
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 11163–11174
November 4-9, 2025 ©2025 Association for Computational Linguistics

Auto-SLURP: A Benchmark for Evaluating Multi-Agent Frameworks in
Smart Personal Assistant

Lei Shen
GEB Tech

lorashen17@gmail.com

Xiaoyu Shen*

Ningbo Institute of Digital Twin, EIT, Ningbo
xyshen@eitech.edu.cn

Abstract

In recent years, multi-agent frameworks pow-
ered by large language models (LLMs) have
advanced rapidly. Despite this progress, there
is still a notable absence of benchmark datasets
specifically tailored to evaluate their perfor-
mance. To bridge this gap, we introduce Auto-
SLURP, a benchmark dataset aimed at evalu-
ating LLM-based multi-agent frameworks in
the context of smart personal assistants. Auto-
SLURP extends the original SLURP dataset—
initially developed for natural language under-
standing tasks—by relabeling the data and in-
tegrating simulated servers and external ser-
vices. This enhancement enables a compre-
hensive end-to-end evaluation pipeline, cov-
ering language understanding, task execution,
and response generation. Our experiments
demonstrate that Auto-SLURP presents a sig-
nificant challenge for current state-of-the-art
frameworks, highlighting that truly reliable
and intelligent multi-agent personal assistants
remain a work in progress. The dataset is
available at https://github.com/lorashen/
Auto-SLURP.

1 Introduction

Multi-agent frameworks built on large language
models (LLMs) have seen rapid development in
recent years (Li et al., 2023; Su et al., 2024; Hong
et al., 2024; Wu et al., 2023; Liu et al., 2024b).
These frameworks provide general-purpose infras-
tructures that facilitate the construction of multi-
agent systems through modular architectures, com-
munication protocols, and coordination strategies.
Despite the rapid progress, there remains a notice-
able gap in standardized benchmarks tailored to
evaluate the effectiveness of these frameworks.

While a number of benchmarks have been
proposed to assess the tool-use capabilities of
LLMs (Qin et al., 2023; Chen et al., 2023c; Zhu

*Corresponding Author

et al., 2023; Zhuang et al., 2024; Ye et al., 2024),
they primarily focus on individual LLMs and ad-
dress only a narrow slice of functionality. As a re-
sult, they do not adequately reflect the complexity,
interactivity, and coordination challenges inherent
in real-world multi-agent scenarios.

To capture broader dimensions of agent behav-
ior, several social and interactive benchmarks have
recently been proposed. For example, Coopera-
tion (Abdelnabi et al., 2023), SOTOPIA (Zhou
et al., 2024), AgentSense (Mou et al., 2024),
and SocialBench (Chen et al., 2024) create so-
cial environments to evaluate agents’ interper-
sonal and collaborative abilities. In parallel,
AgentBench (Liu et al., 2023) targets reason-
ing and decision-making skills in domains such
as coding, web navigation, and e-commerce.
Other works, including MAgIC (Xu et al., 2023),
CUISINEWORLD (Gong et al., 2024), Bat-
tleAgentBench (Wang et al., 2024), CivRealm (Qi
et al., 2024), and LegalAgentBench (Li et al., 2024),
introduce game-based or domain-specific settings
to assess multi-agent interaction.

Meanwhile, benchmarks in embodied environ-
ments—such as AgentBoard (Ma et al., 2024),
ALFWorld (Shridhar et al.), the ThreeDWorld
Transport Challenge (Gan et al., 2021), and
WAH (Puig et al., 2020)—focus on grounding
agents in physical or simulated worlds.

However, these efforts are typically designed to
evaluate individual LLMs’ task execution and in-
teraction capabilities in multi-agent systems, rather
than to assess the performance or flexibility of
open-source multi-agent frameworks. Moreover,
the highly integrated nature of game-based and em-
bodied environments often makes them difficult to
adapt for evaluating general-purpose frameworks,
limiting their reusability and extensibility (Xu et al.,
2020; Zhang et al., 2021).

Taken together, although significant progress has
been made in benchmarking agent capabilities, ex-

11163

https://github.com/lorashen/Auto-SLURP
https://github.com/lorashen/Auto-SLURP

User could you please email john saying i’m on leave
re-labeled original

Intent email_sendemail email_sendemail
Slots to_person: john, content: i’m on leave person : john

Table 1: The example of the annotations in Auto-SLURP.

isting efforts do not sufficiently address the unique
needs of evaluating multi-agent frameworks. This
highlights a pressing need for a comprehensive and
flexible benchmark that can rigorously and fairly
assess the effectiveness of LLM-based multi-agent
infrastructures across a range of scenarios.

One particularly compelling application is the
smart personal assistant—an AI system capable
of understanding natural language and perform-
ing tasks on behalf of users. This vision has long
captured the imagination of both researchers and
the public (Edu et al., 2020; Hoy, 2018). Despite
significant progress in AI and the emergence of
powerful LLM-based multi-agent systems, this vi-
sion remains underexplored in the context of multi-
agent evaluation. Personal assistants are expected
to handle a wide range of tasks, such as checking
the weather, sending emails, managing calendars,
and controlling IoT devices. Achieving this level
of functionality demands not only natural language
understanding (NLU), but also sophisticated ca-
pabilities in decision-making, reasoning, tool use,
coordination, and adaptability (Del Tredici et al.,
2021; Shen et al., 2022).

