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Abstract

The Transformer model has been increasingly
applied across various domains, driven by the
self-attention mechanism, which offers robust
data processing capabilities and has substan-
tially contributed to the advancement of the
model. In the self-attention mechanism, three
core matrices from the same data batch are
computed together to determine correlations
between input elements. Drawing inspiration
from the efficiency and stability conferred by
negative feedback structures in predictive con-
trol systems, the concept of vertical training
was introduced to integrate data from mul-
tiple batches. Accordingly, this paper pro-
poses an autoregressive with exogenous inputs
(ARX) approach for the self-attention mecha-
nism, transforming the Encoder block into a
negative feedback predictive control system. A
network architecture based on this method is
also proposed, enabling the autoregressive with
exogenous inputs for self-attention to transmit
data from batches at previous time points. The
effectiveness of the proposed approach is vali-
dated through comparative experimental evalu-
ations.

1 Introduction

In recent years, neural network research had grad-
ually become central to advancements in artificial
intelligence(Voulodimos et al., 2018; Zhao et al.,
2024). Computer Vision (CV) and Natural Lan-
guage Processing (NLP) had also assumed signifi-
cant roles in daily life(Fanni et al., 2023; Khurana
et al., 2023). Among the developments in these
fields, the emergence of self-attention (SA) mecha-
nisms and Transformer networks had addressed the
limitations imposed by short memory in traditional
attention mechanisms(Vaswani et al., 2017). The
application of SA to the CV domain had similarly
enhanced network performance(Li et al., 2023; Sun
et al., 2023). However, existing research on SA
mechanisms primarily concentrated on improving

computational efficiency and optimizing perfor-
mance(Zaheer et al., 2020; Hassani et al., 2023).
For instance, the Swin Transformer significantly
reduced computational overhead by minimizing
less relevant correlations in the SA mechanism,
yielding improved performance on several bench-
mark datasets(Liu et al., 2021; Dong et al., 2022).
These computational optimizations were generally
predicated on the importance of pixel correlation
calculations. While these methods reduced com-
putational load for distant pixel relationships, they
concurrently strengthen the correlation between
neighboring pixels. Some approaches also low-
ered the computational complexity by reducing the
dimensionality of low-rank core matrices, effec-
tively adjusting the image size(Shen et al., 2021;
Mayer et al., 2022). Although these techniques had
undeniably optimized the SA mechanism, there
remained a notable lack of a robust theoretical
foundation for SA and Transformer models. As
a result, the tuning of Transformer parameters and
architectures continued to rely heavily on empirical
experimentation.

To enhance the controllability of neural net-
works, several studies had explored the integra-
tion of neural networks with control theory, be-
ginning with common residual blocks, in an effort
to uncover underlying patterns(Chen et al., 2018;
Zhang et al., 2021). Control theory, having evolved
rapidly over the past decades from a branch of
mathematics into a distinct and widely applied dis-
cipline, was capable of integrating principles from
numerous fields. Predictive control theory, in par-
ticular, offered the advantage of improving both
control performance and efficiency by forecasting
future system behaviors and optimizing control in-
puts(Maciejowski and Huzmezan, 2007; Babayomi
et al., 2023). In pursuit of imparting controlla-
bility to neural networks, this study examines the
self-attention mechanism from the perspective of
predictive control systems. It is observed that the
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modified SA mechanism can be conceptualized as
an autoregressive with exogenous inputs (ARX)
model(Huang et al., 2023).

