compare with several baselines: 1) Vanilla
RALM (Borgeaud et al., 2022), the standard
RAG process; 2) Chunk Compression (Jiang
et al., 2024), which compresses documents us-
ing an LLM; 3) Long Agent (Zhao et al., 2024),
which divides long documents among collaborat-
ing agents with a leader agent aggregating outputs;
4) CEG (Li et al., 2024c), a strong post-hoc RAG
baseline for hallucination detection; 5) Raptor,
which leverages recursive abstractive processing
for tree-organized retrieval; and 6) task-specific
methods including HalluDetector (Wang et al.,
2023), Focus (Zhang et al., 2023), SelfCheckGPT
w/NLI (Manakul et al., 2023), CoT-augmented
prompting (Kojima et al., 2022), and prompts aug-
mented with hyperlinks to reference documents and
with human-annotated reference documents (Chen
et al., 2023). Full details are in Appendix B.3.

We use F1 score as the evaluation metric for
the Knowledge-QA task, Balanced_Acc for the
FELM and WikiBio GPT-3 datasets, and Acc for
the HaluEval dataset.

6 Experimental Results

6.1 Main Results on Knowledge-QA Datasets

6.1.1 Results on Varying Top-k

Experimental results in Table 1 demonstrate the
effectiveness and robustness of our method across
multiple datasets and LLM backends.

On Musique, our approach achieves the highest
average Fl-scores with both ChatGPT and GPT-
40-mini, consistently outperforming all baselines.
Notably, while Long Agent performs well with
ChatGPT, its performance drops significantly with
GPT-40-mini, indicating possible overfitting or re-
duced adaptability. In contrast, our method main-
tains strong performance across both models.

On WebQ, our method also achieves the best
average performance with ChatGPT and GPT-4o-
mini, showing improvements over Vanilla RALM
and other compression-based methods. The results
highlight the generalizability of our approach to
both simple and diverse question types.
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Dataset Method Top-k
5 10 20 30 50 70 100 Avg
gpt-3.5-turbo-1106
Vanilla RALM 71.05 7173 7475 7693 75.16 80.25 77.04 75.27
Musique Chunk Compression 7445 81.01 7415 7649 69.57 7453 67.17 73091
Long Agent 83.07 8583 82.04 84.84 81.87 80.65 83.67 83.14
Ours 81.66 83.31 82.55 80.17 86.60 86.10 84.68 83.58
7777777777 VanillaRALM 8884 90.14 90.07 9030 91.13 90.74 91.38 90.89
WebQ Chunk Compression 90.52 91.15 90.77 91.18 91.24 9098 90.38 90.26
Long Agent 89.79 91.03 90.49 90.25 89.01 90.21 91.03 90.26
Ours 92.01 9098 90.79 91.74 9297 91.51 9245 91.78
7777777777 VanillaRALM 6990 74.68 77.51 7136 7825 7688 79.17 7539
Wiki Chunk Compression 67.38 67.14 7241 6898 72.08 7299 72.66 70.52
Long Agent 69.30 7539 76.06 78.36 77.16 83.22 8345 77.56
Ours 73.09 74.68 7620 78.64 8090 8045 82.06 78.00
gpt-40-mini-2024-07-18
Vanilla RALM 7443 78.85 77.78 7495 7855 7624 7820 77.00
Musique Chunk Compression 7712 73.59 75.67 76.02 75.17 7535 79.42 76.05
RAPTOR 75.14 6940 7207 7349 78.65 70.61 74.89 73.46
Long Agent 73.29 7525 8043 7252 80.03 8085 7738 77.11
Ours 7833 79.80 81.71 73.13 7821 7795 80.07 78.46
7777777777 VanillaRALM 8592 89.14 88.05 8510 8932 9192 8742 8812
WebQ Chunk Compression 85.64 8499 85.07 8398 88.66 90.79 9094 87.15
Long Agent 89.35 89.16 90.77 91.08 91.82 9091 91.52 90.66
Ours 90.01 90.77 91.89 90.30 91.51 9125 92.02 91.11
7777777777 VanillaRALM 6481 7338 73.84 77.08 7804 7801 77.89 7472
PWiki Chunk Compression 62.38 6576 6924 67.62 7245 7326 7406 69.25
Long Agent 66.00 70.04 7133 77.68 7998 77.13 83.45 75.09
Ours 68.67 69.79 72.86 73.73 7582 7743 79.28 73.94

Table 1: Performance comparison of different methods on MusiQue, WebQ, and 2Wiki Datasets Using GPT-3.5-
turbo-1106 and GPT-40-mini-2024-07-18 across various Top-k values.