To help fill this gap, we introduce Auto-SLURP,
a benchmark designed to evaluate the effectiveness
of LLM-based multi-agent frameworks in building
smart personal assistants. Auto-SLURP is built
upon the SLURP dataset (Bastianelli et al., 2020;
Liu et al., 2021), originally created for natural
language understanding in smart home scenarios.
We extend SLURP’s original intent-slot structure
to support comprehensive end-to-end evaluation:
from language understanding and intent interpreta-
tion, to task execution and response generation. To
better reflect the complexity of real-world interac-
tions, we relabel the slots and restructure the data
to align with complete user-interaction pipelines.

Auto-SLURP simulates realistic assistant inter-
actions by integrating external services and sim-
ulated servers, enabling thorough evaluation of a
framework’s ability to handle complex, multi-step
operations. These operations include API access,
state management across modules, and coordina-

tion between agents with specialized responsibili-
ties. This setup allows us to assess not just whether
multi-agent frameworks can interpret user com-
mands, but also whether they can effectively or-
chestrate the backend processes needed to carry
them out.

The dataset spans a wide range of task do-
mains, such as calendar management, media play-
back, transportation scheduling, and information
retrieval. This diversity ensures that Auto-SLURP
serves as a robust and representative benchmark
for evaluating both the flexibility and reliability
of multi-agent frameworks in realistic scenarios.
Our experimental results demonstrate that Auto-
SLURP presents significant challenges even for
state-of-the-art multi-agent frameworks. These
findings underscore the complexity involved in
achieving seamless, intelligent assistant behavior
and reveal that we are still some distance away
from building fully dependable AI-based personal
assistants.

2 Dataset Construction

Creation of queries and annotations We make
modification to the SLURP dataset, which is col-
lected for the development of smart personal as-
sistants. Personal assistant systems are inherently
complex, as they must interpret and respond to a
wide variety of user commands. SLURP was ini-
tially released for natural language understanding
tasks (Weld et al., 2022; Yang et al., 2017; Shen
et al., 2017; Su et al., 2018; Huang et al., 2021),
with a focus on intention detection and slot filling.
In traditional methods, intent detection is treated
as a classification problem, while slot filling is han-
dled as a sequence-to-sequence task. For example,
given the user query "play kari jobe for me", the
intent is "play_music", and the slot is "artist_name:
kari jobe". In SLURP, the slots are limited to the
entities explicitly mentioned in the utterance, omit-
ting other crucial information required to success-
fully execute the command. This omission can lead
to incomplete or failed task execution.

To adapt SLURP for our specific use case, we

11164

slot_name description
descriptor additional constraints mentioned in the utterance
content the content of an email or a search query
from_person the sender in an email
to_person the recipient in an email
from_relation the sender’s relationship to the user
to_relation the recipient’s relationship to the user
setting an action that changes the state or configuration of a device

Table 2: Newly added slots and their definitions.

retain only the user queries and their corresponding
intents from SLURP, while re-labeling the slots.
Specifically, we enrich the slot information by
adding new slots and refining existing ones to cap-
ture all the information necessary for backend task
execution. We also ensure that the slot structures
are compatible with LLMs, which typically gener-
ate outputs rather than classify them. Table 1 illus-
trates an example of our modified samples, with
our re-labeled version in the middle column, and
the original SLURP sample in the right column.

The dataset encompasses a wide range of tasks,
from straightforward actions like setting calendars
or playing music, to more complex operations such
as information retrieval or handling transportation-
related commands. We randomly select 1,000 sam-
ples from the SLURP training set and 100 samples
from the testing set. Based on our experimental re-
sults, this subset is considered sufficient for training
and testing LLM-based multi-agent frameworks.
Detailed statistics on the domains and tasks in the
test set are provided in Appendix A.

Slot refinement and relabeling rules We fur-
ther detail how slots are refined to support reliable
end-to-end execution. In the original dataset, slots
only capture the entities mentioned in the query.
For execution, however, all key information in the
query—not just entities—needs to be converted
into actionable slot values. We therefore introduce
new slots and define systematic relabeling rules
to ensure completeness and consistency. Table 2
lists the added slots and their definitions. The main
relabeling rules are as follows:

• For all domains except QA, user-specified
search constraints are labeled as descriptor.

• For email and QA domains, the information
that the user wants to send or retrieve is la-
beled as content.

• In the email domain, words that indicate
sender or recipient are labeled as from_*
and to_* instead of the generic relation or
person.

• For IoT and related domains, user-specified
modes (e.g., eco mode, night mode) are la-
beled as setting.

Collection of the end servers To evaluate end-to-
end system performance, we simulate the execution
servers that process and carry out user commands.
This simulation enable us to verify whether the
commands are correctly interpreted and executed,
ensuring that the overall system functions as ex-
pected. In our training set, we identify 23 distinct
domains. For each domain, we build a dedicated
server to handle the relevant operations. Addition-
ally, for certain domains which require external
information, such as search, weather, and news, we
integrate external services, i.e., third-party APIs.
These API calls allow the system to fetch the re-
quired information, ensuring that user requests are
handled efficiently and with up-to-date content.

