@inproceedings{eckhaus-etal-2025-time,
title = "Time to Talk: {LLM} Agents for Asynchronous Group Communication in Mafia Games",
author = "Eckhaus, Niv and
Berger, Uri and
Stanovsky, Gabriel",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.608/",
pages = "11356--11368",
ISBN = "979-8-89176-335-7",
abstract = "LLMs are used predominantly in synchronous communication, where a human user and a model communicate in alternating turns. In contrast, many real-world settings are asynchronous. For example, in group chats, online team meetings, or social games, there is no inherent notion of turns. In this work, we develop an adaptive asynchronous LLM agent consisting of two modules: a generator that decides what to say, and a scheduler that decides when to say it. To evaluate our agent, we collect a unique dataset of online Mafia games, where our agent plays with human participants. Overall, our agent performs on par with human players, both in game performance metrics and in its ability to blend in with the other human players. Our analysis shows that the agent{'}s behavior in deciding when to speak closely mirrors human patterns, although differences emerge in message content. We make all of our code and data publicly available. This work paves the way for integration of LLMs into realistic human group settings, from assistance in team discussions to educational and professional environments where complex social dynamics must be navigated."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="eckhaus-etal-2025-time">
<titleInfo>
<title>Time to Talk: LLM Agents for Asynchronous Group Communication in Mafia Games</title>
</titleInfo>
<name type="personal">
<namePart type="given">Niv</namePart>
<namePart type="family">Eckhaus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Uri</namePart>
<namePart type="family">Berger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>LLMs are used predominantly in synchronous communication, where a human user and a model communicate in alternating turns. In contrast, many real-world settings are asynchronous. For example, in group chats, online team meetings, or social games, there is no inherent notion of turns. In this work, we develop an adaptive asynchronous LLM agent consisting of two modules: a generator that decides what to say, and a scheduler that decides when to say it. To evaluate our agent, we collect a unique dataset of online Mafia games, where our agent plays with human participants. Overall, our agent performs on par with human players, both in game performance metrics and in its ability to blend in with the other human players. Our analysis shows that the agent’s behavior in deciding when to speak closely mirrors human patterns, although differences emerge in message content. We make all of our code and data publicly available. This work paves the way for integration of LLMs into realistic human group settings, from assistance in team discussions to educational and professional environments where complex social dynamics must be navigated.</abstract>
<identifier type="citekey">eckhaus-etal-2025-time</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.608/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>11356</start>
<end>11368</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Time to Talk: LLM Agents for Asynchronous Group Communication in Mafia Games
%A Eckhaus, Niv
%A Berger, Uri
%A Stanovsky, Gabriel
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F eckhaus-etal-2025-time
%X LLMs are used predominantly in synchronous communication, where a human user and a model communicate in alternating turns. In contrast, many real-world settings are asynchronous. For example, in group chats, online team meetings, or social games, there is no inherent notion of turns. In this work, we develop an adaptive asynchronous LLM agent consisting of two modules: a generator that decides what to say, and a scheduler that decides when to say it. To evaluate our agent, we collect a unique dataset of online Mafia games, where our agent plays with human participants. Overall, our agent performs on par with human players, both in game performance metrics and in its ability to blend in with the other human players. Our analysis shows that the agent’s behavior in deciding when to speak closely mirrors human patterns, although differences emerge in message content. We make all of our code and data publicly available. This work paves the way for integration of LLMs into realistic human group settings, from assistance in team discussions to educational and professional environments where complex social dynamics must be navigated.
%U https://aclanthology.org/2025.findings-emnlp.608/
%P 11356-11368
Markdown (Informal)
[Time to Talk: LLM Agents for Asynchronous Group Communication in Mafia Games](https://aclanthology.org/2025.findings-emnlp.608/) (Eckhaus et al., Findings 2025)
ACL