
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 11708–11723
November 4-9, 2025 ©2025 Association for Computational Linguistics

RAISE: Reinforced Adaptive Instruction Selection For Large Language
Models

Qingsong Lv*1, Yangning Li*12, Zihua Lan1, Zishan Xu1, Jiwei Tang1, Tingwei Lu1

Yinghui Li1, Wenhao Jiang5, Hong-Gee Kim4, Hai-Tao Zheng†12, Philip S. Yu3

1Shenzhen International Graduate School, Tsinghua University
2Peng Cheng Laboratory 3University of Illinois Chicago 4Seoul National University

5Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)
{lqs23,yn-li23}@mails.tsinghua.edu.cn

zheng.haitao@sz.tsinghua.edu.cn

Abstract

Instruction tuning of large language models
(LLMs) benefits more from a handful of high-
quality examples than from hordes of low-
quality ones. Existing selection methods typi-
cally rely on static, heuristic quality scores and
are executed only once before training. Con-
sequently, they neither adapt to the changing
state of the model nor target downstream ob-
jectives, leaving substantial room for optimiza-
tion. We propose RAISE (Reinforced Adaptive
Instruction SElection), a dynamic, task-driven
framework that integrates selection into every
training step. At each step, RAISE estimates
the expected contribution of each candidate in-
struction to task performance and admits only
the most helpful. By modeling this process as
sequential decision making, we optimize the
selector with reinforcement learning, yielding
an interpretable policy specialized for the target
task. Extensive experiments show that RAISE
reaches comparable or better results than full-
data training while updating only 1% of the
steps, demonstrating both high efficacy and sig-
nificant computational savings.

1 Introduction

Large Language Models (LLMs) have achieved re-
markable progress in recent years, demonstrating
exceptional capabilities in general language under-
standing (Liu et al., 2023; Chen et al., 2024b) and
generation (OpenAI, 2023; Achiam et al., 2023;
Liu et al., 2024b; Sun et al., 2024; Tang et al.,
2024; Han et al., 2024; Zhang et al., 2025; Yuan
et al., 2025). A critical factor enabling these ad-
vancements is instruction fine-tuning (Wei et al.,
2021; Longpre et al., 2023; Chung et al., 2024;
Tang et al., 2025), a process that aligns pretrained
models with human intentions by training them on
task-specific instructions. While existing efforts
predominantly focus on scaling instruction datasets

* Equal contribution.
†Corresponding author.

(Khashabi et al., 2020; Ye et al., 2021; Wang et al.,
2022; Han et al., 2025) to improve model perfor-
mance, recent studies highlight that data quality
often outweighs sheer quantity (Zhou et al., 2024).
This underscores the need for principled methods
to identify instruction subsets that maximally en-
hance model capabilities.

Current instruction selection approaches typi-
cally rely on heuristic quality metrics (eg. grammat-
ical correctness, clarity, lexical diversity, etc.) to
filter low-quality instructions before training (Cao
et al., 2023; Li et al., 2023; Chen et al., 2023; Xia
et al., 2024; Pan et al., 2024). These methods face
three main issues: (i) They use a one-time static
selection before training , which does not adapt
to a model’s evolving data needs during training;
(ii) Their heuristic metrics are prone to cognitive
bias and oversimplify the continuous nature of data
quality; (iii) They are task-agnostic, failing to align
instruction selection with specific task objectives.

Considering a dynamic, task-aware approach to
instruction selection, we introduce the concept of
an instruction’s dynamic value—its impact on the
final model performance when used for gradient
updates at time step t (we put detailed descriptions
of dynamic value and example in Appendix C).
This dynamic value, which depends on both the
training step and the task objective, serves as a
quality measure that replaces fixed heuristic met-
rics and provides strong interpretability. Dynamic
instruction selection can be modeled as a sequen-
tial decision-making process aiming to maximize
the model’s performance after T steps. Obviously,
the optimal selection strategy is to select those in-
structions that have the most dynamic value at each
step.

Based on this idea, we propose RAISE
(Reinforced Adaptive Instruction SElection), a dy-
namic, non-heuristic, task-driven instruction selec-
tion framework. At its core is an acquisition func-
tion—a trainable MLP (sample-wise scorer) that

11708

Selector

𝒓𝒕

𝒂𝒕

Training

State

×

𝒔𝒕

Batch

Source

Instruction

Dataset

0.9

-5.2

0.3 1.7

-2.3

0.0

3.7

Acquisition

Function

Diversity-Constrained

Selection
1.7 0.9

3.7 0.0

Instruction Data

Sample in Class 1

Instruction Data

Sample in Class 2

State

Fusion

LLAMA

LLM

①

② Select

③ Gradient Update④ Update State

Figure 1: Overview of the RAISE framework, illustrating the training process of LLM at step t: (1) The source
instruction dataset and current training state are fused to construct st, which encodes both data features and
training progress. (2) The Selector, guided by the acquisition function (a trainable scorer), takes st as input
and selects a batch of instruction data. (3) This selected batch is used to update LLM, resulting in performance
improvement rt. (4) Finally, the updated training state forms st+1, serving as input for the next step.

estimates the dynamic value of each instruction
and is optimized to maximize the final model per-
formance. By leveraging a fully trained acquisition
function to guide instruction selection, RAISE con-
sistently produces high-performing models. More-
over, its task-driven design allows the acquisition
function to be flexibly adapted to various tasks
through adjustments in the validation set and per-
formance metrics. Due to the sequential decision-
making nature of RAISE, we employ reinforcement
learning (RL) (Bellman, 1966; Mnih et al., 2015)
to optimize the acquisition function, treating each
training process of LLM as an episode in the RL
setting.

To promote diversity , RAISE groups instruc-
tions into multiple classes via K-means (MacQueen
et al., 1967) and ensures balanced sampling from
each group in every training batch. These classes
constitute diversity constraint. Figure 1 shows the
framework for RAISE, which considers both the
score of the acquisition function and the diversity
constraint when selecting instructions.

In summary, our contributions are as follows:

• We design a task-objective-driven acquisi-
tion function to estimate the dynamic value of
each instruction based on its expected impact
on the final model performance, eliminating
the need for heuristic quality metrics.

• We propose RAISE, a dynamic instruction
selection framework that adaptively selects
instructions during training based on their
dynamic value, enabling the model to meet
changing data requirements during training.

• Through extensive experiments, we demon-
strate the effectiveness of our approach and
provide analysis highlighting the potential of
dynamic instruction selection for future ad-
vancements in instruction fine-tuning.

2 Related Work

2.1 Instruction Selection

Instruction selection focuses on identifying a sub-
set of instructions from a fine-tuning dataset that
maximize model performance, rather than train-
ing on the entire dataset. Recent studies empha-
size that carefully selected subsets can often out-
perform full-dataset training (Cao et al., 2023; Li
et al., 2023; Xia et al., 2024), underscoring the
importance of effective selection strategies. The
shift from dataset scaling to quality-focused selec-
tion highlights the need for principled methods to
prioritize high-utility instructions.