3 Experiments

3.1 Setup
We compare several representative LLM-based
multi-agent frameworks.
CamelAI (Li et al., 2023) introduces a coopera-
tive framework that allows agents to autonomously
collaborate through role-playing.
AutoGen (Wu et al., 2023) presents a customizable
framework that can integrate LLMs, humans, and
tools, enabling dynamic agent interactions.
LangGraph (2023) is built upon the foundation
of LangChain (2022) and provides an easy way to
create cyclical graphs during runtimes.
AgentLite (Liu et al., 2024b) is a lightweight, mod-
ular codebase that can easily experiment with new
reasoning strategies.

11165

CamelAI LangGraph AutoGen AgentLite
GPT-4 0.21 0.32 0.44 0.46
DeepSeek-V3 0.39 0.32 0.36 0.47

Table 3: The results of the multi-agent frameworks.

CamelAI LangGraph AutoGen AgentLite
GPT-4 DeepSeek GPT-4 DeepSeek GPT-4 DeepSeek GPT-4 DeepSeek

intent 54% 50.8% 34% 39.7% 68% 43.8% 69% 69.8%
time 18% 8.2% 12% 29.6% 9% 14.1% 19% 7.5%
location - - - 1.5% - - 7% -
URL 14% 4.9% 13% 7.4% 43% 14.1% 19% 45.3%
request - - - 1.5% - 1.6% - 5.7%
manager 9% 49.2% 53% 36.8% 13% 46.9% - 3.8%
function_call 18% 1.6% - - - - -

Table 4: Error analysis of the frameworks. Because one failure can be caused by multiple reasons, the percentages
do not sum up to 100%. DeepSeek refers to DeepSeek-V3.

For all multi-agent frameworks, we use GPT-
4 (Achiam et al., 2023) and DeepSeek-V3 (Liu
et al., 2024a) as the LLMs. We describe the details
of the experiments in Appendix B.

3.2 Defined workflows

We use each multi-agent framework to build a work-
flow that simulates a smart personal assistant. In
the workflow, a program manager agent serves as
the orchestrator; it processes the user’s input query
and delegates subtasks to specialized agents. We
introduce an intent agent to predict the intent and
slots. Additionally, we add a time agent and a
location agent to format the time and location pa-
rameters, if applicable. We adopt a URL agent
to select the appropriate URL from a list of can-
didates, and a request agent to execute the tool
function call for the request. The overall workflow
is illustrated in Figure 1 in Appendix C. Although
the orchestration methods, prompt policies, and
reasoning approaches vary across frameworks, we
ensure a fair and controlled comparison by main-
taining consistency in the assigned roles, accessible
tools, and prompts used to define agent functions
during construction.

3.3 Evaluation

We use the successful execution rate as the eval-
uation metric, which measures the percentage of
queries that are completed successfully from end
to end. This metric assesses the reliability, effi-
ciency, and ability of the framework to perform
the intended actions without failure. Additionally,
we provide an automated evaluation tool that mea-

sures performance across all frameworks consis-
tently and efficiently.

4 Experiment Results

4.1 Results analysis

Table 3 presents the results of the multi-agent
frameworks. Among them, AgentLite performs
the best.

A closer inspection reveals the reasons behind
the performance differences. The failure of Came-
lAI with GPT-4 can be attributed to its difficulty
in selecting the right tool to execute, largely due
to bugs in its interface with GPT-4. Additionally,
DeepSeek-V3 can not run in CamelAI until we re-
solve certain response parsing issues. LangGraph
underperforms mainly because it only combines
current agent’s prompt and all the agents’ results
into one list as input, without any adjustments. In
contrast, AutoGen separates the prompts for the
manager agent and the subtask agents, and provides
the manager with the descriptions of all agents, en-
abling clearer task delegation and yielding better
results. AgentLite further improves performance
by adopting "think and react" methods in the pro-
cess, which significantly enhances execution suc-
cess. Example prompts for LangGraph and Auto-
Gen are provided in Appendix D.

We also test other frameworks, such as Agent-
Verse (Chen et al., 2023b), AutoAgents (Chen et al.,
2023a), and OpenAI Agents (OpenAI, 2025). How-
ever, these frameworks either lack a generalized or-
chestration policy to support this scenario or do not
provide sufficient information for effective imple-

11166

DeepSeek-V3 CamelAI LangGraph AutoGen AgentLite
1k 0.364 0.232 0.420 0.459
original 0.39 0.32 0.36 0.47

Table 5: Results on the expanded (1k) and original test sets with DeepSeek.

AutoGen original finetuned
acc 0.40 0.62

Table 6: The results for AutoGen with intent agents
using original and finetuned Llama-3.

mentation. This highlights the inherent complexity
of designing robust multi-agent frameworks.

To gain deeper insight into failure points, we
analyze the errors caused by individual agents and
the function call part. As shown in Table 4, it is
clear that the main source of failure stems from
the intent agent. We show the failure attribution
criteria in Appendix G.

Further more, we report additional analyses, in-
cluding cost, execution speed, and LLM coverage,
in Appendix E, and provide a case study in Ap-
pendix F.

