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Abstract

Distractor generation is the task of automat-
ically generating plausible yet incorrect op-
tions (i.e., distractors) for fill-in-the-blank and
multiple-choice questions. In assessment, dis-
tractors must be contextually relevant to the
given question and answer. Even though recent
research works focus on fine-tuning pre-trained
encoder-decoder models with data augmenta-
tion techniques to generate distractors, these
models often fail to capture the full semantic
representation of a given question-answer and
related distractors. The augmentation methods
often rely on expanding the quantity of pro-
posed candidates (i.e., questions or distractors),
which can introduce noise into the models with-
out necessarily enhancing their understanding
of the deeper semantic relationships between
question-answer and related distractors. This
paper introduces a novel distractor generation
model based on contrastive learning to train
the model to recognize essential semantic fea-
tures necessary to generate in-context distrac-
tors. The extensive experiments on two public
datasets indicate that contrastive learning intro-
duces a strong baseline model to the distractor
generation task. It significantly outperforms
recent models, increasing the NDCG @3 score
from 24.68 to 32.33 on the MCQ dataset and
from 26.66 to 36.68 on the SciQ dataset.

1 Introduction

In assessments, objective questions (Das et al.,
2021), including multiple-choice and fill-in-the-
blank questions, are widely used in education for
fair evaluation across various domains and subjects
(Ch and Saha, 2018; Kurdi et al., 2020). These
questions require an examinee to select one correct
answer from a set of wrong options. The quality
of these questions relies on the quality of selecting
these wrong options, known as distractors. Distrac-
tor generation (DG) (Alhazmi et al., 2024) refers to
the automated process of generating plausible yet
incorrect options in objective types of questions.
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Figure 1: Distractor generation methods via pre-trained
language models. On the left, CSG-DS refers to the
candidate generation and selection framework. On the
right, Text2Text represents the sequence-to-sequence
generation task by pre-trained encoder-decoder models.

For decades, research works have shown inter-
est in DG using several approaches, ranging from
feature-based learning (Liang et al., 2018) to deep
neural networks (Gao et al., 2019; Maurya and De-
sarkar, 2020). Then, pre-trained language mod-
els (PLMs), based on Transformer architecture
(Vaswani et al., 2017), have notably enhanced DG
through fine-tuning (Yu et al., 2024) and prompting
(Doughty et al., 2024) paradigm:s.

Two primary methods have been proposed for
DG based on PLMs, as illustrated in Figure 1.
First, candidate generation and selection frame-
work (CSG-DS) (Chiang et al., 2022) uses fine-
tuning or prompting methods to generate a candi-
date set of distractors, then selects the top distrac-
tors based on embedding models or feature-based
rules (Taslimipoor et al., 2024). Second, Text2Text
architecture (Wang et al., 2023) utilizes fine-tuning
pre-trained encoder-decoder models (Raffel et al.,
2020; Lewis et al., 2020) to generate distractors as
a sequence-to-sequence (Seq2Seq) task, where the
distractors are generated directly from PLMs rather
than selected from the generated candidates.
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Aligning Text2Text models with the DG task is
still challenging. As shown in Figure 1, they may
generate distractors (air, gas, electricity) that are
only plausible to the answer (water) rather than
in-context with the question (the common term for
the chemical formula H5O is ...etc).

Recent state-of-the-art (SOTA) Text2Text works
incorporate augmentation techniques (Wang et al.,
2023) and adopt a retrieval augmented pre-training
method (Yu et al., 2024) to enhance the knowledge
of the encoder-decoder models, but these models
are designed to restore and denoise entire text se-
quences during pre-training, rather than capturing
fine-grained semantic distinctions required for gen-
erating contextually relevant distractors. This limi-
tation causes the models to generate distractors (air,
gas, electricity) that simply complete the denoised
sequence for the given question-answer, rather than
in-context distractors (helium, nitrogen, carbon)
that semantically align with the question-answer,
as shown in Figure 1. Thus, we propose to inte-
grate a contrastive learning (CL) approach inspired
by computer vision and text generation works (Li
et al., 2020; Radford et al., 2021; Zhang et al.,
2022a; Dong et al., 2023; Zhuang et al., 2024) to
enhance the semantic learning in these models.

While CL is applied to the DG in ranking-based
models (Bitew et al., 2022), visual question an-
swering task (Ding et al., 2024), knowledge graph
reasoning (Guo et al., 2024), and most recently still
under-explored in reading comprehension (Dong
et al., 2025), it is not yet explored, particularly for
the DG task, within the Text2Text architecture.

Initially, the encoding of the input (i.e., ques-
tion—answer) and the decoding of the output (i.e.,
distractors) can be regarded as two representational
views with respect to the same semantics, forming
a positive pair. They are contrasted with negative
pairs (i.e., a given question-answer with unrelated
distractors in the mini-batch). Integrating a con-
trastive loss with the generation loss encourages
the model to bring semantically similar pairs closer
in the representation space while pushing dissimi-
lar pairs. This joint learning enhances the model to
capture semantic features and generate in-context
distractors. We explore two contrastive objectives:
InfoNCE (Oord et al., 2018) with multiple nega-
tives and Triplet loss (Schroff et al., 2015) with a
single negative. Our automatic and human evalua-
tion results on two public datasets indicate that this
method aligns the DG task with encoder-decoder
models better than augmentation techniques.

The main contributions can be summarized as
follows: (i) introducing a contrastive-based learn-
ing approach within Text2Text architecture for the
DG task (ii) benchmarking our approach against
SOTA models using both automatic and human
evaluation metrics; (iii) achieving new SOTA re-
sults, increasing NDCG@3 score from 24.68 to
32.33 on MCQ and from 26.66 to 36.68 on SciQ.

We organize this paper as follows. Sec. 2 reviews
the related works on DG and CL. Sec. 3 presents
the details of the proposed methodology. Sec. 4
reports the experimental details along with perfor-
mance analysis, and Sec. 5 offers a conclusion.

