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Abstract

Efficient instruction tuning aims to enhance the
ultimate performance of large language models
(LLMs) trained on a given instruction dataset.
Curriculum learning as a typical data organi-
zation strategy has shown preliminary effec-
tiveness in instruction tuning. However, cur-
rent curriculum tuning methods suffer from the
curriculum rigidity, since they rely solely on
static heuristic difficulty metrics. These meth-
ods fail to adapt to the evolving capabilities
of models during training, resulting in a fixed
and potentially sub-optimal learning trajec-
tory. To address the issue, Competence-Aware
Multi-Perspective cUrriculum inStruction tun-
ing framework termed CAMPUS is pro-
posed. CAMPUS offers several advantages:
(1) Dynamic selection for sub-curriculum. (2)
Competency-aware adjustment to the curricu-
lum schedule. (3) Multiple difficulty-based
scheduling. Extensive experiments prove the
superior performance of CAMPUS, compared
to other state-of-the-art baselines for efficient
instruction tuning.

1 Introduction

Instruction tuning (Zhang et al., 2023; Zhao et al.,
2023) aligns large language models (LLMs) (Tou-
vron et al., 2023; Bai et al., 2023) with human pref-
erences, enhancing their effectiveness across real-
world tasks. Some studies (Zhou et al., 2024; Wang
et al., 2023a) have highlighted the importance of
instruction data management, including data qual-
ity curation and training strategy. This has fueled
interest in efficient instruction tuning (Wang et al.,
2024, 2023b), which aims to maximize LLM per-
formance trained on a given instruction dataset.
Among various strategies, optimizing training or-
der has emerged as a key research focus.
Curriculum learning (Bengio et al., 2009), as a
typical data order organization strategy that mim-
ics the learning process of human education, has
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Figure 1: Comparison of different curriculum instruc-
tion tuning.

shown preliminary effectiveness in instruction tun-
ing. The essential idea is to train LLMs with in-
struction data in a progression from easy to diffi-
cult, thereby accelerating model convergence and
achieving a higher performance upper bound. The
key to curriculum learning lies in the design of dif-
ficulty metrics for instruction data. For instance,
Tree-Instruct (Zhao et al., 2024) treats instruction
data as a semantic tree and measures difficulty
based on the number of tree nodes. Referring to the
expert-designed educational framework, Lee et al.
(2024) utilizes ChatGPT to synthesize the instruc-
tion dataset CORGI with increasing difficulty, and
then train the LLMs sequentially.

Despite these advancements, previous difficulty
metrics are often static and predefined with hu-
man intuition. These metrics fail to gauge the
difficulty variations of the same data for differ-
ent LLMs or at different learning stages. Conse-
quently, as shown in Figure 1, curriculum instruc-
tion tuning based on them lacks the flexibility to
adjust curriculum for different LLMs or as LLMs
evolve. The rigid curriculum schedule result in a
sub-optimization in instruction tuning. As educator
John Dewey said, “if we teach today’s students as
we taught yesterday’s, we rob them of tomorrow,"
underscoring the necessity of adaptable learning
strategies in human cognition. However, it remains
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unclear for us how to customize a “suitable” in-
struction curriculum for a specific LLM.

In light of the above issues, we seek to de-
velop a data order organization strategy that cus-
tomizes a dynamic curriculum for different LLMs
or LLM at different training phases, based on which
we can improve the training efficiency of instruc-
tion dataset. To this end, a Competence-Aware
Multi-Perspective cUrriculum inStruction tuning
framework termed CAMPUS is proposed. Ini-
tially, CAMPUS independently sorts instruction
data using multiple difficulty metrics, each rep-
resenting a curriculum schedule developed from
distinct perspectives. At each training step, CAM-
PUS assesses the LLM competence and inherent
data difficulty, selecting the sub-curriculum from
the various schedules that poses the minimum per-
plexity, i.e., sub-curriculum that can be relatively
easily comprehended and internalized by current
LLM.