For 2Wiki, a dataset requiring deeper reasoning,
our method achieves the highest average with Chat-
GPT again, and shows competitive performance
with GPT-40-mini. Moreover, our approach ex-
hibits more stable behavior across top-k values,
unlike some baselines that fluctuate significantly—
especially Chunk Compression, whose perfor-
mance is inconsistent across different k.

Overall, these results confirm that our clustering-
based compression method is not only effective in
preserving essential information and reducing re-
dundancy, but also exhibits strong model-agnostic
adaptability and stability across retrieval depths,
making it a reliable choice for RAG pipelines.

6.1.2 Results on Noise Resistence

Tables 2 and 11 summarize performance under
varying noise levels with Top-k£ set to 100 and 20,
respectively. Our method consistently yields the
highest average F1 scores across all datasets and

both model backends (ChatGPT and GPT-40-mini).
As noise increases, the performance gap over base-
lines widens, highlighting the robustness of our
approach in noisy retrieval settings.

For instance, on MusiQue with ChatGPT at Top-
k=100, our method exceeds the best baseline by
over 3.4 F1 points on average and ranks first across
all noise levels. Even at 100% noise—when all
retrieved documents are distractors—it achieves
84.54 F1, far surpassing the next-best score of
80.47. This demonstrates our compression strat-
egy’s ability to suppress irrelevant content and re-
cover useful signals from fully corrupted inputs.

Results on 2Wiki reveal similar strengths. While
other methods degrade sharply with noise, our ap-
proach sustains relatively high performance, main-
taining a 5-7 point margin under heavy noise. This
shows its robustness in multi-hop reasoning even
with deeply buried evidence.

GPT-40-mini results show greater overall stabil-
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Dataset Method Noise Rates (%) at Top-k=100
0 20 40 60 80 100 Avg
gpt-3.5-turbo-1106
Vanilla RALM 77.04 8248 79.32 7649 79.45 7586 78.44
MusiQue Chunk Compression 67.17 7783 75.62 79.79 77.20 75.81 75.57
Long Agent 80.54 79.52 79.29 84.08 77.20 80.47 80.18
Ours 84.68 85.06 8543 81.84 8032 84.54 83.65
7777777777 VanillaRALM ~ 91.38 8888 8828 8885 87.54 81.61 8776
WebQ Chunk Compression 90.38 88.07 88.73 89.73 87.10 82.87 87.81
Long Agent 91.03 90.79 90.07 88.39 90.17 88.56 8§9.84
Ours 9245 92.04 9240 90.67 91.08 90.20 9147
7777777777 VanillaRALM 7917 7176 7148 7126 6481 5895 69.57
YWiki Chunk Compression 72.66 6574 66.76 69.96 6620 59.03 66.73
Long Agent 8345 8141 8252 7888 71.79 7092 78.16
Ours 82.06 77.78 74.69 78.14 76.71 75.65 77.51
gpt-40-mini-2024-07-18
Vanilla RALM 7820 76.55 7270 67.36 7649 6494 7271
MusiQue Chunk Compression 7942 7690 75.62 7198 70.85 69.66 74.07
Long Agent 7738 7593 7476 7344 7658 78.84 76.16
Ours 80.07 82.17 7749 7443 7562 7870 78.08
7777777777 Vanilla RALM 8742 87.08 89.67 8513 9031 8489 8742
WebQ Chunk Compression 90.94 90.06 8930 89.64 88.68 84.41 88.84
Long Agent 91.77 9037 90.70 9042 87.84 86.67 89.63
Ours 92.02 9142 89.31 8897 89.82 86.83 89.73
7777777777 VanillaRALM ~ 77.89 7783 7579 7715 7269 66.67 74.67
PWiki Chunk Compression 74.06 75.19 75.58 73.88 70.65 6354 72.15
Long Agent 8345 81.13 7697 7399 64.06 59.64 73.21
Ours 79.28 7627 7535 7196 70.64 68.67 73.70

Table 2: Comparison of F1 scores under different noise levels at Top-k£=100 on MusiQue, WebQ, and 2Wiki datasets

for multiple retrieval methods.

ity than ChatGPT, but our method remains con-
sistently superior. On MusiQue, it achieves 79.11
average F1, compared to 76.55 by Long Agent,
again outperforming strong long-context baselines.