2 Related Work

2.1 Distractor Generation (DG)

The tasks in DG are typically divided into two
formats: multiple-choice questions (MCQs) and
fill-in-the-blank (FITB). They have been applied
in textual (Xie et al., 2018) and multi-modal (Yag-
cioglu et al., 2018) aspects. These tasks have also
been explored in question answering (Liang et al.,
2017, 2018), reading comprehension (Xie et al.,
2021; Qu et al., 2024), and multi-modal question
answering (Zhu et al., 2016; Luo et al., 2024).
Over the years, the field of DG has progressed
significantly in methodologies, transitioning from
conventional techniques to cutting-edge artificial in-
telligence approaches. Initially, conventional meth-
ods include the use of corpus features (Chen et al.,
20006), phonetic and morphological features (Pino
and Eskenazi, 2009), knowledge-based structures
(Mitkov et al., 2003, 2009), and word embedding
models (Guo et al., 2016; Yoshimi et al., 2023).
Recently, transformer-based PLMs have revolu-
tionized DG tasks. The two main approaches pro-
posed for the DG in text-based contexts include the
CSG-DS framework and the Text2Text architecture.
Ren and Zhu (2021) proposed using knowledge-
based structures such as Probase (Wu et al., 2012)
and WordNet (Miller, 1995) to retrieve a small set
of candidates, followed by a feature-rich learning-
to-rank model to identify the top distractors. Chi-
ang et al. (2022) utilized PLMs, which showed
significant improvements, to generate the candi-
dates as compared to knowledge-based structures.
Taslimipoor et al. (2024) proposed using the pre-
trained encoder-decoder model for generating both
correct and incorrect options, and then discriminate
between options with a classifier. The generated
options are then clustered to remove duplicates.
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Figure 2: The training pipeline describes the integration of contrastive learning (CL) in Text2Text distractor
generation (DG). Solid arrows represent the data flow of generation loss, and dashed arrows indicate the data flow
of CL. Our approach outlines two-stage training. The first stage trains the model as generation task, including only

cross-entropy loss. The second stage trains the model with

Wang et al. (2023) framed DG as a Text2Text ar-
chitecture by fine-tuning encoder-decoder models
and used data augmentation to reduce repeated dis-
tractor generation. Then, Yu et al. (2024) applied
retrieval-augmented pre-training and used knowl-
edge graph triplets for data augmentation. Unlike
prior methods, we address the challenge of fine-
grained semantic learning by integrating CL.

2.2 Contrastive Learning in NLP

CL is a machine learning technique that trains mod-
els to distinguish between semantically similar and
dissimilar data pairs (Chopra et al., 2005; Hadsell
et al., 2006). It has shown success in various do-
mains, starting with computer vision to NLP tasks.

Initially, Schroff et al. (2015) proposed the
FaceNet system that trains face recognition and
clustering based on triplet loss learning, while Sohn
(2016) proposed multi-class N-pair loss for a va-
riety of tasks on several visual recognition bench-
marks. Chen et al. (2020) introduced the SimCLR
framework using data augmentation to generate
diverse views of the same image. This approach
used a CL objective to ensure that representations
from the same source image are similar, while those
from different source images remain distinct. Rad-
ford et al. (2021) utilized CL to pre-train a vision-
language model to align representations between
images and their textual descriptions.

both cross-entropy loss and one of the CL losses.

Recently, many works applied CL to learn better
sentence embeddings (Gao et al., 2021; Wu et al.,
2022; Zhang et al., 2022b; Xu et al., 2023). Beyond
embeddings, Karpukhin et al. (2020) applied CL to
develop an innovative dense passage retrieval strat-
egy for question-passage pairs, advancing the field
of open-domain question answering (Zaib et al.,
2024). Qin et al. (2021) explored CL to obtain a
deeper understanding of the entities and their rela-
tions in texts, and Chen et al. (2022) utilized CL
to tackle both discriminative representation and
overfitting problems in few-shot text classification.

In text generation, CL approach is also recog-
nized for addressing degeneration issues such as
undesirable generated content and repetition (Su
et al., 2022). It is also applied in various NLP tasks,
including machine translation (Pan et al., 2021),
definition generation (Zhang et al., 2022a), closed-
book question generation (Dong et al., 2023), multi-
document question generation (Cho et al., 2021),
paraphrase generation (Yang et al., 2021), and sum-
marization (Zhuang et al., 2022, 2024). Although
CL is explored in the DG task for multilingual
ranking models (Bitew et al., 2022), multi-modal
distractor generation (Ding et al., 2024), and graph
knowledge-based for commonsense questions (Guo
et al., 2024), CL has not yet been particularly ex-
plored for the DG task in Text2Text architecture
(Wang et al., 2023; Yu et al., 2024).
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3 Methodology

This section outlines the details of our approach.
Sec. 3.1 defines DG task formulation. Sec. 3.2 and
Sec. 3.3 detail the training of Text2Text and the
implementation of CL in encoder-decoder models,
respectively. Sec. 3.4 presents a two-stage training
to incorporate contrastive loss with generation task.

3.1 Task Formulation

Given a query Q and its answer A, the task of
distractor generation involves generating a set se-
quence of distractors D = {d1,do, ..., dn}, where
N > 0 represents the number of distractors. The
generation process is formally defined as:

N
P(D | QaA) = Hp(dt ‘ d<t7QaA) (1)

t=1

where d; represents the sequence of letters in the
t-th distractor, d—; denotes the sequences of all
distractors generated before d;.

3.2 Text2Text Generation

For each training instance (Q, A, D), the objec-
tive is to fine-tune a generative model, which is
conditioned on the given query () and the answer
A, aiming to minimize the negative log-likelihood
for each correct token ¢; in the sequence D, based
on its preceding tokens and the given conditions,
where the generation loss function is defined as:

|D|
ﬁg == - Ztl logp(tAZ ‘ £<i7QaA7 9) (2)

i=1

As depicted in Figure 2, the input consists of
the query @ and the answer A, with the prefix
“Question: ” before the given query and “Answer: ”
before the given answer. The generated output is a
sequence of distractors, expressed as d; & da & ds.

3.3 Contrastive Loss

CL aims to optimize semantic representations by
pulling positive pairs closer in feature space while
pushing negative pairs further apart. In DG models,
this process requires an understanding of the seman-
tics of a question, an answer, and their relationships
with related ground-truth distractors. Initially, the
encoder takes an input sequence of source words
x = (x1,x9,...,2,), which includes the given
question and answer as illustrated in Figure 2. The
encoder then maps x to a sequence of continuous
representations z = (21, 22, ..., 2p).

Subsequently, the decoder utilizes z to generate
a sequence of target words, which are the sequence
of distractors y = (y1, 2, - - ., Ym) at a time. The
question-answer encoding should be semantically
similar to its ground-truth distractors and dissimilar
to incorrect distractors. The objective is to develop
a similarity function that minimizes the distance
between the question-answer sequence and the rep-
resentations of its correct distractors, enhancing the
model to generate relevant in-context distractors.