Many methods have been proposed for instruc-
tion selection. IFD (Li et al., 2024) introduces an
Instruction Following Difficulty metric to assess
instruction complexity and select appropriate sam-

11709

ples. AlpaGasus (Chen et al., 2024a) uses GPT-4
(Achiam et al., 2023) to score instruction-response
pairs, filtering low-quality samples and improving
training efficiency. DEITA (Liu et al., 2024a) com-
bines complexity and quality scores to optimize
instruction selection, balancing diversity and data
quality.

However, these approaches share a common lim-
itation: static selection. Once the subset is chosen,
it remains fixed throughout training, failing to adapt
to the model’s evolving data preferences. In con-
trast, our proposed RAISE framework dynamically
selects instructions at each training step based on
their dynamic value, enabling adaptive learning
that aligns with the model’s changing needs.

2.2 Self-Paced Learning

Self-Paced Learning (SPL) (Kumar et al., 2010)
represents a prominent curriculum learning
paradigm (Bengio et al., 2009) that dynamically se-
lects training samples based on their difficulty lev-
els. Unlike static curriculum approaches, SPL em-
ploys an adaptive weighting mechanism where eas-
ier samples are prioritized in early training stages
while harder ones are progressively incorporated.

The core mechanism involves jointly optimizing
model parameters and sample selection through a
bi-level objective: while the model learns to mini-
mize task loss, the sample selector determines op-
timal inclusion thresholds based on current loss
values. This loss-driven thresholding strategy has
proven effective in improving convergence robust-
ness across various domains (Wang et al., 2021).

However, this loss-driven approach introduces
critical limitations for instruction tuning: (i) Loss
values often poorly reflect task-specific metrics
(e.g., accuracy, BLEU); (ii) The rigid easy-to-hard
progression may discard valuable hard samples;
(iii) Its single optimization objective cannot adapt
to diverse task requirements. RAISE addresses
these issues by replacing loss with task-aware dy-
namic value estimation and introducing diversity
constraint through clustered sampling, enabling
both task-aware selection and adaptive learning.

3 Method

In this section, we describe our method for dynamic
instruction selection. A learnable acquisition func-
tion is trained to estimate the dynamic value of each
instruction, ensuring adaptive and diversity-aware
selection throughout the training process.

We formally define the problem of dynamic in-
struction selection (§ 3.1), introduce the training
framework of our selection policy (§ 3.2), and de-
scribe the state fusion mechanism that combines
training state and data features (§ 3.3). We then
present the instruction selection algorithm (§ 3.4)
and the policy optimization algorithm for improv-
ing the selection policy (§ 3.5).

3.1 Problem Statements

Given an instruction dataset D = {di}Ni=1, our goal
is to dynamically select a subset Dt at each train-
ing step t to maximize the performance P of the
model updated at final step T . P is defined as a
performance metric related to downstream tasks,
which includes a validation set Dval visible dur-
ing the training process and an evaluation metric
(e.g., -loss/accuracy/rouge on Dval). The optimal
selection policy π∗ can be formulated as:

π∗ = argmax
π

P(MT [D, π],Dval), (1)

where, MT [D, π] represents the model updated at
step T . For simplicity, in the following content, we
denote P(· ,Dval) as P(·) and Mt[D, π] as Mt.

3.2 Training Framework of Selection Policy

Dynamic instruction selection can be formulated as
a sequential decision-making process. Specifically,
at each training step t, the selection policy π deter-
mines a subset Dt from the dataset D to update the
model Mt−1. This process can be modeled as a
Markov Decision Process (MDP) (Bellman, 1966;
Puterman, 2014) consisting of:

• State (St): The state at step t, represents all
available information, building from the cur-
rent training state and D by State Fusion.

• Action (At): The action is the selected batch
data Dt from D according to the policy π, i.e.,
At = Dt = π(St).

• Reward (Rt): The reward is based on the
performance improvement after using Dt to
update the model, i.e., Rt = P(Mt) −
P(Mt−1).

Once the subset Dt is selected, it is used to up-
date the model Mt−1, resulting in the new model
Mt and an updated state St+1. The goal of train-
ing is to maximize the cumulative reward, which
reflects the final model performance P(MT).

11710

In this framework, the selection policy π consists
of a learnable acquisition function F and a diversity
constraint C. Only F is trainable, so optimizing π
is equivalent to optimizing F .

3.3 State Fusion
In dynamic instruction selection, State Fusion
combines the current training state with original
instruction features to form a comprehensive repre-
sentation for the acquisition function. Specifically,
we denote the fused state as d′ = H(d,Mt−1, t),
where d is the instruction sample and H is the
fusion function. The fusion of state involves 4
components:

• Stage State (Hstage): This component cap-
tures the model’s current training progress,
including Mt−1 and t. Formally:

Hstage(Mt−1, t) =

[
Pt−1,

t

T

]
(2)

• Instruction-Difficulty State (Hdiff): To rep-
resent the complexity of each instruction, we
collect logP (y|x), logP (y), and the lengths
of the prompt and its response. To ensure effi-
ciency, they are precomputed using the auxil-
iary model1. Formally:

Hdiff(d) = [len(x), len(y),

logP (y|x), logP (y)]
(3)

• Instruction-Semantic State (Hsem): This
component encodes the semantic information
of the instruction. We compute the embed-
ding vector E(d) with the auxiliary model,
followed by a pooling layer:

Hsem(d) = [Pool(E(d))] (4)

• Instruction-Availability State (Havail): We
record the number of times ν(d) an instruc-
tion has already been selected during training,
helping the acquisition function avoid exces-
sive repetition of the same instruction:

Havail(d) = [ν(d)] (5)

By concatenating these 4 components, we obtain
the fused state:

H(d,Mt−1, t) =
[
Hstage(Mt−1, t),

Hdif(d),Hsem(d),Havail(d)]
(6)

Algorithm 1 Dynamic Instruction Selection with
Diversity Constraint
1: Input: Training dataset D, LLMMt−1, Batch size B,

Acquisition function F , Diversity constraint (classes) C
and Fusion functionH

2: Output: Selected subset of B samples
3: C ← |C|, b← B

C
4: Initialize St ← ∅, s← ∅
5: for dj ∈ D do
6: d′j ← H(dj ,Mt−1, t)
7: St ← St ∪ {d′j}
8: sj ← F(d′j) ▷ Dynamic value of dj
9: end for

10: for Ci ∈ C do ▷ Divide St into C classes
11: St,i ← ∅
12: for dj ∈ Ci do
13: St,i ← St,i ∪ d′j
14: end for
15: end for
16: for i = 1, 2, . . . , C do
17: π(St,i)← arg topb{sj | d′j ∈ St,i}
18: end for
19: π(St)←

⋃C
i=1 π(St,i)

20: return π(St)

3.4 Instruction Selection Algorithm
Algorithm 1 presents the instruction selection pro-
cess with diversity constraint at training step t. We
first apply the fusion function H to incorporate
training state into each instruction dj . The acquisi-
tion function F then scores the fused instructions,
and a diversity constraint C = {C1, . . . , CC} (each
Ci represents a class) ensures balanced coverage
of heterogeneous instruction types. Specifically,
we select the top-b instructions (based on F) from
each class, and their union forms the final train-
ing subset Dt. This selected batch is then used to
update LLM, and the process repeats at the next
training step.