4.2 Consistency between automated and
human judgments

To complement the metric-based evaluation, we
randomly select 25 samples and manually annotate
the consistency between automated scores and hu-
man judgments across the four frameworks (based
on the DeepSeek results). We find that 95% of
the automated scores aligned with human evalu-
ations, supporting the validity of our automated
assessment methodology.

4.3 Evaluation on an expanded test set
To further verify the robustness of our findings, we
randomly sample 5,000 examples from the SLURP
training set and 1,000 examples from the test set,
and repeat the experiments using DeepSeek. The
results, shown in Table 5, remain consistent with
the original experiments, preserving the same rank-
ing order (AgentLite >AutoGen, CamelAI >Lang-
Graph). This consistency demonstrates that our
conclusions are stable and generalizable to larger
datasets.

4.4 Ablation
Our prior analysis shows that intent prediction is
the leading cause of failures. To address this, we
conduct an ablation study by further finetuning a

model for the intent agent to assess its impact on
overall framework performance. We choose the
open-source Llama 3 model (AI@Meta, 2024) for
finetuning. Specifically, we finetune the LLAMA-3
8B model on our training set and use the result-
ing model as the intent agent. All other agents
in the system continue to use GPT-4 as their un-
derlying LLM. We evaluate this setup in AutoGen
framework, and the results are presented in Table 6.
Compared to the framework that uses the origi-
nal LLAMA-3 8B model, the finetuned version
shows a performance improvement of 55%. This
result demonstrates that improving individual com-
ponents—especially the main failure source—can
significantly enhance the overall performance of
multi-agent frameworks. A more detailed break-
down of domain-specific accuracy for both versions
is provided in Appendix H.

Based on the analysis above, it is clear that we
are still a few steps away from achieving a fully re-
liable and smart personal assistant. Achieving this
goal will require continued progress in several key
areas of multi-agent framework design—namely,
the development of generalized orchestration poli-
cies, effective prompting methods, robust reasoning
approaches (such as think and react), and careful
selection of LLMs suited to the task.

5 Conclusion

We present Auto-SLURP, a dataset designed to
evaluate LLM-based multi-agent frameworks. We
assess the end-to-end execution tasks, not just the
nature language understanding tasks. By incorpo-
rating simulated servers and external services, we
evaluate the capacity of the frameworks to com-
plete the entire process. The dataset proves to be
sufficiently challenging to test the state-of-the-art
multi-agent frameworks.

Limitations

The dataset incorporates simulated servers and ex-
ternal services, which may not fully mimic the
behavior of real-world systems. This could result
in discrepancies between the performance of frame-
works in the benchmark and their performance in

11167

live applications.
Additionally, the dataset’s evaluation is heavily

reliant on the performance of LLMs. Variations in
the quality and capabilities of LLMs across differ-
ent versions could influence the outcomes.

Acknowledgment

We thank EIT and IDT High Performance Comput-
ing Center for providing computational resources
for this project. This work was supported by the
2035 Key Research and Development Program of
Ningbo City under Grant No. 2025Z034.

References
Sahar Abdelnabi, Amr Gomaa, Sarath Sivaprasad, Lea

Schonherr, and Mario Fritz. 2023. Cooperation, com-
petition, and maliciousness: Llm-stakeholders inter-
active negotiation.

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, and 1 others. 2023. Gpt-
4 technical report.

AI@Meta. 2024. Llama 3 model card.

Emanuele Bastianelli, Andrea Vanzo, Pawel Swieto-
janski, and Verena Rieser. 2020. Slurp: A spoken
language understanding resource package. arXiv
preprint arXiv:2011.13205.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Börje F. Karlsson, Jie Fu, and Yemin
Shi. 2023a. Autoagents: A framework for automatic
agent generation. In International Joint Conference
on Artificial Intelligence.

Hongzhan Chen, Hehong Chen, Ming Yan, Wenshen
Xu, Xing Gao, Weizhou Shen, Xiaojun Quan, Chen-
liang Li, Ji Zhang, Fei Huang, and 1 others. 2024.
Roleinteract: Evaluating the social interaction of role-
playing agents. arXiv preprint arXiv:2403.13679.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Ya-Ting
Lu, Yi-Hsin Hung, Cheng Qian, Yujia Qin, Xin Cong,
Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie
Zhou. 2023b. Agentverse: Facilitating multi-agent
collaboration and exploring emergent behaviors. In
International Conference on Learning Representa-
tions.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, and 1 others.
2023c. T-eval: Evaluating the tool utilization capa-
bility of large language models step by step. arXiv
preprint arXiv:2312.14033.

Marco Del Tredici, Gianni Barlacchi, Xiaoyu Shen,
Weiwei Cheng, and Adrià de Gispert. 2021. Ques-
tion rewriting for open-domain conversational qa:

Best practices and limitations. In Proceedings of the
30th ACM International Conference on Information
& Knowledge Management, pages 2974–2978.

Jide S Edu, Jose M Such, and Guillermo Suarez-Tangil.
2020. Smart home personal assistants: a security and
privacy review. ACM Computing Surveys (CSUR),
53(6):1–36.