Under the Top-£=20 setting, where retrieval
is constrained and noise more impactful, our
method remains highly resilient. On WebQ
and MusiQue, it sustains strong performance
even under 80-100% noise, while baselines
drop sharply—demonstrating that our compression
mechanism works effectively not only for large re-
trieval sets but also in low-budget scenarios where
every document matters.

6.1.3 Results on Redundancy Resistence

Table 3 reports performance under varying redun-
dancy rates. Our method achieves the highest av-
erage F1 on WebQ, outperforming RALM in high-
redundancy settings with a peak gain of +6.18 at
95% redundancy. This demonstrates its effective-
ness in handling redundant information while pre-

serving retrieval quality.

In summary, our method’s consistent advantage
across noise levels, datasets, and LLM backends
highlights the generalizability and robustness of
the compression strategy. By filtering irrelevant
content and distilling key evidence, it boosts down-
stream performance and offers a reliable solution
for noisy retrieval in RAG pipelines.

6.2 Main Results on Hallucination Detection

Table 5 presents a performance comparison of
our proposed method against baseline approaches
across three Hallucination-Detection datasets:
FELM, WikiBio, and HaluEval. Results are re-
ported as Maximum and Average accuracy over
Top-k predictions (k from 1 to 10), with balanced
accuracy used for FELM and WikiBio, and stan-
dard accuracy for HaluEval. Improvements over
the best baseline are highlighted in green.

In the FELM dataset, our method achieves the
highest maximum accuracy, surpassing baselines
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Dataset Method Redundancy Rates (%) at Top-k=20
0 20 40 60 80 95 Avg
Vanilla RALM 90.07 87.67 89.76 89.00 88.17 83.04 87.95
WebQ Chunk Compression ~ 90.77 89.74 90.21 90.96 90.90 87.01 89.93
Long Agent 90.25 92.31 88.75 88.98 90.95 89.89 90.19
Ours 92.01 91.33 90.96 91.07 90.93 89.22 90.92

Table 3: Performance on WebQ under different redundancy rates (Top-k=20). Values in parentheses indicate
differences from Vanilla RALM. Green indicates improvement, red indicates decline.

Dataset Method

Noise Rates (%) at Top-k=20

0 20 40 60 80 100 Avg
Dynamic ~ 90.79 91.87 90.75 91.00 89.23 87.87 90.25
WebQ  Avg 88.94 89.07 89.92 86.80 86.53 86.96 88.04
Random 90.40 86.84 85.81 86.81 87.78 88.19 87.64

Table 4: Ablation study on clustering strategies under varying noise rates on WebQ.

like Vanilla, CoT, Link. Our method performs only
slightly below Doc, which benefits from manually
annotated golden documents. Its average accuracy
reflects a modest improvement over the CEG base-
line, demonstrating robustness across varying k
values. For WikiBio GPT-3, our method performs
competitively, slightly improving average accuracy
over CEG and outperforming HalluDetector, Focus,
and SelfCheckGPT, indicating consistent detection
in biographical data. In HaluEval, our method
records the highest performance, with a notable
improvement over CEG, showcasing its effective-
ness in open-domain settings.

Accuracy
Dataset Methods (Top-k, k=1~10)
Vanilla 58.18
CoT 61.32
Link 56.78
FELM Doc 65.18
CEG 63.35/61.89
Ours 64.03 / 62.26*7
HalluDetector 74.82
Focus 74.08
WikiBio SelfCheckGPT 70.55
CEG 76.58/74.14
Ours 75.89 /742915
CEG 78.10/76.93
HaluBval ) v 78.85/77.870%

Table 5: Performance comparison on Hallucination-
Detection datasets. Each entry shows Max / Avg ac-
curacy over Top-k. Metric: Accuracy for HaluEval;
Balanced Accuracy for WikiBio GPT-3 and FELM.

Overall, our method consistently outperforms or
matches the best baselines across all datasets, with
improvements in average accuracy. These results
highlight its stability and generalizability, making
it a promising approach for reducing hallucinations
in applications like automated fact-checking.

6.3 Effectiveness of Clustering Strategies

To validate the effectiveness of our cluster-
ing method, we compare it with two alterna-
tive strategies—Average Clustering and Random
Clustering—that match our dynamic clustering in
both the number of clusters and the overall docu-
ment compression ratio for a controlled compari-
son. Average Clustering groups documents by their
similarity rank to the query and distributes them
evenly across clusters, while Random Clustering
assigns documents randomly from the top-k pool,
maintaining the same number and size of clusters
as dynamic clustering.