3.5 Policy Optimization Algorithm
To train the selection policy π, we adopt PPO
(Schulman et al., 2017), where the acquisition func-
tion Fθ acts as Actor, and Vϕ serves as Critic.

Advantage Estimation. To stabilize training and
improve generalization, we employ Generalized
Advantage Estimator (GAE) (Schulman et al.,
2015) for advantage computation:

δt = Rt + γ Vϕ(St+1) − Vϕ(St), (7)

Advt =
T−t−1∑

l=0

(γ λ)l δt+l, (8)

1We use Llama-3.1-8B-Instruct as the auxiliary model to
preprocess instruction-difficulty state and instruction embed-
dings.

11711

Gt = Vϕ(St) + Advt, (9)

where γ is the discount factor and λ is the GAE
parameter, Advt and Gt is advantage and return
respectively.

Importance Sampling with Diversity Constraint.
Under the diversity-constrained selection, the im-
portance sampling ratio is computed on a per-class
basis. Let {C1, . . . , CC} be the class used in in-
struction selection, and define:

pnew,i(d
′
j) =

exp
(
Fθ(d

′
j)
)

∑
d′k∈Ci exp

(
Fθ(d

′
k)
) ,

pold,i(d
′
j) =

exp
(
Fθold(d

′
j)
)

∑
d′k∈Ci exp

(
Fθold(d

′
k)
) ,

(10)

Then, the overall ratio for a selected batch is:

r̂t =

C∏

i=1

∏

d′j∈π(St,i)

pnew,i(d
′
j)

pold,i(d′j)
, (11)

where π(St,i) denotes the top-b samples chosen
from the i-th class at step t.

Loss Functions. Following PPO, we optimize
both the actor and critic losses. The actor loss is
given by:

Lactor = −Et

[
min

(
r̂t Advt,

clip
(
r̂t, 1− ϵ, 1 + ϵ

)
Advt

)]
,

(12)

where ϵ is the clipping parameter (ϵ = 0.2). The
critic loss is simply a mean-squared error:

Lcritic = Et

[(
Vϕ(St) − Gt

)2]
. (13)

Training Framework. We run K rounds of PPO
training. In each round, the LLM is trained for
T steps following the current policy π, with data
(i.e., states, actions, rewards) being collected. We
then use these collected samples to update the actor
Fθ and the critic Vϕ via the aforementioned PPO
objective. Iterating this process over K rounds
gradually refines the acquisition function Fθ, ul-
timately yielding a strong policy for dynamic in-
struction selection. Detailed training process is in
Appendix D.

4 Experiments

4.1 Experimental Setup
Training Dataset. We use Alpaca-52K (Taori
et al., 2023) as our instruction fine-tuning dataset,

which contains 52,000 multi-domain instruction-
response pairs spanning tasks such as question an-
swering, text generation, translation and so on2.

Evaluation Datasets. We evaluate on four bench-
marks: MMLU, ARC (Challenge) (ARC-C),
CommonsenseQA (ComQA), and GSM8K. See
Appendix A.1 for detailed settings of them.

4.2 Baselines

We employ multiple baselines to compare with
RAISE. The simplest one is RAND, which ran-
domly samples a subset of instructions from the full
training set. We report the average performance
over 5 independent random samplings. We also
compare against other established methods, such
as IFD, DEITA and AlpaGasus. In addition, we
design a dynamic selection variant for SPL, termed
SSPL (see Appendix A.3).

To ensure a fair comparison between static and
dynamic selection methods, we match the total
number of update steps across all approaches. Con-
cretely, for static methods, we first pick 1% of the
full training set as a fixed subset and then train the
model for 3 epochs. For dynamic methods, we
set max_steps to match the total number of up-
date steps in the static setting, thereby enforcing an
equivalent amount of training.

4.3 Main Results

We present the results of RAISE versus various
baselines using different models in Tables 1, and
we showcase RAISE’s capability for task-specific
optimization in Figure 2. Our key findings are as
follows:

Only 1% of gradient-update steps suffices to
surpass full-data training. In Table 1, RAISE
requires only 1% of the total number of update
steps, yet outperforms models trained on the entire
dataset on all models. Notably, RAISE achieves a
significantly better result than this full-data base-
line. We conjecture that only a small fraction of
data truly benefits the task objective, while most
of the dataset provides minimal gains. By explic-
itly optimizing toward the task objective, RAISE
effectively captures these valuable data. In Qwen’s
experimental results, using the entire dataset actu-
ally yielded worse results than using a subset of
the data. To some extent, this further supports this

2We use the Alpaca version from https://huggingface.
co/datasets/yahma/alpaca-cleaned.

11712

https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/yahma/alpaca-cleaned

point. We conducted a more detailed analysis of
this phenomenon of "less is more" in Appendix H.

RAISE consistently outperforms baselines on
different models. Tables 1 shows that RAISE
achieves superior performance across all tested
models. Although RAISE remains robust for both
small and large model scales, its advantage over
baselines is especially pronounced on stronger
Llama-3.2-3B compared to smaller Llama-3.2-1B.

RAISE exhibits strong capability of task-specific
optimization. In Figure 2, all baselines perform
poorly in GSM8K due to their reliance on heuris-
tic and general “quality” metrics, which predomi-
nantly capture instruction difficulty rather than the
actual task objective. Since only a small fraction
of Alpaca’s instructions involve the target reason-

ing tasks, these baselines are largely ineffective.
In contrast, RAISE explicitly identifies and prior-
itizes instructions that align with the final objec-
tive, as evidenced by its emphasis on computa-
tional and reasoning-focused prompts relevant to
GSM8K (see Appendix J). Meanwhile, we con-
ducted out-of-distribution evaluations on MathQA
and MMLU.Math (MMLU.college_mathematics),
and RAISE still outperformed the baseline.

5 Analysis

In this section, we further investigate how RAISE
selects instructions by examining two core mod-
ules: state fusion and diversity-constrained selec-
tion. Finally, we analyze the distribution of data
selected by RAISE at different stages of training.