Chuang Gan, Siyuan Zhou, Jeremy Schwartz, Seth Alter,
Abhishek Bhandwaldar, Dan Gutfreund, Daniel LK
Yamins, James J DiCarlo, Josh McDermott, Antonio
Torralba, and 1 others. 2021. The threedworld trans-
port challenge: A visually guided task-and-motion
planning benchmark for physically realistic embod-
ied ai. arXiv preprint arXiv:2103.14025.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Yusuke Noda,
Zane Durante, Zilong Zheng, Demetri Terzopoulos,
Li Fei-Fei, Jianfeng Gao, and Hoi Vo. 2024. MindA-
gent: Emergent gaming interaction. In Findings
of the Association for Computational Linguistics:
NAACL 2024, pages 3154–3183, Mexico City, Mex-
ico. Association for Computational Linguistics.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2024. MetaGPT: Meta pro-
gramming for a multi-agent collaborative framework.
In The Twelfth International Conference on Learning
Representations.

Matthew B. Hoy. 2018. Alexa, siri, cortana, and more:
An introduction to voice assistants. Medical Ref-
erence Services Quarterly, 37(1):81–88. PMID:
29327988.

Yunyun Huang, Xiaoyu Shen, Chuanyi Li, Jidong Ge,
and Bin Luo. 2021. Dependency learning for legal
judgment prediction with a unified text-to-text trans-
former. arXiv preprint arXiv:2112.06370.

LangChain. 2022. Langchain.

LangGraph. 2023. Langgraph.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023.
Camel: Communicative agents for "mind" explo-
ration of large language model society. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Haitao Li, Junjie Chen, Jingli Yang, Qingyao Ai, Wei
Jia, Youfeng Liu, Kai Lin, Yueyue Wu, Guozhi Yuan,
Yiran Hu, and 1 others. 2024. Legalagentbench: Eval-
uating llm agents in legal domain. arXiv preprint
arXiv:2412.17259.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024a. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

11168

https://api.semanticscholar.org/CorpusID:263310628
https://api.semanticscholar.org/CorpusID:263310628
https://api.semanticscholar.org/CorpusID:263310628
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://api.semanticscholar.org/CorpusID:263310605
https://api.semanticscholar.org/CorpusID:263310605
https://api.semanticscholar.org/CorpusID:263831900
https://api.semanticscholar.org/CorpusID:263831900
https://doi.org/10.18653/v1/2024.findings-naacl.200
https://doi.org/10.18653/v1/2024.findings-naacl.200
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://doi.org/10.1080/02763869.2018.1404391
https://doi.org/10.1080/02763869.2018.1404391
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langgraph

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng
Shen, Tianjun Zhang, Yu Su, Huan Sun, and 3 others.
2023. Agentbench: Evaluating llms as agents. arXiv
preprint arXiv: 2308.03688.

Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and
Verena Rieser. 2021. Benchmarking natural language
understanding services for building conversational
agents. In Increasing naturalness and flexibility in
spoken dialogue interaction: 10th international work-
shop on spoken dialogue systems, pages 165–183.
Springer.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Liangwei
Yang, Zuxin Liu, Juntao Tan, Prafulla K. Choubey,
Tian Lan, Jason Wu, Huan Wang, Shelby Hei-
necke, Caiming Xiong, and Silvio Savarese. 2024b.
Agentlite: A lightweight library for building and ad-
vancing task-oriented llm agent system. Preprint,
arXiv:2402.15538.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An analyt-
ical evaluation board of multi-turn llm agents. arXiv
preprint arXiv:2401.13178.

Xinyi Mou, Jingcong Liang, Jiayu Lin, Xinnong Zhang,
Xiawei Liu, Shiyue Yang, Rong Ye, Lei Chen,
Haoyu Kuang, Xuanjing Huang, and 1 others. 2024.
Agentsense: Benchmarking social intelligence of lan-
guage agents through interactive scenarios. arXiv
preprint arXiv:2410.19346.

OpenAI. 2025. Openai agents.

Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang,
Yuan-Hong Liao, Joshua B Tenenbaum, Sanja Fi-
dler, and Antonio Torralba. 2020. Watch-and-help:
A challenge for social perception and human-ai col-
laboration. arXiv preprint arXiv:2010.09890.

Siyuan Qi, Shuo Chen, Yexin Li, Xiangyu Kong, Junqi
Wang, Bangcheng Yang, Pring Wong, Yifan Zhong,
Xiaoyuan Zhang, Zhaowei Zhang, and 1 others. 2024.
Civrealm: A learning and reasoning odyssey in civi-
lization for decision-making agents. arXiv preprint
arXiv:2401.10568.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, and 1 others. 2023. Toolllm: Facilitating
large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789.

Xiaoyu Shen, Youssef Oualil, Clayton Greenberg, Mit-
tul Singh, and Dietrich Klakow. 2017. Estimation
of gap between current language models and human
performance.

Xiaoyu Shen, Svitlana Vakulenko, Marco Del Tredici,
Gianni Barlacchi, Bill Byrne, and Adrià de Gispert.
2022. Low-resource dense retrieval for open-domain

question answering: A comprehensive survey. arXiv
preprint arXiv:2208.03197.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embod-
ied environments for interactive learning. In Inter-
national Conference on Learning Representations
2021.