Table 4 compares these strategies on WebQ un-
der different noise rates. Our method achieves high-
est average F1, outperforming baselines. Average
Clustering and Random Clustering obtain lower F1,
and degrade more under high noise. These results
highlight the effectiveness of our entropy-guided
dynamic clustering in document compression.

Further validation is provided by evaluating clus-
tering consistency on the Musique dataset using
GPT-40-mini-2024-07-18 for document classifica-
tion. We measure the intra-class clustering proba-
bility for documents labeled as “useful” or “noise,”
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Top-k = 20

T 1 2 3 4 5 6 7 8 9 10 20

API Calls 5 4 3 3 3 2 2 2 2 2 1

F1 (%)  72.86:1.6 73.07:0.40 76.85+1.08 77.15:2.80 74.70:0.00 76.69:374 76.51.0.11 74.88+1.80 7763080 73.55:3.40 73. 714103
Top-k = 100

T 1 2 3 4 5 6 7 8 9 10 20

API Calls 7 6 6 5 5 5 4 4 4 4 3

F1 (%)

78.54.:3.74 78.33.1 70 80.73:300 80.21:3.12 76.66+332 76.86+2.14 76.80:2.00 77.41:0.60 77.85+1.17 7778014 77.97 0,09

Table 6: Ablation study results on Musique dataset (GPT-40-mini-2024-07-18) for varying 7 at top-k = 20 and

top-k = 100 (noise = 40%).

defined as:

Zi,jesame—class,i<j H[CIUSter(i) = CluSter(j)]
(]Vsaer—class)

Table 7 summarizes these metrics under vary-
ing top-k and noise levels, with random baselines
using the same number of clusters. Our method
exhibits probabilities exceeding random baselines,
demonstrating significant semantic consistency and
robustness, particularly under high noise.

Noise Rates (%) at Top-k = 20

Metric 20 40 60 80

Useful Prob. (%) 35.87 36.59 36.43 39.37
Rand. Useful (%) 33.33 33.33 33.33 33.33
Noise Prob. (%) 31.43 34.97 35.22 35.05
Rand. Noise (%) 33.33 33.33 33.33 33.33

Noise Rates (%) at Top-k = 100
Metric 20 40 60 80

Useful Prob. (%) 19.09 20.49 18.80 19.11
Rand. Useful (%) 14.56 14.62 14.29 14.29
Noise Prob. (%) 20.31 20.19 17.35 17.03
Rand. Noise (%) 14.56 14.62 14.29 14.29

Table 7: Clustering consistency metrics on Musique
dataset (GPT-40-mini-2024-07-18 classification) under
varying top-k and noise levels, displayed for Top-k =
20 and Top-k = 100.

The modest gains over baselines stem from (i)
the lightweight, dated nature of SimCSE-BERT
(circa 2021), which constrains fine-grained seman-
tic capture, and (ii) the binary “useful”/“noise” la-
bels inadequately capturing nuanced real-world
document interrelations.

6.4 Ablation Studies on 7

We conduct ablation studies on the Musique dataset
with GPT-40-mini-2024-07-18 (top-k = 20 and 100,

noise = 40%), evaluating the initial cluster count (7)
across three independent trials. We report the mean
and unbiased standard deviation of F1 scores and
API call counts, with A fixed for consistency. The
results, presented in Table 6, demonstrate stable
performance across a wide range of 7, affirming
the robustness of our design.

7 Conclusion

In this study, we design an efficient dynamic clus-
tering algorithm and apply compression techniques
to exploit fine-grained relationships between doc-
uments. Our method EDC2-RAG enhances evi-
dence quality by filtering noise and capturing de-
tailed document relationships, achieving consistent
performance improvements on three Hallucination-
Detection datasets and three KQA datasets, thus
demonstrating the strong robustness and broad ap-
plicability of our method. Extensive evaluations
show that our approach outperforms competitive
baselines across multiple metrics and model back-
bones.

Limitations

Our study has several limitations: 1) Due to time
constraints, we did not validate the generalization
ability of our method on more datasets and base
models. 2) Using compression technique incurs
some API consumption, but these costs are within
an acceptable range. See Appendix A for details.
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Appendix
A API costs and Latency Control

API Cost Evaluation. To better understand the
overhead introduced by different RAG compres-
sion strategies, we evaluate API token consumption
using the tiktoken.encoding_for_model(”gpt-3.5-
turbo”) tokenizer, which closely approximates Ope-
nAl’s official billing. Costs are computed based
on the pricing of gpt-40-mini-2024-07-18:
$0.15 per million input tokens and $0.60 per mil-
lion output tokens. We report results on the
Musique dataset with & = 10 and £ = 100 un-
der the noise-free setting, and compare our method

against RALM, Long Agent, and Chunk Compres-
sion. The key metric is the total API usage cost
(input + output) across the full pipeline, including
both document processing and final answering.

