@inproceedings{chen-etal-2025-equal,
title = "Equal Truth: Rumor Detection with Invariant Group Fairness",
author = "Chen, Junyi and
Wu, Mengjia and
Liu, Qian and
Sun, Jing and
Ding, Ying and
Zhang, Yi",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.584/",
pages = "10994--11007",
ISBN = "979-8-89176-335-7",
abstract = "Due to the widespread dissemination of rumors on social media platforms, detecting rumors has been a long-standing concern for various communities. However, existing rumor detection methods rarely consider the fairness issues inherent in the model, which can lead to biased predictions across different stakeholder groups (e.g., domains and originating platforms of the detected content), also undermining their detection effectiveness. In this work, we propose a two-step framework to address this issue. First, we perform unsupervised partitioning to dynamically identify potential unfair data patterns without requiring sensitive attribute annotations. Then, we apply invariant learning to these partitions to extract fair and informative feature representations that enhance rumor detection. Extensive experiments show that our method outperforms strong baselines regarding detection and fairness performance, and also demonstrate robust performance on out-of-distribution samples. Further empirical results indicate that our learned features remain informative and fair across stakeholder groups and can correct errors when applied to existing baselines."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-equal">
<titleInfo>
<title>Equal Truth: Rumor Detection with Invariant Group Fairness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Junyi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mengjia</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qian</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ying</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Due to the widespread dissemination of rumors on social media platforms, detecting rumors has been a long-standing concern for various communities. However, existing rumor detection methods rarely consider the fairness issues inherent in the model, which can lead to biased predictions across different stakeholder groups (e.g., domains and originating platforms of the detected content), also undermining their detection effectiveness. In this work, we propose a two-step framework to address this issue. First, we perform unsupervised partitioning to dynamically identify potential unfair data patterns without requiring sensitive attribute annotations. Then, we apply invariant learning to these partitions to extract fair and informative feature representations that enhance rumor detection. Extensive experiments show that our method outperforms strong baselines regarding detection and fairness performance, and also demonstrate robust performance on out-of-distribution samples. Further empirical results indicate that our learned features remain informative and fair across stakeholder groups and can correct errors when applied to existing baselines.</abstract>
<identifier type="citekey">chen-etal-2025-equal</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.584/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>10994</start>
<end>11007</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Equal Truth: Rumor Detection with Invariant Group Fairness
%A Chen, Junyi
%A Wu, Mengjia
%A Liu, Qian
%A Sun, Jing
%A Ding, Ying
%A Zhang, Yi
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F chen-etal-2025-equal
%X Due to the widespread dissemination of rumors on social media platforms, detecting rumors has been a long-standing concern for various communities. However, existing rumor detection methods rarely consider the fairness issues inherent in the model, which can lead to biased predictions across different stakeholder groups (e.g., domains and originating platforms of the detected content), also undermining their detection effectiveness. In this work, we propose a two-step framework to address this issue. First, we perform unsupervised partitioning to dynamically identify potential unfair data patterns without requiring sensitive attribute annotations. Then, we apply invariant learning to these partitions to extract fair and informative feature representations that enhance rumor detection. Extensive experiments show that our method outperforms strong baselines regarding detection and fairness performance, and also demonstrate robust performance on out-of-distribution samples. Further empirical results indicate that our learned features remain informative and fair across stakeholder groups and can correct errors when applied to existing baselines.
%U https://aclanthology.org/2025.findings-emnlp.584/
%P 10994-11007
Markdown (Informal)
[Equal Truth: Rumor Detection with Invariant Group Fairness](https://aclanthology.org/2025.findings-emnlp.584/) (Chen et al., Findings 2025)
ACL