Model DATA Avg.Q Avg. MMLU ARC-C ComQA

Llama-3.2-3B

0% -100% 52.67 51.66 42.15 64.21
100% 0% 54.32 52.76 43.77 66.42
RAND -7.33% 54.20 52.86 42.32 65.11

IFD +25.06% 54.73 52.66 46.42 65.11
DEITA -16.44% 54.05 51.90 44.88 65.36

AlpaGasus -72.14% 53.13 52.30 44.11 62.98
SSPL -196.75% 51.08 50.11 41.64 61.51

RAISE(Ours) +70.35% 55.47 54.64 46.59 65.19

Llama-3.2-1B

0% -100% 38.33 35.53 33.76 45.71
100% 0% 39.36 35.94 36.86 45.29
RAND +7.01% 39.44 35.91 34.81 47.58

IFD -15.77% 39.20 37.35 34.47 45.78
DEITA -65.79% 38.69 36.58 33.45 46.03

AlpaGasus -47.39% 38.88 36.89 33.87 45.86
SSPL +69.55% 40.08 37.20 36.60 46.44

RAISE(Ours) +85.14% 40.24 38.14 35.58 47.01

Qwen-2.5-3B

0% -100% 62.16 63.19 47.13 76.15
100% 0% 63.70 65.22 49.12 76.75
RAND +15.53% 63.94 65.30 50.18 76.33

IFD +34.04% 64.22 65.25 50.43 76.99
DEITA +28.37% 64.13 65.43 49.66 77.31

AlpaGasus +32.06% 64.19 65.18 49.91 77.48
SSPL +46.59% 64.42 65.33 50.68 77.23

RAISE(Ours) +69.83% 64.77 65.32 51.28 77.72

Table 1: Performance comparison on MMLU, ARC-Challenge, and CommonsenseQA. All methods are trained
on Alpaca-52K. We report results for two versions of Llama-3.2 (3B and 1B) and Qwen-2.5-3B. “0%” denotes the
base model and “100%” denotes full Alpaca dataset, and otherwise we select 1% of the data or equivalent number
of training steps. “Avg” denotes the average metric across these three benchmarks. “Avg.Q” denotes the additional
performance gain achieved by each method, relative to the improvement obtained by using the 100% data baseline.
It is computed as: Avg.Q(·) = Avg(·)−Avg(100%)

Avg(100%)−Avg(0%) . Bold numbers denotes the best performing on its column.

11713

GSM8K

MathQA

MMLU.MATH

100%
RAND
IFD
DEITA
AlpaGasus
SSPL
RAISE

Figure 2: Performance of GSM8K-targeted train-
ing. All methods are still trained on Alpaca dataset
but use GSM8K as validation set (different from the
GSM8K evaluation set). Besides, We use MathQA and
MMLU.Math (MMLU.college_mathematics) for OOD
evaluations.

5.1 Ablation on State Fusion

A small instruction semantic dimension suffices.
We vary the dimension of the semantic embed-
ding ({8, 16, 32, 64}; default: 32) and report the
results in Figure 3. Even though 32 is much smaller
than the original embedding size (e.g., 4096), it
consistently yields solid performance on MMLU,
ARC-C, and ComQA. Increasing the semantic di-
mension leads to modest gains overall, but notably,
ARC-C benefits the most from higher-dimensional
representations, suggesting a stronger reliance on
richer feature spaces for reasoning. Although per-
formance on MMLU and ComQA slightly declines

8 16 32 64
d

40

45

50

55

60

65

70

M
et

ric

MMLU
ARC-C
ComQA
Avg.

Figure 3: Performance with different instruction seman-
tic dimensions dsem.

at 64 dimensions, the improvement on ARC-C com-
pensates, keeping the overall average competitive.

Avg. MMLU ARC-C ComQA
Evaluation Task

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
) 55.5

54.6

46.6

65.2

52.1
51.4

45.4

59.5

53.0
53.8

41.8

63.4

53.5
52.4

45.0

63.2

54.6 54.3

44.3

65.1RAISE
w/o stage
w/o diff
w/o sem
w/o avail

Figure 4: Ablation results on different components in
state fusion.

Stage State is the most critical. Ablation results
in Figure 4 show that removing the Stage State
leads to the largest performance drop, confirming
its role as the key temporal controller in RAISE. It
dynamically guides training by integrating model
status and progress, enabling early semantic ex-
ploration and late-stage sample refinement. Other
states (difficulty, semantic, availability) also con-
tribute—e.g., Difficulty State is essential for com-
plex tasks like ARC-C, and Semantic State helps
in knowledge-rich domains like MMLU—but their
impact is more task-specific. Availability plays a
minor role but ensures diversity with minimal cost.
We discuss in detail in Appendix B the impact of
each component on the performance of RAISE.

5.2 Ablation on Diversity-Constrained
Selection

In the diversity-constrained selection, all data are
first clustered into C classes via K-means, and
the model then selects top-scoring samples within
each class. We study how different values of C
affect performance. As shown in Figure 5, we vary
C ∈ {1, 2, 4, 8, 16, 32}. When C is small (1 or 2),
the model achieves relatively strong overall perfor-
mance when selecting 1% data, whereas larger C
leads to a downward trend. While this might seem
counterintuitive—given that diversity often boosts
performance – the key factor here is that RAISE
uses only 1% of the training steps compared to
full-data training. Under such a tight budget, the
model must rapidly focus on data most aligned with
the target objective. These valuable samples may
all fall into a single class, and the diversity con-
straint then limits how many can be selected from

11714

1 2 4 8 16 32
C

40

45

50

55

60

65

70
M

et
ric

 (1
%

)
MMLU
ARC-C
ComQA
Avg.

1 2 4 8 16 32
C

40

45

50

55

60

65

70

M
et

ric
 (5

%
)

MMLU
ARC-C
ComQA
Avg.

Figure 5: Performance with different class counts C
when using only 1% and 5% data. The larger the C,
the finer the class, and the fewer instructions each class
selects.

that cluster (B/C), thereby hurting performance.
The experiment on 5% data proves this (achieving
best performance at C = 4), suggesting that en-
suring data diversity remains a beneficial measure
for training when there is a large amount of data
samples.

5.3 Distribution of Selected Instructions

In this section, we investigate the data selected by
RAISE. We split the total T training steps into three
stages (Stage 0, Stage 1, and Stage 2), representing
the early, middle, and late stages of training. We
then visualize the distribution of the selected sam-
ples at each stage. As shown in Figure 6, the data
chosen in the early and middle stages are widely
scattered, whereas in the final stage they become
tightly clustered. This indicates that the most ben-
eficial data for the model changes over time. In
the early and middle stages of training, various pat-
terns of data are helpful for the training process.
However, in the later stage, the data that is most
beneficial for training is concentrated on certain
patterns.

Stage 0
Stage 1
Stage 2

Figure 6: Distribution of selected instructions in differ-
ent stage.

6 Conclusion

In this paper, we present RAISE, a dynamic instruc-
tion selection method that adaptively selects ben-
eficial instructions for LLM fine-tuning. RAISE
employs a task-objective-driven acquisition func-
tion and a cluster-based diversity mechanism to
identify high-utility data. Our experiments on mul-
tiple benchmarks demonstrate that RAISE outper-
forms static selection baselines, achieving strong
performance while using only a small fraction of
training steps. We hope this work inspires further
research on adaptive data selection and fine-tuning
strategies for large language models.