RALM Chunk C. Long Agent QOurs
k = 10, noise=0
AvgInput  1388.45 2233.03 184342  2155.10
Avg Output  34.97 740.70 223.73 553.29
API Cost 2.29 7.79 4.11 6.55
Rel. Cost 1.00 3.40 1.79 2.86
k = 100, noise=0
Avg Input  13542.94 20317.25 14406.18 14926.17
Avg Output  38.89  6026.16 395.58 1212.89
API Cost 20.55 66.63 23.98 30.12
Rel. Cost 1.00 3.24 1.17 1.46

Table 8: API cost (x10~*) comparison on Musique
under different £ settings.

Cost Analysis. Our method achieves strong cost
control, especially in large k settings, for two main
reasons: (1) one-time document access ensures
bounded input-token cost, and (2) query-aware
cluster-based compression balances relevance and
brevity, avoiding the excessive output tokens in-
curred by Chunk Compression. In low-k or noise-
free settings, our cost is slightly higher than RALM
and Long Agent. However, in such scenarios the
total token usage is inherently small and noise is
minimal (thus outside the target scenario of our
method), making the overhead acceptable.

Efficiency Analysis. Our method is also efficient
in runtime. We employ SimCSE-BERT (110M)
as a lightweight encoder, and each document is en-
coded only once. The clustering step adds negligi-
ble overhead, and all summarization steps are fully
parallelizable. In practice, this leads to wall-clock
latency even lower than a single RALM query.
These characteristics are consistent with our de-
sign goal of being efficient, as emphasized in the
paper title.

B Implementation Details

B.1 Knowledge-QA Datasets and Retrieval
Setup

Knowledge Question Answering (KQA) datasets
are essential resources for evaluating a model’s abil-
ity to perform knowledge reasoning and question-
answering tasks. These datasets typically rely on
external knowledge bases (e.g., knowledge graphs
or text corpora) and design questions to test the
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model’s ability to retrieve information from the
knowledge base and perform reasoning. In this
work, we used three widely adopted datasets (Yu
et al., 2024; Lv et al., 2024): WebQ (Berant et al.,
2013) (single-hop), and 2WikiMultiHopQA (Ho
et al., 2020) (hereafter referred to as 2Wiki) plus
Musique (Trivedi et al., 2022) (both multi-hop).

WebQ is constructed by collecting questions
posed by users in Google Suggest, with answers
primarily based on the Freebase knowledge graph.
The dataset is designed to test the model’s ability to
retrieve answers from structured knowledge bases
while understanding natural language questions.

2WikiMultiHopQA is a multi-hop question an-
swering dataset automatically constructed from
Wikipedia. Each question requires reasoning over
two or more Wikipedia articles to arrive at the cor-
rect answer. It is designed to test a model’s abil-
ity to perform compositional reasoning and han-
dle longer context chains compared to single-hop
datasets.

Musique is a multi-hop QA dataset with com-
plex, natural questions decomposed into multiple
factoid subquestions. It is built from real queries
and aligned with Wikipedia paragraphs, making it
suitable for evaluating models on realistic multi-
hop reasoning tasks that require integrating infor-
mation across multiple documents.

In this setting, we follow prior work on retrieval-
augmented generation (RAG) (Lv et al., 2024; Yu
et al., 2024; Gao et al., 2023a), using the DPR
retriever (Karpukhin et al., 2020) with the 2018
Wikipedia snapshot as the retrieval corpus, where
each document contains approximately 100 words.
For the three KQA datasets—WebQ, 2Wiki, and
MuSiQue—we retrieve the top 1000 relevant doc-
uments for each test question. We apply string
matching to identify whether each document con-
tains the gold answer. A question is included in
our final test set only if it has at least 100 docu-
ments with the answer (has_answer) and 100 with-
out. This filtering yields test sets of approximately
400, 400, and 100 queries for WebQ, 2Wiki, and
MuSiQue, respectively.