First, we implement the InfoNCE contrastive
loss in the representation space to enhance model
training. For a positive pair S = {(z4,yi)}1 1,
where z; (question-answer) and y; (distractors) rep-
resent semantically related inputs, we treat the re-
maining (n — 1) examples within a mini-batch as
negative examples. The training loss objective for
each pair (x;,y;) is:

ed(zzi :Zyi )/T

n d(za,;,2y,;)/T
Zj=1€ Ti0%Y5

Le=—log 3)

where z;, and z,, are the embedding representa-
tions of an input question-answer x; and its related
distractors y;, respectively. Here, z,; refers to the
embedding representation of the distractors y; in
the mini-batch. d(z;, z;) denotes the cosine simi-
larity, and 7 is a temperature parameter.
d(2,2)) = )
12111
Second, we implement the Triplet contrastive
loss in the representation space. For each positive
pair S = {(zs, y;) }I_,, where z; and y; are seman-
tically related inputs, we randomly select a negative
example n; from the mini-batch, ensuring j # 1.
The training loss objective for the (x;, y;, n;) is:

Ly = max(d(zy,, zy,) — d(2zz;,Zn;) +m,0) (5)

where z,,, z,,, and Zp,; Tepresent the semantic em-
beddings of the anchor, positive, and negative, ex-
amples respectively. Here, z,, and z,, are semanti-
cally similar, whereas z,; is semantically dissim-
ilar. The margin m ensures a minimum distance
between the anchor-positive pairs and the anchor-
negative pairs. The distance function d can be ei-
ther implemented with cosine similarity (c.s) in Eq
4 or Euclidean distance (e.d) in Eq 6.

d
d(zi,zj) = | Y _(z[k] — z;[k])>  (6)

k=1
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3.4 Overall Two-Stage Training

The training approach combines both generation
loss with a newly implemented contrastive objec-
tive loss. As illustrated in Figure 2, the model
is fine-tuned using solely the generation loss (i.e.,
Text2Text generation) as the first stage. In the sub-
sequent stage, contrastive loss is fine-tuned with
the generation loss, optimizing the model with a
mixed loss function £ g;pqi:

EFmal = )\g * [fg + >\c * ['cl (7)

As described in Sec. 3.3, the contrastive objec-
tive L. can be implemented as either the InfoNCE
loss L. or the Triplet loss £;. Here, A\; and A,
serve as a hyper-parameters to balance the gener-
ative and contrastive types of losses, respectively.
The two-stage training enables the model to learn
semantic information from a given question-answer
(the term for the chemical formula H>O is ...etc)
and its related distractors (hydrogen, air, oxygen),
as shown in Figure 1. The given question-answer
and its valid distractors forms a positive pair, while
pairing the same question-answer with randomly
sampled unrelated distractors (spring, fall, sum-
mer) from the mini-batch forms a negative pair. By
jointly applying a semantic learning objective such
as Triplet loss alongside the generation loss, the
training process encourages the models to mini-
mize the distance between the embeddings of posi-
tive pairs, to capture semantic features, and maxi-
mize the distance from negative pairs. This encour-
ages the model to generate in-context distractors
(helium, nitrogen, carbon) that are semantically
aligned with the question context (i.e., chemical
elements) rather than less relevant distractors (air,
gas, electricity) that are only plausible with the an-
swer (water). This semantic learning is essential in
encoder-decoder models for the DG task.

4 Experiments

4.1 Datasets

We conduct the experiments on the SciQ (Welbl
et al.,, 2017) and MCQ (Ren and Zhu, 2021)
datasets as outlined the statistics in Table 1.

SciQ contains crowd-sourced multiple-choice ques-
tions from natural sciences, each with one correct
answer and three distractors. Average token in op-
tions is 1.6, word-level, and 14.5 in questions. In
test data, we remove few articles (e.g., a, an) from
the answers or distractors.

MCQ or Dgen! dataset, contains fill-in-the-blank
questions with one correct answer and three distrac-
tors, collected from various sources. We replace
““kplank**” with a [M ASK] token. The ques-
tions cover science, vocabulary, commonsense, and
trivia. Average token in options is 1, and 19.5 in
questions. We use 80% of the 2,321 questions for
training and 20% for validation.

Datasets | Train | Valid | Test All
SciQ 11,700 | 1,000 | 1,000 | 13,700
MCQ 1,856 465 259 2,580

Table 1: Statistics of SciQ and MCQ datasets.
4.2 Baselines Models

Text2Text Architecture: we fine-tune T5 (Raffel
et al., 2020) and BART (Lewis et al., 2020) as base
models. We also incorporate multi-task learning,
candidate augmentation, and retrieval augmented
pre-training methods (Wang et al., 2023; Yu et al.,
2024). App. A covers the details of the methods.

CSG-DS: we fine-tune TS for generating distractor
candidates. Then, we utilize two selection meth-
ods: beam search (Gao et al., 2019) and clustering
(Taslimipoor et al., 2024). Beam search is utilized
to select the top three predicted distractors from
a set of ten. For clustering, we utilize agglomera-
tive clustering” with Euclidean distance to measure
the similarity between clusters, setting a threshold
of 1.2. The heads of different clusters are then
selected as the final set of distractors.

Prompting: we utilize one random example for
one-shot (Bitew et al., 2023) and three random ex-
amples for few-shot (Feng et al., 2024) learning to
generate three distractors per a query. An example
includes a query and three distractors.

4.3 Evaluation Metrics

For automatic evaluation, we utilize ranking-based
metrics that measure the models ability to retrieve
relevant distractors from the top-k locations, as
used in previous DG studies (Ren and Zhu, 2021;
Yu et al., 2024). Order-unaware metrics, include F1
score (F1@3), precision (P@1, P@3), and recall
(R@1, R@3). We also include order-aware metrics
such as mean reciprocal rank (MRR @K) and nor-
malized discounted cumulative gain NDCG@K).

'https://github.com/DRSY/DGen

Zhttps://scikit-learn.org/stable/
modules/generated/sklearn.cluster.
AgglomerativeClustering.html
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We utilize human evaluation metrics to assess
the model performance. They include, relevance to
assess if the distractors are relevant to the context
of the query, difficulty to evaluate the level of dis-
traction provided in finding the correct answer, and
fluency to determine if the distractors are not du-
plicated and semantically different. We randomly
select twenty examples from both datasets, that
were assessed by five human participants, each hav-
ing more than two years of academic experience.
We use a five-point quantitative rating system from
1 (strongly irrelevant) to 5 (strongly relevant).