Limitation

RAISE incurs linear memory overhead in the re-
play buffer during RL training of the acquisition
function. Specifically, when storing states for RL
optimization, each instruction’s fused state vector
(dimension M) requires O(M) memory. For a
dataset of size N , the total buffer storage scales
as O(N ×M). This becomes prohibitive for com-
posite datasets where N ≥ 200, 000—common in
current instruction tuning. Furthermore, when sam-
pling batches from the buffer, multiple state vectors
must be simultaneously loaded into memory, ex-
acerbating peak memory pressure. Consequently,
RAISE faces scalability challenges for very large-
scale instruction datasets, necessitating future work
on state compression or distributed buffer strate-
gies.

11715

Acknowledgement

This research is supported by National Nat-
ural Science Foundation of China (Grant
No.62276154), Research Center for Comput-
erNetwork (Shenzhen) Ministry of Education,
the Natural Science Foundation of Guang-
dong Province (Grant No.2023A1515012914
and 440300241033100801770), Ba-
sic Research Fund of Shenzhen City
(Grant No.JCYJ20210324120012033,
JCYJ20240813112009013 and
GJHZ20240218113603006), the Major Key
Projectof PCL for Experiments and Applications
(PCL2023A09). This work is also supported
in part by NSF under grants III-2106758, and
POSE-2346158.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Richard Bellman. 1966. Dynamic programming. sci-
ence, 153(3731):34–37.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun.
2023. Instruction mining: Instruction data selection
for tuning large language models. arXiv preprint
arXiv:2307.06290.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin.
2024a. Alpagasus: Training a better alpaca with
fewer data. In The Twelfth International Conference
on Learning Representations.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023. Al-
pagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Pei Chen, Soumajyoti Sarkar, Leonard Lausen, Balasub-
ramaniam Srinivasan, Sheng Zha, Ruihong Huang,
and George Karypis. 2024b. Hytrel: Hypergraph-
enhanced tabular data representation learning. Ad-
vances in Neural Information Processing Systems,
36.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi

Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Guangzeng Han, Weisi Liu, and Xiaolei Huang. 2025.
Attributes as textual genes: Leveraging llms as ge-
netic algorithm simulators for conditional synthetic
data generation. arXiv preprint arXiv:2509.02040.

Guangzeng Han, Jack Tsao, and Xiaolei Huang.
2024. Length-aware multi-kernel transformer
for long document classification. arXiv preprint
arXiv:2405.07052.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. Unifiedqa: Crossing format
boundaries with a single qa system. arXiv preprint
arXiv:2005.00700.

Diederik P Kingma. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

M Kumar, Benjamin Packer, and Daphne Koller. 2010.
Self-paced learning for latent variable models. Ad-
vances in neural information processing systems, 23.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2023. From quantity to quality: Boosting
llm performance with self-guided data selection for
instruction tuning. arXiv preprint arXiv:2308.12032.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2024. From quantity to quality: Boosting
LLM performance with self-guided data selection
for instruction tuning. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 7602–7635, Mexico City, Mexico. Association
for Computational Linguistics.

Fuxiao Liu, Xiaoyang Wang, Wenlin Yao, Jianshu Chen,
Kaiqiang Song, Sangwoo Cho, Yaser Yacoob, and
Dong Yu. 2023. Mmc: Advancing multimodal chart
understanding with large-scale instruction tuning.
arXiv preprint arXiv:2311.10774.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2024a. What makes good data for align-
ment? a comprehensive study of automatic data se-
lection in instruction tuning. In The Twelfth Interna-
tional Conference on Learning Representations.

11716

https://openreview.net/forum?id=FdVXgSJhvz
https://openreview.net/forum?id=FdVXgSJhvz
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw

Xiaoyu Liu, Paiheng Xu, Junda Wu, Jiaxin Yuan, Yifan
Yang, Yuhang Zhou, Fuxiao Liu, Tianrui Guan, Hao-
liang Wang, Tong Yu, et al. 2024b. Large language
models and causal inference in collaboration: A com-
prehensive survey. arXiv preprint arXiv:2403.09606.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. In International Conference on
Machine Learning, pages 22631–22648. PMLR.

James MacQueen et al. 1967. Some methods for clas-
sification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. nature,
518(7540):529–533.

Chatgpt OpenAI. 2023. Optimizing language mod-
els for dialogue, 2022. URL: https://openai.
com/blog/chatgpt.

Xingyuan Pan, Luyang Huang, Liyan Kang, Zhicheng
Liu, Yu Lu, and Shanbo Cheng. 2024. G-dig:
Towards gradient-based diverse and high-quality
instruction data selection for machine translation.
arXiv preprint arXiv:2405.12915.

Martin L Puterman. 2014. Markov decision processes:
discrete stochastic dynamic programming. John Wi-
ley & Sons.

John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. 2015. High-dimensional
continuous control using generalized advantage esti-
mation. arXiv preprint arXiv:1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Wangtao Sun, Haotian Xu, Xuanqing Yu, Pei Chen,
Shizhu He, Jun Zhao, and Kang Liu. 2024.
Itd: Large language models can teach them-
selves induction through deduction. arXiv preprint
arXiv:2403.05789.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jiwei Tang, Jin Xu, Tingwei Lu, Zhicheng Zhang, Yim-
ing Zhao, Lin Hai, and Hai-Tao Zheng. 2024. Percep-
tion compressor: A training-free prompt compression
framework in long context scenarios. arXiv preprint
arXiv:2409.19272.

Jiwei Tang, Zhicheng Zhang, Shunlong Wu, Jingheng
Ye, Lichen Bai, Zitai Wang, Tingwei Lu, Jiaqi
Chen, Lin Hai, Hai-Tao Zheng, et al. 2025. Gmsa:
Enhancing context compression via group merg-
ing and layer semantic alignment. arXiv preprint
arXiv:2505.12215.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Xin Wang, Yudong Chen, and Wenwu Zhu. 2021.
A survey on curriculum learning. IEEE transac-
tions on pattern analysis and machine intelligence,
44(9):4555–4576.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. 2022.
Super-naturalinstructions: Generalization via declar-
ative instructions on 1600+ nlp tasks. arXiv preprint
arXiv:2204.07705.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. LESS: Se-
lecting influential data for targeted instruction tuning.
In International Conference on Machine Learning
(ICML).

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren.
2021. Crossfit: A few-shot learning challenge for
cross-task generalization in nlp. arXiv preprint
arXiv:2104.08835.

Chenchen Yuan, Zheyu Zhang, Shuo Yang, Bardh
Prenkaj, and Gjergji Kasneci. 2025. Probabilistic
aggregation and targeted embedding optimization for
collective moral reasoning in large language models.
arXiv preprint arXiv:2506.14625.

Zheyu Zhang, Shuo Yang, Bardh Prenkaj, and Gjergji
Kasneci. 2025. Not all features deserve attention:
Graph-guided dependency learning for tabular data
generation with language models. arXiv preprint
arXiv:2507.18504.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-
ment. Advances in Neural Information Processing
Systems, 36.