To build noisy retrieval scenarios, we inject the
retrieved irrelevant documents into the retrieved
set at controlled noise ratios. Document order is
determined by similarity to the query. We vary
the number of retrieved documents (top-k) from 5
to 100 and evaluate performance across different
noise levels (0% to 100%) using the F1 score as
the metric. The clustering threshold 7 is set to 3

to balance document compression quality and API
cost.

To evaluate the capability of our method in han-
dling redundancy, we selected the k£ documents
when each question was associated with top-20
documents. The remaining 20 — k£ documents
were rewritten using ChatGPT. We define the re-
dundancy rate as

20—k
r = ——
20
and construct datasets with redundancy rates of
r = 0.2, 0.4, 0.6, 0.8, and 0.95 , corresponding
to k =16, 12, 8, 4, and 1 respectively.

B.2 Hallucination Detection Datasets and
Retrieval Setup

Fact-checking (Hallucination Detection) is a nat-
ural language processing task aimed at verify-
ing the truthfulness and accuracy of generated or
stated content. Specifically, it involves determin-
ing whether a given piece of generated text (often
machine-generated, such as summaries, answers,
translations, etc.) or statement is truthful, partially
truthful, or false based on available information
sources (i.e., containing “hallucinations” or erro-
neous content). We conducted experiments on three
widely used fact-checking tasks: the FELM World
Knowledge Subset (Chen et al., 2023), the Wik-
iBio GPT-3 Dataset (Manakul et al., 2023), and the
HaluEval Dataset (Li et al., 2023).

These datasets were constructed leveraging the
generative capabilities of large language models.
Researchers design a series of tasks or scenarios,
collected model-generated content, and annotate
it using domain-specific background knowledge.
Specifically, the datasets include various examples
of model outputs, which are manually labeled to
classify their truthfulness. Labels indicate whether
the content is truthful, partially truthful, or entirely
false (in this work, partially truthful and false are
treated as false). This method not only captures po-
tential issues in model-generated content but also
provides high-quality benchmark datasets for eval-
uating models’ fact-checking capabilities. Below
is a sample question.

For the FELM World Knowledge Subset and
WikiBio GPT-3 Dataset, the queries are statements.
The retrieval corpus consisted of an October 2023
snapshot of Wikipedia from CEG (Li et al., 2024c¢),
and the retriever used is SimCSE Bert (Gao et al.,

9845



#Knowledge#: The nine-mile byway starts south of
Morehead, Kentucky and can be accessed by U.S. High-
way 60. Morehead is a home rule-class city located
along US 60 (the historic Midland Trail) and Interstate
64 in Rowan County, Kentucky, in the United States.
#Question#: What U.S Highway gives access to Zilpo
Road, and is also known as Midland Trail?

#Right Answer#: U.S. Highway 60
#Hallucinated Answer#: U.S. Highway 70

Table 9: A sample question from the HaluEval Dataset.

2021). The evaluation metric is Balanced Accuracy
(Balanced-Acc).

For the HaluEval Dataset, the retrieval cor-
pus and setup were similar to those in other
works (Karpukhin et al., 2020; Gao et al., 2023a),
employing a 2018 snapshot of Wikipedia and a
state-of-the-art BERT-based retriever, All-mpnet-
base-v2'. The evaluation metric is Accuracy (Acc).

In this scenario, due to the lack of a unified
retrieval paradigm or specifically constructed re-
trieval corpus for such datasets, the contribution of
documents to answering questions was inherently
limited. We cap the number of retrieved documents
at 10. Since the number of documents is small, 7
is set to 1 here to help the LLM summarize the
documents more effectively.

B.3 Detailed Introduction of Baselines

The baselines for FELM include: 1) prompts
enhanced with Chain-of-Thought (CoT) reason-
ing (Kojima et al., 2022), 2) prompts augmented
with hyperlinks to reference documents, and 3)
prompts supplemented by human-annotated refer-
ence documents (Chen et al., 2023).

The baselines for WikiBio GPT-3 comprise: 1)
HalluDetector(Wang et al., 2023), which lever-
ages external knowledge sources along with a dedi-
cated classification model and a Naive Bayes classi-
fier to identify hallucinations, and 2) Focus(Zhang
et al., 2023), which employs a multi-stage decision-
making framework combining both pre-retrieval
and task-specific classifiers.

"https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

C Prompts Used in Our Experiments

C.1 Hallucination Detection Datasets

C.1.1 FELM & HaluEval

Prompt of Compression

##Instruction#H:

You are an Al assistant specializing in infor-
mation extraction. Your task is to analyze
a given statement and a set of related docu-
ments, and extract only the directly relevant
information.