Hui Su, Xiaoyu Shen, Pengwei Hu, Wenjie Li, and
Yun Chen. 2018. Dialogue generation with gan. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

Hui Su, Zhi Tian, Xiaoyu Shen, and Xunliang Cai. 2024.
Unraveling the mystery of scaling laws: Part i. arXiv
preprint arXiv:2403.06563.

Wei Wang, Dan Zhang, Tao Feng, Boyan Wang, and
Jie Tang. 2024. Battleagentbench: A benchmark for
evaluating cooperation and competition capabilities
of language models in multi-agent systems. arXiv
preprint arXiv:2408.15971.

Henry Weld, Xiaoqi Huang, Siqu Long, Josiah Poon,
and Soyeon Caren Han. 2022. A survey of joint intent
detection and slot filling models in natural language
understanding. ACM Computing Surveys, 55(8):1–
38.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadal-
lah, Ryen W. White, Doug Burger, and Chi Wang.
2023. Autogen: Enabling next-gen llm applications
via multi-agent conversation.

Binxia Xu, Siyuan Qiu, Jie Zhang, Yafang Wang, Xi-
aoyu Shen, and Gerard De Melo. 2020. Data aug-
mentation for multiclass utterance classification–a
systematic study. In Proceedings of the 28th interna-
tional conference on computational linguistics, pages
5494–5506.

Lin Xu, Zhiyuan Hu, Daquan Zhou, Hongyu Ren, Zhen
Dong, Kurt Keutzer, See Kiong Ng, and Jiashi Feng.
2023. Magic: Benchmarking large language model
powered multi-agent in cognition, adaptability, ra-
tionality and collaboration. arXiv preprint arXiv:
2311.08562.

Xuesong Yang, Yun-Nung Chen, Dilek Hakkani-Tür,
Paul Crook, Xiujun Li, Jianfeng Gao, and Li Deng.
2017. End-to-end joint learning of natural lan-
guage understanding and dialogue manager. In 2017
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5690–5694.
IEEE.

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang,
Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou,
Qi Zhang, Tao Gui, and 1 others. 2024. Tooleyes:
Fine-grained evaluation for tool learning capabili-
ties of large language models in real-world scenarios.
arXiv preprint arXiv:2401.00741.

11169

https://arxiv.org/abs/2402.15538
https://arxiv.org/abs/2402.15538
https://github.com/openai/openai-agents-python
https://api.semanticscholar.org/CorpusID:263611068
https://api.semanticscholar.org/CorpusID:263611068

Rongzhi Zhang, Yulong Gu, Xiaoyu Shen, and Hui Su.
2021. Knowledge-enhanced session-based recom-
mendation with temporal transformer. arXiv preprint
arXiv:2112.08745.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang,
Haofei Yu, Zhengyang Qi, Louis-Philippe Morency,
Yonatan Bisk, Daniel Fried, Graham Neubig, and
Maarten Sap. 2024. SOTOPIA: Interactive evalua-
tion for social intelligence in language agents. In
The Twelfth International Conference on Learning
Representations.

Dawei Zhu, Xiaoyu Shen, Marius Mosbach, Andreas
Stephan, and Dietrich Klakow. 2023. Weaker than
you think: A critical look at weakly supervised learn-
ing. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 14229–14253.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2024. Toolqa: A dataset for llm
question answering with external tools. Advances in
Neural Information Processing Systems, 36.

A Statistics on Domains and Tasks

Table 7 shows the distribution of domains in the
test set, covering 18 distinct domains. This diver-
sity highlights the dataset’s ability to capture the
complexity of real-world scenarios.

Since task complexity is often linked to the num-
ber of slots within an utterance, we also report slot
count statistics in Table 8. As shown, most utter-
ances include one or two slots, indicating that the
tasks are sufficiently complex.

B The Details of the Experiments

We use DeepSeek-V3 instead of DeepSeek-R1 be-
cause the reasoning process of DeepSeek-R1 in-
troduces more noise in this scenario. The prompts
for the agent roles are created and adjusted during
the setup phrase. The temperature is set as 0 to
ensure that the LLM’s responses are deterministic
and fixed.

C Overview of the Defined Multi-Agent
Workflow

The overall workflow defined in experiment is il-
lustrated in Figure 1.

D Prompt Examples from LangGraph
and AutoGen

Below is an example prompt from LangGraph,
which includes the agents’ names, the function
description of the orchestration agent, the current
subtask, and the responses from previous agents.

Domain Number of Samples
alarm 2
calendar 17
cooking 1
datetime 7
email 7
iot 12
lists 5
music 10
news 3
audiobook 3
podcasts 4
radio 3
qa 9
recommendation 5
social 1
takeaway 1
transport 3
weather 7

Table 7: Domain statistics for the test set.