4.4 Implementation Details

Our models are built using Hugging Face frame-
works (Wolf et al., 2020), including TS5 and BART
as generative models. We optimize using AdamW,
with initial learning rates of le-4 for TS5 and 2e-
5 for BART. We conduct the experiments on two
NVIDIA Tesla P100 GPUs. The T5 model trains
for 10 epochs and the BART model for 20, both
with a batch size of 4. For InfoNCE, the tempera-
ture 7 is set at 0.1, and in the Triplet, the margin
m is set at 0.01. The weights A\, and A. are both
set at 0.5, and mean pooling is used as the standard
pooling method for embedding dimensions. We
implement the two-stage training and utilize the
gpt-3.5-turbo model for prompting?.

4.5 Evaluation Results

4.5.1 Automatic Evaluation Results

Table 2 shows automatic evaluation results for vari-
ous models on both datasets. A two-stage training
with either InfoNCE or Triplet loss significantly en-
hances the performance of DG in Text2Text archi-
tecture compared to all recent SOTA approaches.
Initially, the contrastive-based approach outper-
forms recent Text2Text methods across all metrics
in both datasets. In TS model, retrieval augmented
pre-training improves the NDCG@3 score from
24.68 to 27.44 on MCQ, and multi-task learning in-
creases the scores from 26.66 to 28.52 on SciQ, but
T5 with InfoNCE loss achieves the best NDCG@3
scores. The model raises the scores to 32.33 on
MCQ and 36.68 on SciQ. Then, Triplet loss, espe-
cially with Euclidean distance, achieves the second-
best NDCG@3 scores, which increase to 30.46
on MCQ and 35.25 on SciQ. This illustrates the
benefits of batch-wide optimization in InfoNCE
that uses multiple negative examples rather than

3https ://github.com/contrastivelearningDG/
contrastive_learning_in_encoder_decoder_models

Triplet, which relies only on one negative example.
It is worth mentioning that the contrastive-based
approach, including both InfoNCE and Triplet ob-
jectives, shows a performance increase across all
automatic metrics in both datasets, but the retrieval
augmented pre-training approach only shows an
increase on MCQ rather than SciQ.

Also, contrastive-based approach demonstrates
successful results in BART model. These improve-
ments in automatic metrics highlight the effec-
tiveness of contrastive learning in aligning pre-
trained encoder-decoder models to DG task. Fur-
thermore, the choice of distance metric in Triplet
loss plays a critical role in performance. Euclidean
distance demonstrates significantly better results
compared to cosine similarity across both models
and datasets. For example, on the SciQ dataset, T5
model achieves an NDCG @3 score of 33.72 with
Triplet loss using cosine similarity, whereas using
Euclidean distance increases the score to 35.25.
However, while BART-Contrast(Triplet)/e.d oc-
casionally outperforms BART-Contrast(InfoNCE)
on metrics such as P@1, R@1, and F1@3, the
contrastive-based approaches, including both In-
foNCE and Triplet losses, consistently surpass re-
cent Text2Text methods, including multi-task train-
ing, retrieval augmented pre-training, and candi-
date augmentation, in both datasets and models.

Furthermore, contrastive-based approach outper-
forms prompting methods such as one-shot and
few-shot. The approach also exceeds the perfor-
mance of candidate generation with beam search
selection. In fact, CSG-DS(beam) shows remark-
able results in both datasets. Even though it yields
higher NDCG @3 scores (i.e., 30.11 on MCQ and
31.30 on SciQ) than T5-base, both scores in T5
model with InfoNCE (i.e., 32.33 on MCQ and
36.68 on SciQ) and Triplet/e.d (i.e., 30.46 on
MCQ and 35.25 on SciQ) objectives surpass CSG-
DS(beam). This improvement underscores the ef-
fectiveness of contrastive learning in enhancing
the relevance and ranking quality of generated dis-
tractors over recent SOTA approaches. Therefore,
these results highlight contrastive learning as a
strong and promising approach for DG task. We
provide analysis on hyper-parameters in App. B.

4.5.2 Human Evaluation Results

Table 3 presents human evaluation results for
the DG task across ten models on both datasets.
Initially, TS with contrastive objective InfoNCE
scores the highest across all human evaluation met-
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Dataset | Approach Model P@1 | R@1 | F1@3 | MRR | NDCG@3
BART-base 8.49 | 2.83 | 10.55 | 14.99 20.60
BART-Contrast(Triplet)/c.s | 11.58 | 3.86 | 11.58 | 18.53 24.51
BART-Contrast(Triplet)/e.d | 1544 | 5.15 | 13.13 | 22.84 29.20
BART-Contrast(InfoNCE) | 13.90 | 4.63 | 12.61 | 21.24 27.71
BART(Multi-task) 579 | 1.93 | 9.65 | 13.06 19.50
BART(CA) 6.18 | 2.06 | 7.46 | 11.58 16.31
BART(RAP) 8.49 | 2.83 | 9.78 | 14.09 18.99

Text2Text | TS5-base 1429 | 476 | 10.81 | 20.14 24.68
MCQ T5-Contrast(Triplet)/c.s 20.46 | 6.82 | 13.38 | 25.61 29.51
T5-Contrast(Triplet)/e.d 22.01 | 7.34 | 14.16 | 26.96 30.46
T5-Contrast(InfoNCE) 22.78 | 7.59 | 15.70 | 28.57 32.33
T5(Multi-task) 15.06 | 5.02 | 12.23 | 19.95 23.54

T5(CA) 347 | 1.16 | 450 | 7.34 10.93

T5(RAP) 18.15 | 6.05 | 14.67 | 23.49 27.44

CSG-DS T5-CG(beam) 17.37 | 5.79 | 13.38 | 24.20 30.11
T5-CG(clustring) 11.58 | 3.86 | 7.72 | 1647 20.95

Prompting GPT-3(one-shot) 11.19 | 3.73 | 9.13 | 16.57 20.75
GPT-3(few-shot) 13.89 | 4.63 | 11.06 | 20.07 25.50

BART-base 10.50 | 3.50 | 12.60 | 17.77 24.02
BART-Contrast(Triplet)/c.s | 15.50 | 5.17 | 15.27 | 23.67 30.45
BART-Contrast(Triplet)/e.d | 16.30 | 5.43 | 15.33 | 24.15 30.63
BART-Contrast(InfoNCE) | 16.00 | 5.33 | 1543 | 24.73 32.35
BART(Multi-task) 11.70 | 3.90 | 13.17 | 18.78 24.71