##Extraction Guidelines##:

- Identify key points, evidence, or details
that **directly support, refute, or elabo-
rate** on the statement.

- Ensure that the extracted content is **con-
cise, objective, verifiable, and directly trace-
able** to the original documents.

- **¥Do not make inferences or draw conclu-
sions** beyond what is explicitly stated.

- If the documents contain **no relevant
information**, respond with **No content
to extract.**

##Example Output Format#:
{few-shots}

##Statement##:
{query}

##Documents##:
{docs}

##Extracted Information##:

. J

Eval Prompt of HaluEval

##Instruction##:

I want you to act as an answer judge. Given
a question, two answers, and related knowl-
edge, your objective is to select the best and
correct answer without hallucination and
non-factual information.

You should try your best to select the best
and correct answer. If the two answers are
the same, you can choose one randomly. If
both answers are incorrect, choose the better
one. You MUST select an answer from the
two provided answers.

Think step by step. Give your reasoning
first and then output your choice. Output in
the following format:

\. J
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“#Reasoning#: Your Reasoning

#Choice#: 7X”.

”X” should only be either ”Answer 1”7 or
”Answer 27, rather than specific answer con-
tent.

##Knowledge#i:
{knowledge}

##Question##:
{question}

##Answer 1##:

{answer 1}

#H#HAnswer 2##:
{answer 2}

C.1.2 WikiBio GPT-3

Prompt of Compression

##Instruction##:

You have been provided with a statement
about {a person} and a collection of re-
lated documents. Your task is to extract
relevant information from these documents
that directly supports, refutes, or elaborates
on the given statement.

Focus on identifying key points, evidence,
or details that are clearly connected to the
statement. Ensure the extracted content is
concise, directly relevant, and maintains the
context of the original documents.

The extracted content must be objective, ver-
ifiable, and directly traceable to the original
documents. Avoid making inferences or
drawing conclusions based on the extracted
content.

If you find that the documents contain no
relevant information, please output ”’No con-
tent to extract”. Below is an example.

{One shot}
##Personit:
{person}
##Statement##:
{query}

##Documents##:
{docs}

##Extracted Information##:

Prompt of Evaluation

##Instruction#H:

Assess whether the given statement about
{a person} contains factual errors or not
with the help of the reference docs.

If you believe given statement contains fac-
tual errors, your answer should be "Non-
factual”; if there is no factual error in this
statement, your answer should be “Factual”.
This means that the answer is ”Nonfactual”
only if there are some factual errors in the
given statement. When there is no factual
judgment in the given statement or the given
statement has no clear meaning, your an-
swer should be ”Factual”. At the same time,
please consider all aspects of the given state-
ment thoroughly during the evaluation and
avoid focusing excessively on any single
factual aspect. Any factual errors should be
considered.

Reference docs can be classified into three
types: documents that support the response
segment as “Nonfactual”, documents that
support the response segment as “Factual”,
and documents that provide supplementary
or explanatory information for the response
segment. Please consider these documents
comprehensively when answering.

Think it step by step. Give your "Reason-
ing” first and then output the ”Answer”.

##Statement##:
{statement}
#i#Reference docsi##:
{passage}
##Output#H:

C.2 Knowledge-QA Datasets

The prompts used for compression and generation
in KQA tasks are shown below. These prompts
differ from those used in previous datasets because
we aim to elicit more informative chunks by hav-
ing the model respond to the question first. This
approach encourages the model to provide support-
ing evidence, which we then use to extract and
compress relevant information. In contrast, directly
prompting the model to summarize often leads it to
provide answers directly without grounding them
in the source content. If there is no strong for-
matting requirement, the quality of the LLM’s re-
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sponses remains stable; however, if strict format-
ting requirements are imposed, the response quality
drops sharply, causing a significant decline in per-
formance. Accordingly, during the final generation
stage, we also have the model consider these out-
putted answers and their corresponding evidence.
The model integrates all the evidence to select the
most appropriate answer.

Prompt of Summarization

##Instruction#t#:

Please refer to the following text and answer
the following question, providing support-
ing evidence.

##Question##:
{question}

##Reference text##:
{docs}

#H#HAnswer##:

Prompt of Response

## Task##:

Analyze the following set of candidate an-
swers to a question and select the single
most consistent/plausible answer based on
majority consensus and logical coherence.

