@inproceedings{mubarak-etal-2025-arasafe,
title = "{A}ra{S}afe: Benchmarking Safety in {A}rabic {LLM}s",
author = "Mubarak, Hamdy and
Mohamed, Abubakr and
Hawasly, Majd",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.529/",
pages = "9976--9992",
ISBN = "979-8-89176-335-7",
abstract = "We introduce AraSafe, the first large-scale native Arabic safety benchmark for large language models (LLMs), addressing the pressing need for culturally and linguistically representative evaluation resources. The dataset comprises 12K naturally occurring, human-written Arabic prompts containing both harmful and non-harmful content across diverse domains, including linguistics, social studies, and science. Each prompt was independently annotated by two experts into one of nine fine-grained safety categories, including `Safe/Not Harmful', `Illegal Activities', `Violence or Harm', `Privacy Violation', and `Hate Speech'. Additionally, to support training classifiers for harmful content and due to the imbalanced representation of harmful content in the natural dataset, we create a synthetic dataset of additional 12K harmful prompts generated by GPT-4o via carefully designed prompt engineering techniques. We benchmark a number of Arabic-centric and multilingual models in the 7 to 13B parameter range, including Jais, AceGPT, Allam, Fanar, Llama-3, Gemma-2, and Qwen3, as well as BERT-based fine-tuned classifier models on detecting harmful prompts. GPT-4o was used as an upper-bound reference baseline. Our evaluation reveals critical safety blind spots in Arabic LLMs and underscores the necessity of localized, culturally grounded benchmarks for building responsible AI systems."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mubarak-etal-2025-arasafe">
<titleInfo>
<title>AraSafe: Benchmarking Safety in Arabic LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hamdy</namePart>
<namePart type="family">Mubarak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abubakr</namePart>
<namePart type="family">Mohamed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Majd</namePart>
<namePart type="family">Hawasly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>We introduce AraSafe, the first large-scale native Arabic safety benchmark for large language models (LLMs), addressing the pressing need for culturally and linguistically representative evaluation resources. The dataset comprises 12K naturally occurring, human-written Arabic prompts containing both harmful and non-harmful content across diverse domains, including linguistics, social studies, and science. Each prompt was independently annotated by two experts into one of nine fine-grained safety categories, including ‘Safe/Not Harmful’, ‘Illegal Activities’, ‘Violence or Harm’, ‘Privacy Violation’, and ‘Hate Speech’. Additionally, to support training classifiers for harmful content and due to the imbalanced representation of harmful content in the natural dataset, we create a synthetic dataset of additional 12K harmful prompts generated by GPT-4o via carefully designed prompt engineering techniques. We benchmark a number of Arabic-centric and multilingual models in the 7 to 13B parameter range, including Jais, AceGPT, Allam, Fanar, Llama-3, Gemma-2, and Qwen3, as well as BERT-based fine-tuned classifier models on detecting harmful prompts. GPT-4o was used as an upper-bound reference baseline. Our evaluation reveals critical safety blind spots in Arabic LLMs and underscores the necessity of localized, culturally grounded benchmarks for building responsible AI systems.</abstract>
<identifier type="citekey">mubarak-etal-2025-arasafe</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.529/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>9976</start>
<end>9992</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AraSafe: Benchmarking Safety in Arabic LLMs
%A Mubarak, Hamdy
%A Mohamed, Abubakr
%A Hawasly, Majd
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F mubarak-etal-2025-arasafe
%X We introduce AraSafe, the first large-scale native Arabic safety benchmark for large language models (LLMs), addressing the pressing need for culturally and linguistically representative evaluation resources. The dataset comprises 12K naturally occurring, human-written Arabic prompts containing both harmful and non-harmful content across diverse domains, including linguistics, social studies, and science. Each prompt was independently annotated by two experts into one of nine fine-grained safety categories, including ‘Safe/Not Harmful’, ‘Illegal Activities’, ‘Violence or Harm’, ‘Privacy Violation’, and ‘Hate Speech’. Additionally, to support training classifiers for harmful content and due to the imbalanced representation of harmful content in the natural dataset, we create a synthetic dataset of additional 12K harmful prompts generated by GPT-4o via carefully designed prompt engineering techniques. We benchmark a number of Arabic-centric and multilingual models in the 7 to 13B parameter range, including Jais, AceGPT, Allam, Fanar, Llama-3, Gemma-2, and Qwen3, as well as BERT-based fine-tuned classifier models on detecting harmful prompts. GPT-4o was used as an upper-bound reference baseline. Our evaluation reveals critical safety blind spots in Arabic LLMs and underscores the necessity of localized, culturally grounded benchmarks for building responsible AI systems.
%U https://aclanthology.org/2025.findings-emnlp.529/
%P 9976-9992
Markdown (Informal)
[AraSafe: Benchmarking Safety in Arabic LLMs](https://aclanthology.org/2025.findings-emnlp.529/) (Mubarak et al., Findings 2025)
ACL
- Hamdy Mubarak, Abubakr Mohamed, and Majd Hawasly. 2025. AraSafe: Benchmarking Safety in Arabic LLMs. In Findings of the Association for Computational Linguistics: EMNLP 2025, pages 9976–9992, Suzhou, China. Association for Computational Linguistics.