{'content': 'You are a supervisor
tasked with managing a conversation
between the following workers to
finish the first user's cmd: [
'intent', 'time', 'location', 'url',
'request', 'genresponse']. Given the
following user request, respond with
the worker to act next. you are
controlling smart home system, you
have intent, time, location, and url
agent and request to complete the
user's task. You should first use
intent to complete the intent
prediction. Then if the result has
time or location params, please try
to ask time or location to solve the
time and location. At last you
should choose the url using url agent,
and then use request to send and
receive request to the url such as
weather server and then use
genresponse to generate response,
then finalize the task. Even if the
request's response is need further
information or is a question, do not
further answer the question, just
finish the task. The response need to
be the worker to act next, for
example: {"next": "FINISH"}. When

11170

https://openreview.net/forum?id=mM7VurbA4r
https://openreview.net/forum?id=mM7VurbA4r

Number of Slots in Utterance Number of Samples
0 9
1 55
2 33
3 2
4 1

Table 8: Slot statistics for the test set.

query Workflow

function call

function call

Program Manager
Agent

Intent Agent

time Time Agent

Location Agent

simulated servers

external services

URL Agent

Request Agent

Figure 1: The workflow defined for the Auto-SLURP
dataset.

finished, respond with FINISH. the
data in json.', 'role': 'system'},
{'content': 'will i need sunscreen
this afternoon', 'role': 'user'},
{'content': 'domain:weather,
intent:weather_query, slots:
time:this afternoon', 'name':
'intent', 'role': 'user'}

The following is an example prompt from Au-
toGen, which includes a description of the overall
task, detailed function descriptions of all agents, re-
sponses from previous agents, and the current sub-
task. (Some content has been omitted for brevity.)

{'content': "You are in a role play

game. The following roles are
available: user_proxy: A computer
terminal that performs no other
action than running Python scripts
(provided to it quoted in python code
blocks), or sh shell scripts (provided
to it quoted in sh code blocks).
Product_manager: you are controlling
smart home system, you have intent
assistant, time_assistant, location
_assistant, url_assistant and
request_assistant to complete the
user's task. You should first use
intent to complete the intent
prediction. Then if the result has
time or location params, please try
to ask time_assistant or location
_assistant to solve the time and
location. Then you choose the url
using url_assistant. At last you
should use request_assistant to
send and receive request through
functions from other servers such
as weather server and response to
user. You should generates reponse
for the user, and tell manager to
finalize the task. intent: Read the
examples and results, and predict
intent for the sentence. For 'set
the alarm to two pm', first predict
the domain, as domain:alarm, then
the intent and slots, as the format:
intent:alarm_set,time:two pm. the
intents are calendar: calendar_set,
calendar_remove, calendar_query
... Time_assistant: Read the time
params, and convert to formated time.
If has date, call the user_proxy
_auto get_time function to get
today's date, then calculate and
format the date mentioned in the
params. The time is 10:00. If has

11171

cost CamelAI LangGraph AutoGen AgentLite
GPT-4(USD/query) 0.52 0.14 0.80 0.55
DeepSeek-V3(CNY/query) 0.05 0.05 0.12 0.11
speed CamelAI LangGraph AutoGen AgentLite
DeepSeek-V3(s/query) 57 14 45 31

Table 9: The costs and speed of the frameworks.

CamelAI LangGraph AutoGen AgentLite
20 24 8 1

Table 10: Number of supported LLMs by each framework.

time, the time format should be
10:00. If no time specify, can
return default time. If no date and
time params, just skip. Location:
Read the location params, and convert
to formated location. The current
location is new york. url_assistant:
Read the params, and choose the url
from the servers' url list: qa server
is ... then all the url format should
be ... Request: for url and query
params, use the request functions you
have been provided with. Read the
following conversation. Then select
the next role from ['user_proxy',
'Product_manager', 'intent', 'Time
_assistant', 'Location', 'url
_assistant', 'Request'] to play.
Only return the role.", 'role':
'system'}, {'content': '{"query":
"will i need sunscreen this
afternoon"}', 'role': 'user', 'name':
'user_proxy'},{'content':'domain:
weather,intent:weather_query,time:
this afternoon', 'role': 'user',
'name': 'intent'}, {'content': "Read
the above conversation. Then select
the next role from ['user_proxy',
'Product_manager', 'intent','Time
_assistant', 'Location', 'url
_assistant', 'Request'] to play.
Only return the role.", 'name':
'checking_agent', 'role': 'system'}

E Cost, Speed and LLM Coverage
Analysis of Multi-Agent Frameworks

We compare the four frameworks—CamelAI,
LangGraph, AutoGen, and AgentLite—based on
cost per query, execution speed, and LLM cover-

age.
The cost and speed results are presented in Ta-

ble 9. In terms of cost, LangGraph consistently
exhibits the lowest expense, while AutoGen is the
most expensive. CamelAI and AgentLite fall in
between. Across all frameworks, DeepSeek offers
a significant cost advantage over GPT-4, providing
much lower per-query expenses. With respect to
execution speed (measured on DeepSeek), Lang-
Graph is the fastest, followed by AgentLite, Au-
toGen, and finally CamelAI. Notably, CamelAI
takes nearly four times longer than LangGraph, due
to its use of worker nodes—comprising multiple
specialized agents—which introduces additional
processing steps.

For LLM coverage (Table 10), AgentLite is the
most restricted, supporting only a single LLM type
(OpenAI). LangGraph offers the broadest support
for multiple LLMs, while CamelAI and AutoGen
provide intermediate levels of compatibility.