BART(CA) 820 | 2.73 | 11.13 | 15.72 22.25
BART(RAP) 9.10 | 3.03 | 10.20 | 15.00 20.06

Text2Text | T5-base 18.90 | 6.30 | 13.77 | 23.23 26.66
SciQ T5-Contrast(Triplet)/c.s 2220 | 7.40 | 16.60 | 28.58 33.72
T5-Contrast(Triplet)/e.d 24.80 | 8.27 | 17.50 | 30.62 35.25
T5-Contrast(InfoNCE) 25.00 | 8.33 | 17.73 | 31.42 36.68
T5(Multi-task) 21.20 | 7.07 | 14.27 | 2547 28.52

T5(CA) 11.00 | 3.67 | 5.40 | 13.70 15.98

T5(RAP) 12.80 | 427 | 9.30 | 16.73 19.87

CSG-DS T5-CG(beam) 20.30 | 6.77 | 14.33 | 26.20 31.30
T5-CG(clustering) 10.50 | 349 | 6.30 | 14.35 17.95

Prompting GPT-3(one-shot) 11.00 | 3.66 | 8.69 | 15.36 19.07
GPT-3(few-shot) 12.50 | 4.16 | 9.63 | 17.08 21.01

Table 2: Automatic evaluation results for two datasets MCQ and SciQ in three main approaches (e.g., Text2Text,
CSG-DS and Prompting). Triplet loss includes either (c.s) cosine similarity or (e.d) Euclidean distance. (CA) refers
to candidate augmentation, and (RAP) is retrieval augmented pre-training. The best scores are highlighted in bold.

Model Relevance | Difficulty | Fluency
T5(InfoNCE) 4.46 4.33 4.27
T5(Triplet)/e.d 4.03 3.58 4.02
GPT-3(few-shot) 3.79 3.55 3.53
T5-CG(beam) 3.32 2.93 2.79
T5-CG(clustering) 2.72 2.42 2.50
T5-base 241 2.26 2.18
T5(Multi-task) 2.44 2.27 2.19
T5(CA) 1.73 1.44 1.46
T5(RAP) 2.16 1.89 1.81
Ground-truth 3.81 3.92 3.60

Table 3: Human evaluations in MCQ and SciQ datasets.

rics, and T5 with objective Triplet, especially with
Euclidean distance, surpasses ground-truth distrac-
tors in relevance and fluency, indicating the ben-
efits of semantic fine-grained training in encoder-
decoder models. This improvement shows the suc-

cess of contrastive-based models in generating in-
context distractors in Text2Text architecture.

Then, few-shot learning and candidate genera-
tion framework with beam selection method are
successfully capable of generating relevant dis-
tractors, but they often underperform compared
to contrastive-based models due to the absence
of fine-grained semantic optimization. It is worth
to mention that CSG-DS(beam) usually performs
lower than few-shot learning and contrastive-based
approaches, including both InfoNCE and Triplet
objectives, because it usually generates distractors
that may seem plausible to the answer but are not
strongly related to the context of the question.

Furthermore, contrastive-based approach signif-
icantly outperforms the Text2Text methods, such
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Dataset Model P@1 | R@1 | F1@3 | MRR | NDCG@3
T5-base 1429 | 476 | 10.81 | 20.14 | 24.68
T5-Contrast(Triplet)/c.s 20.46 | 6.82 | 13.38 | 25.61 | 29.51
T5-Contrast(Triplet)/c.s/one-stage | 20.08 | 6.69 | 15.06 | 26.00 | 30.60
T5-Contrast(Triplet)/c.s/max 21.62 | 7.21 | 15.06 | 26.83 | 30.67

MCOQ T5-Contrast(Triplet)/e.d 22.01 | 7.34 | 14.16 | 26.96 | 30.46
T5-Contrast(Triplet)/e.d/one-stage | 20.46 | 6.82 | 12.74 | 25.42 | 29.05
T5-Contrast(Triplet)/e.d/max 20.85 | 6.95 | 13.26 | 25.23 | 28.21
T5-Contrast(InfoNCE) 2278 | 7.59 | 15.70 | 28.57 | 32.33
T5-Contrast(InfoNCE)/one-stage | 21.24 | 7.08 | 14.80 | 26.64 | 30.64
T5-Contrast(InfoNCE)/max 16.99 | 5.66 | 11.71 | 22.46 | 27.09
T5-base 18.90 | 6.30 | 13.77 | 23.23 | 26.66
T5-Contrast(Triplet)/c.s 22.20 | 7.40 | 16.60 | 28.58 | 33.72
T5-Contrast(Triplet)/c.s/one-stage | 23.90 | 7.97 | 17.33 | 30.58 | 35.91
T5-Contrast(Triplet)/c.s/max 2290 | 7.63 | 17.03 | 29.23 | 34.27

SciQ T5-Contrast(Triplet)/e.d 24.80 | 8.27 | 17.50 | 30.62 | 35.25
T5-Contrast(Triplet)/e.d/one-stage | 24.80 | 8.27 | 17.33 | 30.33 | 34.62
T5-Contrast(Triplet)/e.d/max 24.50 | 8.17 | 17.07 | 30.38 | 35.28
T5-Contrast(InfoNCE) 25.00 | 8.33 | 17.73 | 31.42 | 36.68
T5-Contrast(InfoNCE)/one-stage | 24.90 | 8.30 | 17.50 | 31.23 | 36.33
T5-Contrast(InfoNCE)/max 2540 | 8.47 | 16.70 | 30.83 | 35.26

Table 4: Ablation experiment results on both MCQ and SciQ datasets using the T5 model.

as multi-task learning and retrieval augmented pre-
training. While multi-task learning shows slightly
better results than T5-base, recent Text2Text meth-
ods are significantly more vulnerable to generating
low-relevance distractors to the context of the ques-
tion compared to the ground truth. These results
demonstrate the essential role of contrastive learn-
ing in effectively aligning Text2Text models to DG.

4.6 Ablation Study

We conduct an ablation study as the results outlined
in Table 4. We propose two contrastive objectives,
and the Triplet loss incorporates cosine similarity
or Euclidean distance. We also utilize mean or max
pooling functions and a two-stage training strategy.
Replacing the mean pooling function with max
pooling in the T5-Contrast methods using InfoNCE
and Triplet loss across both datasets shows different
results. In the InfoNCE objective, max pooling gen-
erally underperforms compared to mean pooling
across most metrics. With Triplet cosine similarity,
max pooling slightly improves the performance;
but it reduces with Triplet Euclidean distance.
Removing the first stage and directly training
the model with the second stage (i.e., contrastive
loss and generation loss) in T5 generally shows a
decline in performance across all metrics in both
datasets, indicating that the complexity of the two-
stage process is beneficial for the InfoNCE. Con-
versely, the one-stage Triplet model with cosine

similarity presents improvements in several met-
rics, particularly in the SciQ dataset, while the one-
stage Triplet model with Euclidean distance shows
a decline in performance across both datasets. All
ablated variants still outperform T5-base in all met-
rics, indicating the robustness of CL in DG.