##Instructions##:

1. Carefully compare all candidate answers.
2. Identify the core factual claims or entities
in each answer.

3. Group semantically equivalent answers
(e.g., 71990, ’the year 1990”, “nineteen
ninety”).

4. Select the answer that: - Appears most
frequently in the candidate set - Has strong
internal consistency (no self-contradictions)
5. If multiple answers have equal validity,
prefer the most specific and concise one.

##Format Requirements##:

Reasoning: Concise justification for selec-
tion.

Selected_Answer:...

Below is an example.
Candidate Answers: [”Paris”, ”The capital
is Paris”, ”France”, “paris”, "’It’s Paris in

France”]

Question: What is the capital of France?
Expected Response:

Reasoning: 4/5 answers directly state
"Paris’. While ’France’ is incorrect alone,
the most frequent and unambiguous consen-
sus is ’Paris’ Selected_Answer: Paris

##Candidate Answers##:
{answers}

##Question##:
{question}

\.

D Additional Experimental Results

D.1 Experiments on Open-Source Models

Additional experiments are conducted using Qwen-
3-8B in think mode on the TwoWiki dataset under
a noise rate of 0%, constrained by available compu-
tational resources. These experiments, summarized
in Table 10, utilized only this 8B model. The re-
sults reveal a notable performance gap compared
to closed-source LLMs, attributable to the limited
summarization and evidence-filtering capabilities
of smaller models.

Top-k RALM Ours (Qwen-3-8B)

5 66.96 60.33
10 72.39 67.71
20 73.90 75.64
30 78.44 71.01
50 80.76 69.88
70 80.30 72.17
100 81.56 71.18

Table 10: Performance comparison on TwoWiki dataset
(noise rate 0%) using Qwen-3-8B in think mode.

We anticipate improved outcomes with larger
open-source models and intend to incorporate cor-
responding experiments in future iterations, subject
to resource availability.

D.2 Additional Experimental Results on Noise
Resistence

Tables 11 summarizes performance under varying
noise levels with Top-k = 20.
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Dataset Method Noise Rates (%) at Top-k=20

0 20 40 60 80 100 Avg
gpt-3.5-turbo-1106

Vanilla RALM 7475 77.82 78.07 7492 7442 7430 75.71

MusiQue Chunk Compression 74.15 7538 7770 78.01 71.89 76.08 75.54

Long Agent 84.21 8341 79.02 76.12 7891 7578 79.58

Ours 82.55 85,50 78.28 83.58 82.53 79.88 82.05
7777777777 VanillaRALM ~ 90.07 89.62 90.12 90.14 90.06 8636 89.40

WebQ Chunk Compression 90.77 89.68 90.03 90.79 89.68 87.64 89.77

Long Agent 90.49 9191 90.54 8946 88.81 8791 §9.85

Ours 90.79 91.87 90.75 91.00 89.23 87.87 90.25
7777777777 VanillaRALM 7751 7148 7184 6840 6757 6601 7047

Wiki Chunk Compression 7241  71.52 71.06 68.13 69.75 67.28 70.03

Long Agent 76.06 77.05 7420 71.07 6935 6699 7245

Ours 7620 76.66 76.75 7243 7292 68.99 73.99

gpt-40-mini-2024-07-18

Vanilla RALM 7778 7339 7625 68.08 6542 7032 71.87

MusiQue Chunk Compression 75.67 7533 76.82 7529 6741 6826 73.13

RAPTOR 72.07 7846 7595 71.15 76.64 70.78 74.18

Long Agent 80.43 76.67 7250 77.69 7393 78.05 76.55

Ours 81.71 8044 81.10 7898 77.50 7491 79.11
7777777777 VanillaRALM 8507 89.89 90.82 8870 8827 8520 87.99

WebQ Chunk Compression 90.77 90.49 90.08 90.53 89.40 8698 89.71

Long Agent 9194 9149 90.86 90.13 88.60 86.79 89.80

Ours 91.89 90.36 90.76 89.43 88.40 86.90 89.62
7777777777 VanillaRALM ~ 73.84 73.03 7143 69.03 67.53 60.88 69.29

PWiki Chunk Compression 69.24 68.63 67.84 6845 66.12 59.14 66.51

Long Agent 7133 7332 70.52 6427 62.69 5729 66.57

Ours 72.86 7192 7258 69.60 6644 60.88 69.05

Table 11: Comparison of F1 scores under different noise levels at Top-k=20 on MusiQue, WebQ, and 2Wiki datasets
for multiple retrieval methods.
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