11717

https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

A Details of Experiments Setup

A.1 Evaluation Datasets

MMLU covers 57 tasks ranging from elementary
math and U.S. history to computer science and law,
primarily measuring knowledge breadth and rea-
soning. ARC-C is a challenging subset of the AI2
Reasoning Challenge, featuring multiple-choice
questions that demand complex reasoning and sci-
entific knowledge (Clark et al., 2018). ComQA is
a common-sense reasoning benchmark requiring
real-world knowledge and inference (Talmor et al.,
2019). GSM8K contains 8,000 grade-school math
problems focusing on multi-step numeric reason-
ing (Cobbe et al., 2021). Table 2 provides more de-
tailed information about these evaluation datasets.

Dataset |Dval| |Dtest| Answer Type Metric

MMLU 285 14,042 Letter options Acc
ARC-C 299 1,172 Letter options Acc
ComQA 280 3 1,140 Letter options Acc
GSM8K 256 4 1,319 COT and answer Acc

Table 2: Statistics of evaluation datasets.

A.2 Hyperparameters

When training the LLM in each round, we set the
learning rate to 2e-5, use a cosine learning rate
scheduler, and have no warm-up steps. When ppo
training, we set actor learning rate, critic learning
rate, weight decay, γ, λ, K respectively to 1e-1, 2e-
1, 1e-2, 0.99, 1.0, 20. In our state fusion pipeline,
we pool the instruction embedding vector to a di-
mension of 32. Consequently, the fused state di-
mension is 2 (stage) + 4 (diff) + 32 (sem) + 1 (avail)
= 39. As a practical measure of model performance
P(Mt), we use −Loss(Mt,Dval) for computa-
tional efficiency. When evaluating the trained LLM,
we use the lm_eval framework and set max_length
to 512.

A.3 SSPL Baseline

In SSPL baseline, all training examples are sorted
by their loss values and divided into max_steps
buckets of approximately equal size, such that each
bucket contains instructions with similar difficulty
(as measured by loss). During training, the model

3In ComQA, we randomly select 280 samples from the
original 1,221 validation data.

4For GSM8K, which does not have a dedicated validation
set, we sample 256 examples from its 7,473 training data.

sequentially takes data batches from these buck-
ets in ascending order of difficulty, moving from
simpler to more challenging tasks to progressively
enhance its capabilities.

B Effects of Different Components in
State Fusion

The ablation experimental results in Figure 4 sys-
tematically evaluate the 4 state components, re-
vealing the following importance ranking: Stage
> Instruction Difficulty > Instruction Semantic
> Instruction Availability. We provide a more
detailed analysis here.

B.1 Stage State
As the core component of RAISE’s dynamic selec-
tion, Stage State integrates current model perfor-
mance and training progress to provide global tem-
poral awareness. Figure 4 results show removing
this component causes the largest average perfor-
mance drop, as it directly controls training rhythm:
guiding broad semantic category exploration in
early stages (dispersed distributions in early/mid
phases in Figure 6) and focusing on high-value
samples later (dense distributions in later phases).
Its global and dynamic nature makes it most sig-
nificant in multi-task scenarios, serving as the key
source of temporal sensitivity for dynamic value
estimation.

B.2 Instruction Difficulty State
Drives progressive learning by quantifying instruc-
tion complexity. Ablation experiments show signif-
icant performance drops on ARC-Challenge when
removed, as this task heavily relies on complex
reasoning (e.g., scientific knowledge inference).
Works synergistically with Stage State: select-
ing easier samples early for stable training, then
gradually introducing harder ones. However, in
knowledge-intensive tasks (e.g., MMLU), difficulty
metrics show weaker correlation with task objec-
tives, making its impact relatively limited. This
indicates Difficulty State’s effectiveness varies sig-
nificantly by task type, being crucial for complex
reasoning tasks.

B.3 Instruction Semantic State
Captures semantic relevance through embedding
vectors. Ablation shows significant impact on
MMLU and CommonsenseQA but limited effect on
ARC-Challenge. This difference stems from vary-
ing task requirements: MMLU needs cross-domain

11718

knowledge generalization where semantic features
prevent bias toward frequent domains (e.g., law,
medicine). CommonsenseQA requires connecting
similar common sense questions (e.g., causal rea-
soning) to extract patterns. ARC-Challenge’s sci-
entific reasoning depends more on logical chain
completeness than semantic discrimination. Thus,
Semantic State offers limited benefits for reasoning
tasks.

B.4 Instruction Availability State
Tracks selection frequency to prevent oversam-
pling. Ablation shows minimal impact, with analy-
sis revealing <10% cases of repeated sampling (>3
times) of same data. Its function becomes weaker
with higher cluster counts (C). However, since it
adds negligible overhead (just 1 extra dimension)
and handles extreme oversampling cases, retaining
it remains meaningful.

C Dynamic Value

C.1 Static Value Framework
Existing approaches rely on static value computa-
tion. Let f : d → R be the scoring function where
∀d ∈ D, f(d) represents its general utility. The
subset selection objective is:

D′ = arg top
N ′

{
f(d) | d ∈ D

}
(14)

J = max
f

P(M[D′]) (15)

where N ′ is the selection size and P denotes
evaluation metrics. Representative implementa-
tions include:

• AlpaGasus (Chen et al., 2023): fGPT-4(d) =
Complexity(d) + FormatScore(d)

• IFD (Li et al., 2024): fLlama(d) =
log p(y|x)
log p(y)

C.2 Dynamic Value Definition
We extend static values to dynamic values by intro-
ducing temporal dependency:

f : Mt−1 ×D → R, where t ∈ {1, . . . , T}
(16)

The training dynamics are governed by:

Dt = arg top
B

{
ft(Mt−1, d) | d ∈ D

}
(17)

Mt = Update(Mt−1,Dt) (18)

with final objective:

J = max
f

P(MT) (19)

C.3 Conceptual Comparisons

• Vs. Reward: Reward Rt measures immedi-
ate performance improvement ∆Pt, whereas
f(Mt−1,D) estimates long-term utility of
each sample.

• Vs. Curriculum Learning: Dynamic values
adapt to emergent model states rather than
pre-defined difficulty schedules.

• Vs. Active Learning: Focuses on final model
capability rather than immediate uncertainty
reduction.

C.4 Example

Consider D = {d1, d2} with B = 1 at step t:

f(Mt−2, d1) = 0.8

f(Mt−2, d2) = 0.1

⇒ Dt = {d1} (via Eq. 17)

The model updates as Mt−1 → Mt following
Eq. 18. The value predictor f (we call it acquisi-
tion function) is optimized via RL.

C.5 Parameter-to-Time Simplification

Directly using model parameters in f(Mt, d) is
computationally prohibitive. We simplify to f(t, d)
because optimizers like Adam (Kingma, 2014) in-
duce smooth parameter updates, making t a suffi-
cient temporal index. The simplification reduces
complexity from O(|P |×|D|) to O(|D|), enabling
real-time computation.

D Selection Policy Optimization

The optimization algorithm for the data selection
strategy (acquisition function) is illustrated in Al-
gorithm 2. This framework employs a bi-level iter-
ative optimization process:

• The inner loop trains the LLM and adaptively
updates the data selection strategy based on
observed performance improvements during
training.