4.7 Case Study

Table 5 presents a case study for the generated
distractors based on ten models. These mod-
els include contrastive-based methods (InfoNCE,
Triplet), prompting-based generation (few-shot),
candidate set generation and selection frame-
works (beam search and clustering), Text2Text ap-
proaches (multi-task learning, candidate augmen-
tation, and retrieval-augmented pre-training), and
the ground-truth distractors for comparison.
Initially, T5-base model and recent Text2Text
approaches obviously generate distractors that lack
semantic relevance to the given question and are
less similar to the ground-truth distractors. In T5-
base model, the distractors (air, light, air) in exam-
ple (1) might seem plausible to the answer (water),
but they are not contextually relevant to the ques-
tion (the common term for the chemical formula
H>0 ...etc), that are mostly related to chemical
elements. In addition, the distractors (ice, moon,
planet) in example (2) might be contextually plau-
sible to the answer (earth), but fail to maintain
meaningful semantic connection to the subsequent
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The common term for the

(1) Question [Answer] chemical formula H>O is [water]

Models Generated Distractors
T5(InfoNCE) [helium, nitrogen, carbon]
T5(Triplet)/e.d [nitrogen, carbon, oxygen]

GPT-3(few-shot)
T5-CG(beam)
T5-CG(clustering)

[carbon dioxide, nitrogen, oxygen]
[carbon, oxygen, gas]
[carbon, air, ions]

T5-base [air, light, air]
T5(Multi-task) [air, ice, gas ]
TS5(CA) [water]

T5(RAP) [air, electricity, gas ]

Ground-Truth [hydrogen, air, oxygen]

The only known planet with large

2 ion [Ans .
(2) Question [Answer] amounts of water is [earth]

Models Generated Distractors
T5(InfoNCE) [Mars, Venus, Jupiter]
T5(Triplet)/e.d [earth, moon, planet]

GPT-3(few-shot)
T5-CG(beam)
T5-CG(clustering)

[Venus, Mars, Mercury]
[moon, planet, earth]
[planet, ice]

T5-base [ice, moon, planet]
T5(Multi-task) [moon, moon]
T5(CA) [earth]

T5(RAP) [sun, moon, planet]

Ground-Truth [Saturn, Jupiter, Mars]

Table 5: Examples from MCQ for DG by ten models.

question (the only known planet with large amount
of water is ...etc), which are mostly related to the
specific name of planets.

Contrastive-based approach shows the benefits
of capturing semantic features from given question-
answer and distractor pairs to generate in-context
relevant distractors. The InfoNCE-based approach
presents remarkable distractors in both examples.
The distractors (helium, nitrogen, carbon) in exam-
ple (1) and the distractors (Saturn, Jupiter, Mars)
in example (2) are strongly relevant to the context
of the questions and closely similar to the ground-
truth distractors. Triplet/e.d shows varied success.
Unlike example (2), only example (1) output is rel-
evant to the question. This outlines the benefit of
InfoNCE loss compared to Triplet loss.

While few-shot learning generates promising dis-
tractors in both questions, the contrastive based-
approach with InfoNCE objective learning consis-
tently outperforms candidate generation and selec-
tion framework, including both beam search and
clustering approaches. In addition, InfoNCE-based
contrastive objective with Text2Text architecture
show remarkable improvement in generating high-
quality in-context distractors for both questions
compared to recent Text2Text methods. We in-
clude additional examples in Table 14 for MCQ
and Table 15 for SciQ in App. B.

5 Conclusion

We propose a distractor generation model that in-
tegrates contrastive learning in a Text2Text archi-
tecture to better train pre-trained encoder-decoder
models for generating relevant distractors for
multiple-choice and fill-in-the-blank questions. We
explore InfoNCE and Triplet losses, as contrastive
objectives, with the generation task to align seman-
tically similar question-answer and distractor pairs
closer in feature space while distancing negative
pairs. This joint training improves the models to
capture semantic features to generate in-context dis-
tractors. We validate our work through automatic
and manual evaluations across two datasets and
recent state-of-the-art approaches. The contrastive-
based approach represents a strong baseline model
and an insightful contribution to the DG field. It
shows the success in improving the automatic re-
sults and the quality of generated distractors.

Limitations

We identify the following limitations of our re-
search work. While contrastive learning has en-
hanced the semantic alignment between gener-
ated distractors and human-created ones, Text2Text
models are still vulnerable to generating distractors
that are either similar to the answer, repetitive, or
semantically valid as potential answers. Further-
more, automatic evaluation metrics primarily rely
on token-level matching to ground-truth distractors,
failing to fully capture the quality of the generated
distractors. Although contrastive learning showed
a significant improvement over the candidate gen-
eration and selection framework, the latter often
generate a more diverse set of distractors. We hope
our work will encourage the community to explore
integrating contrastive learning for a novel selec-
tion method within these frameworks. Remarkably,
our work still provides a strong baseline approach
for the distractor generation field.
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A Text2Text Architecture Methods

We utilize recent Text2Text distractor generation
approaches. First, we integrate multi-task learning
and candidate augmentation methods, proposed by
Wang et al. (2023), and retrieval augmented pre-
training, suggested by Yu et al. (2024). The fol-
lowing sections describe our implementation of the
strategies for fair comparison settings.

A.1 Multi-Task Training

We utilize two tasks, including distractor gener-
ation and answer selection, to train a generative
model M, as illustrated in Figure 4. For a given
query Q, answer A and set of distractors D =
{di,da,...,dn}, we construct two forms of in-
puts. The first is formed as Text2Text generation
objective that starts with label "generate distrac-
tors" and defined as M(Q [SEP] A) — D. The
second input is formed as finding an answer that

starts with label "choose answer" and defined as
M(Q [SEPI{A, D}) — A.