To introduce predictability into certain neural
networks, this paper re-evaluates the connections
between the self-attention mechanism and vari-
ous blocks within Transformers. By integrating
the residual structure in the Encoder block with a
modified SA mechanism, a method has been devel-
oped that enhances training accuracy with minimal
additional computational cost. Specifically, the
proposed method, termed autoregressive with ex-
ogenous inputs for self-attention (ARXSA), gains
temporal characteristics by constructing the self-
attention mechanism through core matrices gener-
ated at different time points. These matrices are
combined with the current matrix through a recur-
rent process, imparting temporal characteristics to
the exogenous inputs as well. To assess the feasi-
bility of this approach, the autocorrelation function
(ACF) is employed to validate its autoregressive
properties(Podulka et al., 2023; Wu et al., 2023).
The results confirm that the ARXSA method ex-
hibits autocorrelation, aligning it with the ARX
model. This suggests that ARXSA can adjust net-
work outputs based on historical data. To distin-
guish between conventional training methods and
those incorporating historical data, the concept of
unit time in the training process is introduced, de-
fined based on batches. Consequently, training
methods are classified into horizontal and vertical
training, depending on the unit time. By employing
the vertical training concept, the ARXSA method
transforms the Encoder block into a negative feed-
back predictive control system. The feedback path
of ARXSA improves both the efficiency and ro-
bustness of the overall network(Wu et al., 2020;
Wang et al., 2017, 2020). Furthermore, ARXSA is
integrated into Transformers to enhance their oper-
ational efficiency. The resulting Transformer can
be interpreted as a predictive control system with
autoregressive properties. Extensive experiments
on several widely-used benchmark datasets demon-
strate the efficacy of the proposed Transformer in
image classification and object detection tasks. Ad-
ditionally, its generality is validated in networks
similar to Swin Transformer. The contributions are
summarized as follows:

* The concept of vertical training is introduced,
differentiating it from traditional training
methodologies. This approach enables the

concurrent computation of data across multi-
ple batches, significantly improving both the
robustness and efficiency of the network.

* A novel theory is proposed to transform the
self-attention mechanism into an autoregres-
sive (AR) model, unveiling the strong connec-
tion between the SA mechanism and predic-
tive control systems. This theory not only pro-
vides a robust explanation for the performance
improvements achieved by the ARXSA mech-
anism in Transformers but also establishes a
theoretical foundation for the SA mechanism.

* Leveraging the insights gained from the
ARXSA perspective, a Transformer backbone
network grounded in predictive control theory
is developed. This backbone network, named
ARXFormer, integrates principles from both
disciplines, offering a theoretically driven and
highly effective approach.

2 Method

This section will systematically introduce predic-
tive control theory, the ARX model, and the ACF,
detailing the relationship between predictive con-
trol and the ARX model through illustrative ex-
amples. Next, the concept of unit time, which
is defined in relation to batch processing in neu-
ral network training, will be introduced. The unit
time will be followed by a description of two dis-
tinct training methods based on the unit time con-
cept. Subsequently, the integration of the ARX
model with the self-attention mechanism to form
the ARXSA method will be explained, and its au-
tocorrelation properties will be validated by ACF.
Lastly, a comprehensive overview of the network
architecture incorporating the ARXSA method into
the Transformer will be provided.

2.1 Control Systems and ARX Model

In practical applications, control systems exhibit
considerable diversity, with varying methods em-
ployed across different systems(Gong et al., 2020;
Huang et al., 2024). Furthermore, control prob-
lems in real-world scenarios are often continuous,
as systems require ongoing feedback from their out-
puts(Esterhuizen et al., 2020; Zhang et al., 2022).
However, solving continuous problems is highly
complex. It not only requires extensive computa-
tions but also involves cases where no solutions
exist at extremum points. To mitigate the impact
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of solving continuous functions on algorithms and
neural networks, we analyze the problem from a
discrete perspective, leveraging the independence
of batches. As a kind of statistical model, the au-
toregressive model is a prediction method based on
time series(Dijk et al., 2002). The basic form of
the model is as follows:

Yt = Q1Yt—1 + Q2Yi—2 + ... + apYi—pn + e, (1)

where y;—;(i = 1,2,...,n.) is the output of the
system at time ¢t — i a;(i = 1,2, ...,n.) is the coef-
ficient of the output and e; is the error term. There-
fore, the output of the AR model at time ¢ is the
weighted sum of the outputs of multiple historical
moments.

The ARX model is one of the predictive control
methods, combining the AR part and the exogenous
input (X) part. Its model can be represented as:

Yt = G1Yt—1 + A2Yt—2 + ... + AnYt—n
+ blut_l + bzut_Q + ...+ bmut_m
+ et (2)

where y;—;(i = 1,2, ...,n — 1) is the output of the
system at time t — 4, w;—j(j = 1,2,...,m — 1) is
the exogenous input of the system at time ¢, and
e; is the error term. Meanwhile, ¢ and j are the
autoregressive order (AR order) and the exogenous
variable order (X order) of the model. Based on AR
model, ARX model adds exogenous input which
also has autoregressiveness.