When considering cost, speed, LLM coverage,
and the accuracy results reported above, the four
frameworks reveal distinct trade-offs. LangGraph
is highly efficient in cost and speed and supports
a wide range of LLMs, but its task performance
remains suboptimal. AgentLite delivers the best
accuracy at moderate cost and speed, though its re-
liance on a single LLM limits flexibility. CamelAI
offers improved performance with reasonable LLM
support, but suffers from slow execution. AutoGen
provides relatively strong accuracy and moderate
LLM coverage, but its high cost and slower speed
make it less cost-effective overall.

F Case study

We provide an example of error analysis below.
For the query: "what is the traffic like right now",
AgentLite and CamelAI produce correct results,
whereas AutoGen and LangGraph fail to do so.

11172

Domain Original Finetuned
Audiobook 0.0% 66.7%
Calendar 11.8% 76.5%
Currency 0.0% 66.7%
Datetime 14.3% 71.4%
Email 0.0% 71.4%
IoT 33.3% 75.0%
Lists 40.0% 100.0%
Music 0.0% 70.0%
News 0.0% 100.0%
Podcasts 0.0% 50.0%
QA 0.0% 80.0%
Radio 0.0% 66.7%
Recommendation 0.0% 60.0%
Transport 33.3% 66.7%
Weather 0.0% 100.0%

Table 11: Accuracy across each domain for both the
original and finetuned models.

Below is an excerpt from LangGraph’s log. In
this log, the planner selects the location agent to
handle the request at a certain step. However, the
location agent responds directly to the query, even
though it was explicitly instructed to provide only
location information.

{'next': 'location'}
{'supervisor': None}

{'location': {'messages': [
HumanMessage(content="I don't have
real-time traffic data for New York.
You may want to check a traffic app or
website like Google Maps, Waze, or
NYC's official traffic information
sources for the latest updates.",
additional_kwargs={},
response_metadata={}, name=
'location', id='***')]}}

The following is an excerpt from AutoGen’s log.
In this case, AutoGen fails to interpret the time
expression, resulting in a time format error, despite
successfully making a request to the server.

>>>>>>>> EXECUTING FUNCTION
url_request...
{"code":"SUCCESS","data":{"query":{
"intent":"transport_traffic","slots"
:{"time":"right now"}},"response":

"time format not right"},"msg":
"SUCESS"}

Domain Original Finetuned
Audiobook 0.0% 66.7%
Calendar 29.4% 82.4%
Currency 0.0% 66.7%
Datetime 42.9% 85.7%
Email 57.1% 71.4%
IoT 58.3% 75.0%
Lists 40.0% 100.0%
Music 10.0% 70.0%
News 33.3% 100.0%
Podcasts 0.0% 50.0%
QA 0.0% 80.0%
Radio 0.0% 66.7%
Recommendation 20.0% 60.0%
Transport 66.7% 66.7%
Weather 14.3% 100.0%

Table 12: Accuracy across each domain—excluding
slot name errors—for both the original and finetuned
models.

G Failure Attribution Criteria in
Evaluation

During evaluation, the workflow proceeds even if a
failure occurs, and task completion is assessed only
after the entire process is complete. To identify
the source of failure, we trace the error back to the
responsible agent based on the following criteria:

• Intent Agent: If the intent agent makes an
incorrect prediction that ultimately leads to a
workflow failure, the error is attributed to the
intent agent.

• Time Agent: If the time agent provides an in-
correct time or content that negatively affects
the final outcome, the error is assigned to the
time agent.

• Location Agent: If the location agent supplies
an incorrect location resulting in an incorrect
outcome, the error is attributed to the location
agent.

• URL Agent: If the URL agent selects the
wrong URL or incorrect parameters, the er-
ror is considered to originate from the URL
agent. Additionally, if the URL agent receives
an incorrect intent and is capable of correcting

11173

it but fails to do so, the error is also attributed
to the URL agent.

• Request Agent: If the request agent success-
fully retrieves the correct data from the servers
but generates an incorrect response, the error
is classified as a request agent error.

• Manager Agent: If the manager agent incor-
rectly selects the next agent in the workflow,
causing a failure, the error is attributed to the
manager agent.

• Function Call: If the system executes an incor-
rect function call that results in a failure, the
error is categorized as a function call failure.

H Evaluation of Intent Prediction
Accuracy Across Domains

In the ablation study, we analyze the intent predic-
tion accuracy across different domains, excluding
those with fewer than three samples. The results
are reported in Table 11, showing the accuracy for
each domain using both the original and the fine-
tuned models.

To further investigate the performance gap be-
tween intent prediction accuracy and overall work-
flow accuracy, we take a closer look at the outputs
of the intent agent. We observe that some errors
from the original model stem from formatting is-
sues—such as incorrect slot names or returning
plain-text descriptions instead of structured out-
puts. Notably, these issues can often be mitigated
by downstream agents in the workflow, such as the
URL agent, which may still successfully process
the intent. Therefore, for reference, we additionally
report a relaxed intent accuracy in Table 12, where
slot name errors are ignored.

As shown in the two tables, finetuning improves
accuracy across all domains. However, the Pod-
casts domain remains particularly challenging for
the intent agent, with a final accuracy of only
50.0%.

11174