• The outer loop iteratively refines the selec-
tion strategy over multiple rounds, ultimately
achieving global optimization of the policy
πθ.

11719

Algorithm 2 Selection Policy Optimization
1: Input: Training dataset D, Validation set Dval, Initial

LLM M0, Number of rounds K, Steps per round T ,
Batch size B, Fusion functionH, PPO epochs K2

2: Output: πθK

3: Initialize θ0, ϕ0

4: for k = 1 to K do
5: // Data Collection Phase
6: Initialize buffer W ← ∅
7: for t = 1 to T do
8: St ← H(D,Mt−1, t)
9: Dt ← πθk−1(St, B)

10: Vt ← Vϕk−1(St)
11: Mt ← Update(Mt−1,Dt)
12: Rt ← P(Mt)− P(Mt−1)
13: W ←W ∪ {(St,Dt, Rt, Vt, St+1)}
14: end for
15: // Policy Optimization Phase
16: θ, θold, ψ = θk−1, θk−1, ψk−1

17: for k2 = 1 to K2 do
18: for (S′

t,D′
t, R

′
t, V

′
t , S

′
t+1) ⊆W do

19: Update θ by Eq.12
20: Update ψ by Eq.13
21: end for
22: end for
23: θk, ψk = θ, ψ
24: end for
25: return πθK

E Analysis of Computational Cost

RAISE introduces moderate additional overhead
due to its two-stage structure: instruction prepro-
cessing and acquisition function training. We de-
note Φ as the cost of full-data LLM training.

Instruction Preprocessing. This stage computes
instruction difficulty and semantic representations
using an auxiliary model. Each instruction requires
two forward passes. Assuming the auxiliary model
is 3× larger than the target model, and training is
5× more expensive than inference per epoch, the
preprocessing cost is:

Preprocess ≈ 2× 3

5× 3
Φ = 0.4Φ

Acquisition Function Training. The acquisition
function is trained via a bi-loop structure over K
rounds. Each round performs one LLM training
using a p-proportion data subset, costing pΦ. Addi-
tional PPO and selection overheads are negligible
(< 80s per round). Total training cost is:

Train ≈ K · p · Φ

Using p = 0.05, K = 30, we obtain 1.5Φ.

Total Cost. The total computational cost of
RAISE is approximately:

Total ≈ 0.4Φ + 1.5Φ = 1.9Φ

Despite a 90% increase over full-data train-
ing, RAISE enables targeted instruction selec-
tion and facilitates constructing high-quality, task-
aligned datasets. For instance, aligning Alpaca
with GSM8K as validation allows extraction of
reasoning-specific data for specialized downstream
training.

F Memory Optimization Strategy

During RL training of acquisition function, RAISE
maintains a replay buffer to store fused state vectors
for each instruction. Given a state dimension of M
and dataset size N , the memory cost scales linearly
as O(N ×M). This becomes prohibitive for large-
scale instruction datasets (e.g., N ≥ 200,000),
where simultaneous access to multiple state vec-
tors during batch sampling can exacerbate peak
memory pressure.

To address this scalability issue, we propose a
simple strategy: performing data selection every
M steps instead of every training step. During in-
termediate steps, random sampling is used in place
of selection. This reduces the frequency of pol-
icy updates and state maintenance, decreasing both
computational and memory costs to approximately
1/M of the original per-step selection setup.

This optimization leverages the observation that
model parameters typically change slowly between
adjacent training steps. Thus, the stage state re-
mains similar over short horizons, and infrequent
updates (e.g., every M steps) preserve most of the
benefits of dynamic selection while significantly
reducing overhead.

The interval parameter M provides a tunable
trade-off between adaptivity and efficiency:

• Fully Dynamic Selection (M = 1): Per-step
selection with maximum adaptivity but high-
est memory and compute cost.

• Fully Static Selection (M = N): Single se-
lection before training with no runtime adap-
tation and minimal overhead.

This parameterization allows explicit control
over the adaptation-efficiency trade-off in practi-
cal deployments. For very large-scale instruction
tuning, this strategy enables RAISE to scale more
efficiently without significant loss in performance.

G Additional experiments

To further verify the scalability and effectiveness
of our method, we conducted supplementary ex-

11720

periments on the larger Llama-3.1-8B model and
the higher-quality Tulu3 dataset, and included a
stronger baseline: LESS (Xia et al., 2024). The re-
sults are reported in Table 3. As shown in the table,
RAISE still outperforms LESS and other baselines
at both 1% and 5% budgets. However, we observe
that on the high-quality Tulu3 dataset, no method
can surpass full-data training when only 1% of the
data are used. Only when the budget increases to
5% do LESS and RAISE marginally exceed the
performance of the 100% baseline. This suggests
that the “Less is More” phenomenon, while pro-
nounced on lower-quality data, is less dramatic on
high-quality data where the intrinsic value density
of every sample is already high.

H Why “Less Is More”?

We observe that full-data training incurs signif-
icantly higher computational cost—up to 100×
compared to selective training baselines—while re-
sulting in comparable or only marginally improved
performance. This finding may appear to contra-
dict existing scaling laws. However, as noted in
prior work (Zhou et al., 2024), scaling laws do
not directly apply to the alignment phase, for the
following reasons:

• The majority of LLMs’ core capabilities are
acquired during pretraining.

• The alignment phase primarily teaches output

patterns that activate these pretrained capabil-
ities.

• Thus, only a small amount of high-quality
data is sufficient for effective alignment.

0 1 2 3 4 5 6 7 8 9 10
Checkpoint

52.0

52.5

53.0

53.5

54.0

54.5

55.0

Pe
rf

Figure 7: Model performance during training.

Checkpoint Analysis. To further examine this
behavior, we conducted full-data training and saved
10 equally spaced checkpoints. Figure 7 reports
performance across checkpoints. The results show
that performance plateaus after early training steps,
with only minor fluctuations throughout the rest of
training. This reinforces the hypothesis that only a
small subset of the full data contributes meaning-
fully to alignment.

Model DATA Avg.Q Avg. MMLU ARC-C ComQA GSM8K

Llama-3.1-8B

0% -100% 57.12 63.35 51.11 71.42 42.61
100% 0% 61.48 63.47 55.29 72.48 54.66

RAND 1% -72.84% 58.30 63.47 53.67 71.50 44.58
IFD 1% -91.42% 57.49 63.46 52.62 69.86 44.03

DEITA 1% -80.25% 57.98 64.19 52.73 71.25 43.75
AlpaGasus 1% -71.92% 58.34 63.79 53.58 71.42 44.58

LESS 1% -51.49% 59.23 64.02 53.33 71.74 47.84
RAISE 1% -40.99% 59.69 64.17 54.69 71.33 48.56

Llama-3.1-8B

0% -100% 57.12 63.35 51.11 71.42 42.61
100% 0% 61.48 63.47 55.29 72.48 54.66

RAND 5% -36.97% 59.87 64.02 53.41 72.32 49.71
IFD 5% -45.10% 59.51 63.15 53.33 69.78 51.79

DEITA 5% -18.13% 60.69 64.02 53.41 72.32 52.99
AlpaGasus 5% -38.06% 59.82 63.60 56.40 72.73 46.55

LESS 5% +12.99% 62.04 64.29 55.12 72.81 55.95
RAISE 5% +29.55% 62.76 64.09 55.97 72.24 58.76

Table 3: Experimental results of the data from 1% and 5% of Tulu3.