2.2 Autocorrelation Function

The autocorrelation function is applied to deter-
mine whether there is correlation at different time
lags in a time-dependent sequence. Specifically,
the ACF assesses whether there is autocorrelation
by inputting the historical data of a variable itself.
The basic form of the ACF is as follows:

B Cov( Xy, X¢—p)
\/Var(Xt)Var(X,t,h)7

Ph 3)
where X;(i = 1,2,...,n)represents the time se-
ries being evaluated, and h represents the lag order.
Since the epochs of neural networks are often nu-
merous, the sample autocorrelation function can
also be employed. The expression is as follows:

E[(Xen — )X, — )]
Ph E[(X, -2

“

where (1 is the sample mean and E[] is the mathe-
matical expectation of the time series.

Xt Network Layer ot
fxo) ~

Figure 1: Residual structure of neural network.

The purpose of the ACF is to determine whether
a time series exhibits autocorrelation. The neces-
sary and sufficient conditions for employing ACF
on a time series are as follows:

¢ The mean and variance of the time series must
be constant.

* There should be no missing values in the time
series data.

* The length of the time series must be suffi-
ciently long.

The calculated results range is (—1 < p, < 1).
Meanwhile, there is a positive correlation when
(0 < pn < 1), there is a perfect positive correla-
tionwhen pp = 1, there is a negative correlation
when (—1 < pp < 0), there is a perfect negative
correlation when p;, = —1. and it indicates that
there is no autocorrelation when p;, = 0.

2.3 Horizontal Training and Vertical Training

Currently, the residual structure has been adopted
by most neural networks(He et al., 2016). Recent
work has demonstrated that residual structure can
be regarded as a special dynamic system(Weinan,
2017; Meunier et al., 2022; Zhu et al., 2023). For
a basic residual block, it can be written as follows
during a batch of training:

yr = ¢ + ), )

where z; is the input of the residual structure, f(z;)
is the method of parameter training in the residual
structure, and y; is the result of the sum of the
parameters after training and the input matrix of
the same shape.

The residual block in Fig 1 is the SA mechanism
in the Encoder block(Dosovitskiy et al., 2020; Liu
et al., 2021). In addition to the multi-head self-
attention (MHSA) layer, this block also includes a
layer normalization (LN) layer and a Dropout layer.
The LN is a normalization method that is inde-
pendent of the input content, and its computations
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Figure 2: Comparison between horizontal training and
vertical training based on the concept of unit time.

on the matrix are limited to scaling up or down
proportionally. Additionally, the output matrix of
the SA mechanism represents the significance of
inter-pixel relationships, which is not affected by
proportional scaling. Dropout is a method applied
to prevent overfitting by effectively multiplying a
randomly selected subset of parameters by zero.
The randomness in parameter computation serves
as a measure of the networks robustness. Within a
controlled range, the randomness can be regarded
as an error that follows a Gaussian distribution.
Therefore, both the LN module and the dropout
module do not affect the computation of the resid-
ual block. For the residual structure in Fig 1, it can
be written similarly to equation (5) as follows:

yr =z + fsa(xe), (6)

where fs4(z:) compose LN, MHSA and Dropout
layers.

The residual structure effectively prevents accu-
racy from decreasing when the network depth is
expanded(He et al., 2016). However, the residual
structures ability to adjust and trace network param-
eters exists only within the computation process
of a single batch. The time required for training
each batch in the network is not always the same,
so that real time cannot be defined as the unit of
time to segment the training progress. Fortunately,
except for the last batch, the size of each batch
remains constant throughout the training process.
Therefore, the period from when first batch enters

the network to when the second batch enters the
network was defined as a unit of time, denoted as .