Saturn, Jupiter, Mars earth

| l

T\ Decoder /
\ Encoder /

Task (1) ‘ Task (2) ‘

"generate distractors :
{The only known planet
with large amounts of
water is [MASK]} [SEP]
[earth]

"choose answer : {The
only known planet with
large amounts of water is
[MASK]} [SEP] [earth,
Saturn, Jupiter, Mars]

Figure 3: Multi-Task Learning.
A.2 Candidate Augmentation

We observe the effectiveness of few-shot learn-
ing in generating in-context distractors, as demon-
strated in Table 5; therefore, we utilize this ap-
proach for candidate augmentation. This approach
is also practical for both fill-in-the-blank and
multiple-choice questions than masked language
models (MLM) (Devlin et al., 2019) that mainly
covers generating distractors for mainly fill-in-the-
blank (Chiang et al., 2022) task. Initially, we gen-
erate three candidates for augmentation and further
examine the impact of expanding to K candidates,
as shown in Table 6. Candidate augmentation often
introduces noise into the training process (Wang
etal., 2023; Yu et al., 2024), leading to a decline in
distractor quality instead of improvement.

Saturn, Jupiter, Mars

l

[\ Decoder /

\ Encoder

Question: The only known
planet with large amounts of  candidates
water is [MASK], Moon, @
Mars, Sun, Mercury ....etc ]
Prompt

GPT-3

Figure 4: Candidate Augmentation.

K | P@1 | R@1 | F1@3 | MRR | NDCG@3
3 1347 | 1.16 | 4.56 7.34 10.93
5 |3.09 | 1.03 | 347 6.24 9.25
10 | 1.93 | 0.64 | 0.64 225 2.56

Table 6: K candidates augmentation in TS MCQ

A.3 Retrieval Augmented Pre-training

We utilize Wikipedia to expand the knowledge
of the selected datasets as proposed by Yu et al.
(2024). Since the retrieved datasets are not public,
we used each an answer and a distractor in datasets
to retrieve a sentence without repetition, then we
masked the answer with a [MASK] token, as illus-
trated in Figure 5. Table 7 shows the statistics of
the retrieved datasets, including MCQ and SciQ.

Saturn, Jupiter, Mars

l

f\ Decoder /

Encoder

Wikipedia

"Question : [MASK] is the third  pseuto i 8
il - W

planet from the Sun and the only sk @ o “}

% P

astronomical object known to
harbor life, Answer: earth ]

earth
Figure 5: Retrieval Augmented Pre-training.

Datasets Train | Valid | Test All
RAP-SciQ | 18,889 | 2,824 | 1,000 | 22,713
RAP-MCQ | 3,316 830 259 4,405

Table 7: Statistics of the retrieved datasets.
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B Analysis on Hyper-Parameters Ag | Ac | P@1 | R@1 | F1@3 | MRR | NDCG@3

0.1 10.1]19.69 | 6.56 | 14.03 | 25.48 29.70
In the following sections, we study the hyper- 0.2 1022046 | 6.82 | 14.16 | 26.51 31.19

parameters used in our approach. Sec. B.1 exam- 0.3 1031931 | 644 | 13.51 | 24.07 27.54
ines the influence of generation loss (\,) and con- 041042046 | 682 | 13.64 | 26.38 31.16

. . .. 05] 00| 2046 | 6.82 | 13.64 | 24.58 27.37
trastive loss (\.) weights on the InfoNCE objective, 0510512278 | 759 | 15.70 | 28.57 32.33

as defined in Eq. 7, on learning variations within 0005 1.16 | 039 | 154 | 245 3.61

the TS5 model. Then, Sec. B.2 details the effects 0.6 | 0.6 | 2046 | 6.82 | 14.54 | 26.58 3133
of temperature (7) in the InfoNCE loss and mar- 0.7 | 0.7 | 20.08 | 6.69 | 13.90 | 25.55 |  29.64
gin (m) in the Triplet loss as defined in Eq. 3 and 08082008 6.69 | 1506 | 26.71 31.66

. 09109 | 19.69 | 6.56 | 12.87 | 25.10 29.15
Eq. 5, respectively. The hyper-parameters are stud-

ied both the MC 4Scio d 1.0 | 1.0 | 19.31 | 6.44 | 13.26 | 24.13 27.71
led across both the Q and SciQ datasets. Table 8: A\, and A, settings on TS5 InfoNCE at MCQ.

B.1 Loss Weights A¢ | A\c | P@1 | R@1 | F1@3 | MRR | NDCG@3

Adjusting the weights of the generation loss A, 0.1|0.1]2500 833 | 18.13 | 31.48 |  36.64
and contrastive loss A. in the TS model, using the 0210272570 | 857 | 17.60 | 31.55 36.22

. .. . . 0.3 03] 2550 | 850 | 18.03 | 31.95 37.08
InfoNCE contrastive objective, resulted in varied 041042360 7.87 | 17.60 | 3042 3505

outcomes across both the MCQ and SciQ datasets. 051001 2430 | 810 | 17.70 1 3035 35.16
Firstly, Table 8 presents the results in the MCQ 0.5]0.5 2500 | 833 | 17.73 | 31.42 36.68
dataset. The optimal performance is achieved when 00]05] 090 | 030 | 1.07 | 18I 2.50

both . and ), are set to 0.5. Secondly, Table 9 83 83 iiég g(l)g };2; igzz igﬁ
outlines the resul.ts in the SciQ dgtaset. Unlike the 08|08 l2500! 833 | 1750 | 3073 35.03
MCQ dataset, SciQ achieves optimal performance 0909|2340 780 | 17.50 | 30.12 3578

metrics - P@1 and R@1 with both A, and A, set to 10| 1.0 | 24.10 | 8.03 | 16.87 | 30.12 35.06

0.2,Fl1@3 at 0.1, and MRR and NDCG@3 at 0.3. Table 9: A4 and A, settings on TS InfoNCE at SciQ.
Then, both MCQ and SciQ datasets show a slight

7 | P@1l | R@1 | F1@3 | MRR | NDCG@3

decrease when the contrastive loss is omitted in the

second stage of training, underscoring the impor-

tance of contrastive loss weight in the task of dis- 0.1')2278 | 7.59 | 15.70 | 28.57 32.33
. ,g 0.5 | 20.85 | 6.95 14.80 | 26.71 31.12

tractor generation at pre-trained encoder-decoder 10 | 2124 | 708 | 1493 | 2542 2797