11721

100%
RAND

IFD DEITA
AlpaGasus

RAISE
RAISE-Q

Method

52.0

52.5

53.0

53.5

54.0

54.5

55.0

55.5

56.0
Pe

rf

54.32 54.20

54.73

54.05

53.13

55.47 55.40

Figure 8: Experiment result of using Qwen-2.5-7B-
Instruct as auxiliary model (RAISE-Q).

I Bias of Auxiliary Model

The Instruction Difficulty and Instruction Seman-
tic features computed by auxiliary models are cru-
cial for RAISE’s performance. We emphasize
these components exhibit strong generalizability,
while absolute values may differ significantly be-
tween architecturally distinct models (e.g., GPT vs.
Llama), their feature distributions remain similar.
To validate this experimentally, we implemented
RAISE-Q using Qwen-2.5-7B-Instruct as the auxil-
iary model. The experimental results are shown in
Figure 8. It can be observed that even when using
an auxiliary model of another architecture, RAISE
still exhibits excellent performance, indicating that
RAISE’s dependence on the reference model is not
particularly strong.

J Case Study

In the experiments where GSM8K was used as the
task objective, we were surprised to find that the
selected instruction data were typical CoT data,
which were highly aligned with GSM8K. Here we
present two data cases for reference.

Solve for the inverse of the matrix

Instruction:
Find the inverse of the matrix.

Input:

1 −3 2
3 2 1
4 0 −1




Response:
We can find the inverse of the input matrix

using the adjugate or classical adjoint
method. Here are the steps:
Solution: First, we need to find the matrix
of minors. The matrix of minors is a matrix
where each element is the determinant of
the minor for the corresponding entry in the
original matrix. The minor for an entry is
the determinant of the matrix that we get by
removing the entry’s row and column.

The matrix of minors of



1 −3 2
3 2 1
4 0 −1




is




∣∣∣∣
2 1
0 −1

∣∣∣∣
∣∣∣∣
3 1
4 −1

∣∣∣∣
∣∣∣∣
3 2
4 0

∣∣∣∣∣∣∣∣
−3 2
0 −1

∣∣∣∣
∣∣∣∣
1 2
4 −1

∣∣∣∣
∣∣∣∣
1 −3
4 0

∣∣∣∣∣∣∣∣
−3 2
2 1

∣∣∣∣
∣∣∣∣
1 2
3 1

∣∣∣∣
∣∣∣∣
1 −3
3 2

∣∣∣∣




=



−2 −1 −8
3 −6 −12
−7 −1 11


.

Then we need to turn this matrix of minors
into a matrix of cofactors by negating the
elements at the positions where the sum of
the row number and the column number
is odd, i.e, alternate signs in the matrix of
minors.
The matrix of cofactors is

−2 1 −8
−3 −6 12
−7 1 11


.

Next, we have to find the adjugate of the ma-
trix is by taking the transpose of the matrix
of cofactors.

Solve the Eight Queens puzzle

Instruction:
Design an algorithm to solve the Eight
Queens puzzle

Response:
The Eight Queens puzzle is a classic
problem where the goal is to place eight
queens on an 8x8 chessboard in such a way
that no two queens threaten each other. This
means that no two queens can be placed in
the same row, column, or diagonal.
One solution to this problem is to use back-
tracking. Here is an algorithm to solve the
Eight Queens puzzle using backtracking:

11722

1. Start with an empty 8x8 chessboard and
add the first queen to the first row in the first
column.
2. Move to the next row and try placing a
queen in each column. Check if the position
is safe by verifying if any of the previously
placed queens is attacking the current posi-
tion. If it’s a safe position, place a queen in
that column.
3.Boolean function:
def is_safe(board, row, col):

for i in range(col):
Check row and columns
if board[row][i] == 1:

return False
Check diagonals
for i, j in zip(range(row, -1, -1),

range(col, -1 ,-1))
if board[i][j] == 1:

return False
for i, j in zip(range(row, N, 1),

range(col, -1, -1))
if board[i][j] == 1

return False
return True

4. If a queen can be placed, move to the next
row and repeat step 2. If no safe position
is found for the current row, go back to the
previous row and move the queen to the
next safe position.
5. If all eight queens have been placed on
the chessboard without attacking each other,
the solution is found. Print the solution.
5. Do this for rows from 1-7 since the first
row already has a queen.
6. Continue the process until all possible
solutions are found, or if the solutions are
exhausted, and none is found.

Solve a Tower of Hanoi problem

Instruction:
Create an algorithm for solving a Tower of
Hanoi problem

Response:
The Tower of Hanoi is a classic puzzle
game with a goal of moving a stack of disks
from one peg to another with the following
three constraints:
1. Only one disk can be moved at a time.
2. Each move consists of taking the upper
disk from one peg and moving it to another

peg. 3. No disk may be placed on top of a
smaller disk.
Given these constraints, we can use a recur-
sive algorithm to solve the Tower of Hanoi
puzzle.
Let’s define the function ‘towerOfHanoi(n,
source, destination, auxiliary)‘ where ‘n‘
is the number of disks, ‘source‘ is the peg
where the disks are initially stacked, ‘desti-
nation‘ is the peg where the disks need to
be transferred to and ‘auxiliary‘ is the third
peg that can be used as a temporary peg for
moving the disks.
1. If ‘n == 1‘, then move the top disk from
‘source‘ to ‘destination‘ peg. 2. If ‘n > 1‘,
then: a. Recursively call ‘towerOfHanoi(n-
1, source, auxiliary, destination)‘ to move
the top ‘n-1‘ disks from the ‘source‘ peg
to the ‘auxiliary‘ peg using the ‘destina-
tion‘ peg as the temporary peg. b. Move
the ‘n‘th disk from the ‘source‘ peg to
the ‘destination‘ peg. c. Recursively call
‘towerOfHanoi(n-1, auxiliary, destination,
source)‘ to move the ‘n-1‘ disks from the
‘auxiliary‘ peg to the ‘destination‘ peg using
the ‘source‘ peg as the temporary peg.
Below is sample code for the algorithm in
Python:
def towerOfHanoi(n, source, destination,

auxiliary):
if n == 1:

print(f’Move disk 1 from {source}
to {destination}’)

else:
towerOfHanoi(n-1, source,

auxiliary, destination)
print(f’Move disk {n} from {source

} to {destination}’)
towerOfHanoi(n-1, auxiliary,

destination, source)

When the function is called with the appro-
priate initial values, it will print out the step-
by-step solution to the Tower of Hanoi puz-
zle. For example:
towerOfHanoi(3, ’A’, ’B’, ’C’)

11723