In a typical network, input data is divided into
batches of equal size during the training process.
These batches form a sequence that waits and en-
ters the network sequentially for computation. The
distribution of the input data sequence during the
training process is shown in the upper figure of
Fig. 2. In the figure, the horizontal axis represents
the unit time, while the vertical axis represents
all the input data. Since the unit of time is de-
fined based on batches, the distribution of adjacent
batches during training appears as a linear function
with a near-zero constant term. However, batches
are independent of each other, and at the given time
t, only Batch; is processed by the network. We
define the direction of the sequence of independent
batches over time as the horizontal direction. The
training within one epoch is referred to as horizon-
tal training (HT).

Conversely, as shown in the lower figure of Fig 2,
when information from multiple batches is input
into the network simultaneously during training,
the batch sequences are combined. In the figure,
the horizontal axis still represents the unit time,
and the vertical axis represents all the input data.
The number of batches included at the same time
is referred to as the order. The below figure shows
the distribution of third-order input data at times
t—1,t,and t + 1. At time ¢, the information input
into the network consists of Batch;, Batch;—1 and
Batch;—s. At the sequence, the input data at any
given moment is distributed vertically. Therefore,
training within one epoch in this manner is referred
to as vertical training (VT).

2.4 Self-attention with ARX Model

In this section, the SA mechanism is employed
to integrate current and historical data, allowing
the networks training method to align with VT.
Then, when the AR order is set to 1, it will be
demonstrated that the Encoder block, employing
the ARXSA method, functions as a negative feed-
back predictive control system. Consequently, the
residual structure of the Encoder block is trans-
formed into an ARX model.

The self-attention mechanism can be represented
as:
QK"
Vg
where the three matrices @), K, and V' are generated
by the input data of the same batch(Vaswani et al.,

SA = softmax( )V, (7
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2017).

Algorithm 1 The process of insert K;_; matrix
Generate (¢, K;, V; from Batch;

if ¢! = 1 then
Li = aK; + BKi—1
Ky 1 =1L

else
Lt = OéKt + BKt
Ki 1=1L

end if

SA= softmax(QtL?)W

Vi

The overall process of ARXSA is shown in Al-
gorithm 1. Specially, when ¢ = 1, the K;_; matrix
does not participate in the computation. Mean-
while, the matrix K;_; does not participate in back-
propagation during the training process, but is only
responsible for transferring the matrix K at time
t — 1. Let the matrix obtained by adding K; and
K;_1 be Ly, then L, is expressed as:

Ly = oKy + BKi—1 + ey, (8)

where e; is the independent and identically noise
in training process(Semenova et al., 2022; Kosson
etal., 2024). « and 3 are the coefficients of K and
K;_1. From equation (8), it can be seen that with
the addition of the K;_; matrix, the [; matrix is
obtained by weighting matrices containing infor-
mation from both time ¢ and ¢ — 1. According to
Section 2.3, the ARXSA method forms a VT setup
in Fig 2 where information from two different time
points appears simultaneously within the network.

Based on the associative property of matrix mul-
tiplication, ()¢ can be added after separately mul-
tiplying with K; and K;_;. That process can be
written as:

QLY = aQ K] + BQUKE | + e, (9)

where e; is the independent and identically noise.
Due to the tiny value of e; in equation (8), multi-
plying it with (); does not significantly affect the
overall system. Furthermore, Q;, K; and K;_1 are
independent of each other. ); K; can be considered
as the autoregressive term in the ARX model, while
@ K;—1 can be considered as the exogenous input
term.

Therefore, the training process of the Encoder
block according to Fig 1 is shown in Fig 3. The
figure illustrates the data transmission direction at

oy

Encoder Block x Leq
w
8 - Y O
=

Encoder Block x Lt

Figure 3: The process of information matrix transmis-
sion between adjacent unit times..

time ¢ for an lag order of 1. As shown in Fig 4, the
residual structure can be converted into a negative
feedback structure according to VT. The K; matri-
ces of different unit times are saved and passed to
the data at adjacent moments for calculation.

K1, Kiegy .

X Encoder Block Ve
farxsa(xt)

Figure 4: Negative feedback structure of Encoder block
based on ARXSA.

Once the L;_; matrix is generated at time ¢ — 1,
it is directly passed to the data flow at time ¢t with-
out any additional computation or backpropagation
and is processed together in the Encoder block. The
L, matrix serves as a feedback path that returns
information to the forward path entering the En-
coder block. Meanwhile, the upper and lower parts
represent the same Encoder Block.