0.08 | 18.92 | 6.31 | 13.51 | 25.16 30.24

models. Notably, the performance significantly de-

Table 10: 7 on T5 InfoNCE loss at MC
teriorates when the generation loss ), is set to 0.0 T Q

in the second stage, highlighting the crucial role of m | P@1 | R@1 | F1@3 | MRR | NDCG@3

generation loss in aligning T5 objectives with its 0.04 | 21.62 | 7.21 | 13.77 | 26.06 29.27

generative goals. 0.01 | 22.01 | 7.34 | 14.16 | 26.96 30.46
0.1 | 21.24 | 7.08 | 14.29 | 26.64 30.63
B.2 Temperature and Margin 0.4 | 20.08 | 6.69 | 1429 | 2542 29.33
Another crucial hyper-parameter impacting model Table 11: m on T5 Triplet loss (Euclidean) at MCQ.
performance is thf? tempe.rature (7'.) in the InfoNCE ~ T P@l | R@1 | F1@3 | MRR | NDCG@3
loss and the margin (m) in the Trlplet loss. 0.08 | 24.70 823 17.33 31.08 36.26

Table 10 presents the results of varying the tem- 01 12500 833 | 17.73 | 31.42 36.68
perature 7 for the InfoNCE objective in the TS 0.5 | 25.80 | 8.60 | 17.47 | 31.47 35.91
model within the MCQ dataset, with optimal per- 1.0 | 2390 | 7.97 | 17.70 | 30.52 36.04

formance observed at 0.1 across all automatic met- Table 12: 7 on T5 InfoNCE loss at SciQ.
rics. Table 11 outlines the performance of the T5-

Triplet/Euclidean model in the MCQ dataset, where m_| Pel | R@l | F1@3 | MRR | NDCG@3

the best results are achieved with margins ranging 0.04) 23.60 | 7.87 1 16.90 | 29.98 35.23
0.01 | 24.80 | 8.27 | 17.50 | 30.62 35.25

from 0201 to 0.1. In contrast, Table 12 sh0w§ that 0.1 | 2540 | 847 | 17.60 | 31.08 35.67
the optimal performance of the temperature in the 04 | 2470 | 823 | 17.00 | 30.15 34.47

SciQ dataset ranges between 0.1 and 0.5, while Ta-
ble 13 indicates that the best margin performance
in SciQ occurs at 0.1.

Table 13: m on TS5 Triplet loss (Euclidean) at SciQ
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Question [Answer] A [lead] is typically used to shield things from gamma rays

Models Generated Distractors
T5-Contrast(InfoNCE) [aluminum, copper, zinc]
T5-Contrast(Triplet)/e.d [aluminum, lead, copper]

GPT-3(few-shot) [aluminum, lead, copper]

T5-CG(beam) [glass, carbon, mercury]

T5-CG(clustering) [iron, metals, cellulose]

T5-base [helium, sulphur, carbon]

T5(Multi-task) [helium, carbon, aluminum]

T5(CA) [lead, helium, aluminum]

T5(RAP) [copper, zinc, copper]

Ground-Truth [gold, silver, aluminum)]

Question [Answer] [inches] of measurement is typically used for rainfall
Models Generated Distractors

T5-Contrast(InfoNCE) [grams, meters, liters]
T5-Contrast(Triplet)/e.d [grams, minutes, liters]

GPT-3(few-shot) [unit, method, scale]

T5-CG(beam) [kilograms, meters, grams]

T5-CG(clustering) [kilograms, meters, degrees]

T5-base [meters, meters]

T5(Multi-task) [meter, kilometer, meters]

T5(CA) [inches, meters, meters]

T5(RAP) [meters, meters]

Ground-Truth [gallons, feet, pounds]

Question [Answer] Sugars are broken down into in your digestive system [glucose]
Models Generated Distractors

T5-Contrast(InfoNCE) [fats, vitamins, protein]
T5-Contrast(Triplet)/e.d [fat, protein, water]

GPT-3(few-shot) [proteins, vitamins, minerals]
T5-CG(beam) [glucose, fat, cellulose]
T5-CG(clustering) [sugar, fats, cellulose]

T5-base [lipids, fat, protein]
T5(Multi-task) [lipids, proteins, carbohydrates]
T5(CA) [glucose, glucosamine, protein]
T5(RAP) [cellulose, sulfonate, magnesium]
Ground-Truth [starch, insulin, nicotine]

Table 14: Examples of distractors generated by ten models from the MCQ dataset. The models include contrastive
learning (InfoNCE, Triplet), prompting (few-shot), candidate set generation and selection framework (beam search,
clustering), Text2Text methods (multi-task, candidate augmentation, retrieved augmented pre-training) and ground-
truth distractors.
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Question [Answer] A cochlear implant aims to restore loss of what sense? [hearing]

Models Generated Distractors

T5-Contrast(InfoNCE) [visual, smell, touch]
T5-Contrast(Triplet)/e.d [vision, touch, taste]
GPT-3(few-shot) [taste, touch, smell]
T5-CG(beam) [hearing, senses, vision]
T5-CG(clustering) [hearing, senses, smell]
T5-base [vision, vision loss, sight]
T5(Multi-task) [vision, smell, touch]
T5(CA) [hearing, vision, hearing]
T5(RAP) [vision, hearing, vision]
Ground-Truth [vision, touch, taste]
Question [Answer] Parasites infect the host’s what [red blood cells]
Models Generated Distractors

T5-Contrast(InfoNCE)
T5-Contrast(Triplet)/e.d

[white blood cells, marrow cells, plateletes]
[lungs, white blood cells, marrow cells]

GPT-3(few-shot) [digestive system, circulatory system, respiratory system]

T5-CG(beam) [white blood cells, lungs, blood cells]

T5-CG(clustering) [blood cells, liver]
[
[
[
[

T5-base lungs, intestines, brain]
T5(Multi-task) lungs, spleen, liver]
T5(CA) lungs, intestines, brain]

T5(RAP) white blood cells, white clots, red blood cell]
Ground-Truth [platelets, plasma, white blood cells]

A bee will sometimes do a dance
to tell other bees in the hive where to find what? [food]

Models Generated Distractors

Question [Answer]

T5-Contrast(InfoNCE)  [honey, eggs, shelter]
T5-Contrast(Triplet)/e.d [shelter, water, honey]
GPT-3(few-shot) [water, shelter, predators]
T5-CG(beam) [water, food, pollen]
T5-CG(clustering) [water, nectar, insects]
T5-base [water, food, water]
T5(Multi-task) [water, shelter, food]
T5(CA) [food, water, food]
T5(RAP) [water, food, water]

[

Ground-Truth enemies, water, honey]

Table 15: Examples of distractors generated by ten models from the SciQ dataset. The models include contrastive
learning (InfoNCE, Triplet), prompting (few-shot), candidate set generation and selection framework (beam search,
clustering), Text2Text methods (multi-task, candidate augmentation, retrieved augmented pre-training) and ground-
truth distractors.
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