The "Encoder Block z" in the figure can be any
Encoder Block in the network, because every En-
coder Block performs the same processing. The
L;_1 obtained after the input data passes through
the MHSA will be passed to the input part of the
MHSA at the next moment. According to equation
(2) and (6), the process of Fig 3 can be expressed
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as:

Yt = ot + farxsa(zt)
=z + Dropout(ARX SA(Linear(LN (z))))
=z, + ARXSA(Linear(xt))
=z, + ARXSA(Q¢, Kt, Ki—1,V3)

QL

Vg

where the Linear() function maps x; into Q, Ky
and V; through the parameters. Therefore, the as-
sumption that the Encoder block with the ARXSA
method aligns to the negative feedback predictive
control system has been validated.

Additionally, to prove that the ARXSA method
belongs to the ARX model category, the following
additional conditions must be verified:

= x¢ + softmax( Wi, (10)

* The input sequence must be stationary.
* The model needs a definite AR order.
* The error terms must be independent.

* The input sequence must exhibit autocorrela-
tion.

Firstly, the Q);, K; and V; matrices generated by the
input data through the fully connected layer con-
form to the Kaiming normal distribution(He et al.,
2015), thus ensuring that the matrices involved in
the ARXSA method are stationary. Secondly, both
the AR order and lag order of the ARXSA method
are set to 1 in this work. Thirdly, most errors gener-
ated during the computation of neural networks are
independently and identically distributed Gaussian
noise, whose impact on the network is within an
acceptable range(Ghosh et al., 2017; Seltzer et al.,
2013). Finally, to determine whether the ARXSA
method meets the conditions of the ARX model,
it is necessary to employ the ACF to prove the
autocorrelation of the K; matrix.

Based on (4), the ACF of ARXSA can be written

as:
E[(Lirn — p)(Le — p)] (11)
E[(Lt — p)?] 7
where £ is the lag order of the ARXSA, p is the
mean of the input data and the textbf E[] function
represented the function for finding the mathemati-
cal expectation. With (8), the expected value of the
numerator in (11) can be expanded as:

E[(Lin — ) (Lt — )]
=E[(aK1p + Ligh—1 — )]
*E[(Ly + K1 — p)],

Ph =

(12)

where « and 3 are the coefficients of K; and K;_1.
Since the objects in each category of images in the
database are similar, Ky is approximately equal
to K;. Moreover, K; can be approximated as the
mean vector K. The (12) can be divided as:

E[(Lyn — ) (L — p)]
~ E[(aK — p)(aK — p)]
+E[(aK — 1) (K1 — )]
+E[(Lipn1 — p)(aK — p)]
+E[(Lirn1 — p)(BKi—1 — p)],
(13)

where the approximate value of K is within a rea-
sonable range. Since K is a constant, the first term
in the (13) is the variance of oK. The remaining
three terms can be combined into one term based
on the linear property. The numerator of the ACF
can be simplified as:

Num(pp) ~ Var(aK)

+ E[(Lin—1 — p)(BK—1 — p)].
(14)

According to the calculation principle of variance,
both sides of the (8) is written as:

Var(Ly) = Var(aKy)
+ Var(BKi—1)

+ 2Cov(aKy, fKi—1), (15)

where the C'ov() is the covariance function. The
denominator of (11) can be simplified as:

Den(pp) ~ Var(aK) + Var(8K;—1). (16)

Therefore, the ACF formula (11) can be simplified
as:

on Var(aK) + E[(Liyn—1 — 1) (BKi—1 — p)]
Var(aK) + Var(8Ki—1) '

7

Finally, when the lag order of the ACF is set to 1,

the calculation of the ACF can be further simplified

under the conditions of recurrence relationships
and data similarity, as follows:

N Var(aK)
~ Var(aK) +Var(BK;_1)

41 (18)
Since the first term in the numerator is the same as
the denominator, the range of the second term in the
denominator determines the range of p;. Besides,
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the input data x; that applied to generate the K;
matrix is normalized before being passed to the
Linear() function, the variance of the K; matrix at
any given time is determined by the weight matrix.
Additionally, the variance of the weight matrices
at two consecutive unit time is nearly identical.
Therefore, p; can be expressed as:

(07

Pyl 4

p1L~
where the o and (8 are set to 1.3 and —0.3 re-
spectively. In the presence of Gaussian noise,
the ACF result of the ARXSA method is approx-
imately equal to 1. This result indicates that the
ARXSA method demonstrates perfect autocorre-
lation. Therefore, the Encoder block gains more
efficiency and accuracy within Transformers ro-
bustness(Bhojanapalli et al., 2021).

2.5 ARXFormer

Based on the above arguments, the ARXSA method
is incorporated into the Transformer network to
form a neural network with autoregressive prop-
erties. Given the high efficiency of patch-based
computation, the normal Swin Transformer was
selected as the backbone network.

In the network, the interaction of a Stage module
with information from adjacent unit time is illus-
trated in Fig 5. In the ARXFormer with order 1, the
input data is transformed into three matrices—Q),
K, and V,—after passing through the embedding
layer. The @Q); and V; matrices are directly for-
warded to the MHSA module for subsequent com-
putation. In contrast, the K; matrix is first passed
through the negative feedback path, where it is
combined with L;_; matrix to produce a weighted
sum, denoted as ;. This L; matrix is then also for-
warded to the MHSA module to participate in the
self-attention computation alongside the ¢); and
(); matrices. The resulting attention values are
passed to the next network layer, while the input
information at time ¢ is stored in the L matrix to
be weighted with future information. Finally, the
output for the target task is produced after passing
through the MLP layer.

3 Experiments

In this section, we selected several popular vision
benchmarks to verify the effectiveness of the pro-
posed ARXFormer, including image classification,
object detection and text classification. Each set of
experiments is validated multiple times and we will

evaluate it by the average performance and the sin-
gle best performance. Since the ARXSA method
does not increase the number of parameters, the
number of parameters and FLOPs of the same net-
work will not change regardless of whether the
ARXSA method is used or not.

3.1 Image Classification

The pre-trained files were applied as base weights
in the experiments. Each experiment was set to 50
epochs, with the goal of evaluating the best per-
formance of different methods by comparing the
results obtained within a fixed number of epochs.
Each batch size was set to 64. To ensure that the
experimental results are more representative, three
methods were considered: MHSA, Compare, and
ARXSA. MHSA represents the multi-head self-
attention mechanism, while ARXSA is the pro-
posed method. Compare represents the method of
adding a K matrix without interacting information
with adjacent batches. To examine model behavior
under limited data, we adopt widely used small- to
medium-scale datasets: CIFAR-100 (Krizhevsky
etal., 2009), CUB-200 (Wah et al., 2011), Dog-120
(Dataset, 2011), Flower-102 (Nilsback and Zisser-
man, 2008), and Food-101 (Bossard et al., 2014).

The upper table in Table 1 presents the average
precision obtained on different datasets employing
the basic Swin Transformer architecture with the
three different methods. The lower table in Table 1
shows the highest precision achieved in each set of
multiple experiments under the same configuration.
Similarly, the models equipped with the ARXSA
method consistently achieved near-optimal results
in both average precision and highest precision. Be-
cause the number of parameters and FLOPs do not
change under different methods, the comparison of
these two parameters is not given. For example, in
Flower-102, the number of parameters and FLOPs
in the network are shown in Table 2, respectively.

To determine the optimal combination of the
parameters « and 3, a comprehensive ablation ex-
periment is designed. In Table 3, we systemati-
cally varied each parameter while keeping the oth-
ers fixed, isolating their individual contributions
to model performance. It can be seen that the
ARXSA method performs best when o = 1.3 and
B =-0.3.

3.2 Object Detection

Object detection subtask experiments were con-
ducted on the VOC dataset, including the 2007
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Figure 5: The overall framework of the network with ARXSA method.

Table 1: Average and highest accuracy of the same neural network utilizing different methods on different datasets.

Method Flower102 CUB200 CIFARI00 Dogl20 Foodl01
MHSA 88.25 70.04 67.48 69.59 84.55
Compare 87.63 70.28 67.07 70.34 82.19
ARXSA(Ours) 88.54 70.79 68.03 70.40 87.69
Method Flower102 CUB200 CIFAR100 Dogl20 Foodl01
MHSA 88.53 71.11 68.17 71.33 84.90
Compare 87.73 71.06 67.76 71.45 84.28
ARXSA(Ours) 90.00 71.66 68.46 71.36 88.01

Table 2: Parameters and FLOPs on the Flower-102
dataset.

Method parameters(M) FLOPs(G)
MHSA 27.57 4.37
Compare 27.57 4.37
ARXSA(Ours) 27.57 4.37

and 2012 versions (Redmon et al., 2016). MHSA,
Compare group and ARXFormer were integrated
into the same architecture as the backbone sepa-
rately(Ren et al., 2015). To test the generalizability
of ARXFormer, the settings of each group were
always the same. The network employed the SGD
optimizer with a weight decay of 0.0005, and pre-
trained weights were also employed as initializa-
tion parameters.

Comparative experiments were conducted em-
ploying the YOLO architecture on the VOC

dataset(Redmon et al., 2016). To eliminate the in-
fluence of different settings within the architecture,
all settings in the comparative experiments were
kept consistent. The upper table of Table 4 presents
the average results of multiple experiments, while
another table shows the best results. It can be
observed that the architecture equipped with the
ARXSA method consistently provides the best per-
formance.

3.3 Text Classification

In Table 5, text classification subtask experiments
were conducted on AG News, IMDb, and DBpedia
datasets (Zhang et al., 2015; Maas et al., 2011;
Lehmann et al., 2015). BERT was mainly used as
the carrier network. Similarly, the presets used in
the parts other than the SA module are the same.
The pre-trained files used are also the same.
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Table 3: Average accuracy of different parameters on different datasets.

Parameters Flower102 CUB200 CIFARIO0 Dogl20 Foodl01

a=11,5=-01 86.31 65.27 67.62 68.94 82.29

a=13,8=-0.3 88.54 70.79 68.03 70.40 87.69

a=15,=-05 82.71 66.08 67.11 65.88 75.57

a=195=-09 83.68 60.25 63.51 66.16 75.03
Table 4: Average and highest results of YOLO utilizing [ jmitation

different methods on the same dataset.

Method mAP AP;y APrs
MHSA 59.71 72.52 46.88
Compare 59.73  72.60 46.84
ARXSA(Ours) 59.87 72.64 47.12
Method mAP APsy APqs
MHSA 59.90 7270 47.10
Compare 60.21 7290 47.50
ARXSA(Ours) 60.02 72.90 47.10

Table 5: Average and highest results of BERT utilizing
different methods on the same dataset.

Method AG News IMDb DBpedia
MHSA 93.58 88.04 99.07
Compare 87.86 88.09 99.02
ARXSA(Ours) 94.03 88.11 99.07
Method AG News IMDb DBpedia
MHSA 93.61 88.05 99.10
Compare 87.97 88.10 99.04
ARXSA(Ours) 94.45 88.17 99.13

4 Conclusion

With the recent prevailing trend of the Transformer,
we envisioned that integrating negative feedback
predictive control theory into the self-attention
mechanism to enhance the overall efficiency and
stability of the network. Thus, the concept of verti-
cal training and employed it to define the unit time
for network training was introduced. Consequently,
we proposed and validated the ARXSA method,
which transforms the Encoder block in the network
into a negative feedback predictive control system.
Finally, the ARXSA method was integrated into
different network frameworks to verify the applica-
bility and stability. In future work, we will study
the performance of ARXSA under different AR
orders and study the extension of such methods to
learning methods of non-SA mechanisms.

The experiments demonstrated that the ARXSA
method outperforms MHSA in Swin-like Trans-
formers, and also proved that networks that employ-
ing ARXFormer as the backbone exhibit higher
stability and computational efficiency. However,
ARXSA cannot be applied to ViT-like networks.
Since the core matrices in ViT have a high proba-
bility of having a determinant of zero, the matrices
are almost always non-invertible. As the result,
the autocorrelation between core matrices across
different batches nearly be zero.
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