CAMPUS is compatible with arbitrary quantities
of difficulties. Besides the conventional heuristic
difficulty, we introduce competence-aware diffi-
culty based on a lightweight scoring model, which
is trained with adversarial learning. It considers
both LLM parameters and instruction data as joint
inputs to assess the instruction data’s difficulty
for the current LLM. As the LLM’s training pro-
gresses, the competence-aware difficulty consis-
tently evolves, allowing the curriculum based on
the reward model to dynamically adjust.

Compared to existing curriculum instruction
tuning methods, CAMPUS offers the following
advantages: (1) Dynamic Selection for Sub-
Curriculum: It continuously evaluates the learning
state and progress of the model, selecting the most
appropriate sub-curriculum to match the current
learning needs. (2) Competency-Aware Adjust-
ment to the Curriculum Schedule: CAMPUS
adjusts the curriculum schedule based on real-time
assessments of the model’s competencies, ensur-
ing that the curriculum aligns with the model’s
evolving strengths and weaknesses. (3) Multiple
Difficulty-Based Scheduling: Unlike methods that
rely on a single static metric, CAMPUS utilizes
multiple difficulty metric, holding a more compre-
hensive perspective of the data difficulty.

LLMs from different families are equipped with
CAMPUS to demonstrate their effectiveness, in-
cluding BLOOMZ and LLaMA. In experiments,
we utilized a mixed instruction dataset derived from
Code Alpaca, GSM8K, and ShareGPT as the orig-

inal training dataset D. Various types of efficient
instruction methods, including data selection and
training order optimization, are served as baseline
models to enhance training efficiency with D. We
conduct an extensive evaluation on three bench-
marks: GSMS8K for mathematical reasoning, Hu-
manEval for coding, and MT-Bench for general
language understanding. CAMPUS consistently
outperforms state-of-the-art methods by an average
of 7.0%. Additionally, as a pluggable training strat-
egy, CAMPUS can be integrated with other data
selection methods to further enhance the efficiency
of instruction tuning.

2 Related Work

2.1 Efficient Instruction Tuning

Instruction Tuning (Zhang et al., 2023; Zhao et al.,
2023) aims to align the pre-trained LLM abilities
towards human preference, which enables LLMs
to quickly adapt to specific domains or acquire spe-
cialized skills. Some recent research (Zhou et al.,
2024; Wang et al., 2023a) reveals that only a fairly
small amount of high-quality data is needed to align
large models well with human preferences, in con-
trast to traditional task-specific fine-tuning (Ken-
ton and Toutanova, 2019) or pre-training (Brown
et al., 2020) where data quantity is crucial. This
finding has motivated the Al research community
to dedicate on efficient instruction tuning (Wang
et al., 2024, 2023b), including data and training
efficiency. The common objective of various meth-
ods is to enhance the ultimate performance of
LLMs trained on a given instruction dataset D.

The essence of the data-efficient instruction tun-
ing (Li et al., 2024; Dong et al., 2024; Liu et al.,
2024) lies in selecting a high-quality subset D,;, C
D from original datasets. Previous work filtered
data from three dimensions: quality, diversity, and
complexity. For quality assessment (Chen et al.),
powerful LLMs such as ChatGPT or fine-tuned
LLMs are frequently employed as quality evalua-
tors. Diversity (Wu et al., 2023) is often measured
using heuristic metrics like ROUGE-L similarity.
Additionally, some works also endeavor to quantify
and evaluate instruction complexity. For instance,
#InsTag (Lu et al.) proposes to quantify instruc-
tion complexity using the number of fine-grained
tags generated by ChatGPT. DEITA (Liu et al.,
2024) introduces a comprehensive method that si-
multaneously considers all three aspects, enabling
automatic data selection.
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Figure 2: Framework of our CAMPUS to demonstrate
how to schedule the sub-curricula.

2.2 Curriculum Instruction Tuning

A representative way for training-efficient instruc-
tion tuning is to organize the order of training data.
Curriculum learning (Bengio et al., 2009), as a
data organization strategy that emulates the human
brain’s learning process, has demonstrated effec-
tiveness in instruction tuning. Its core principle in-
volves arranging learning data from simple to hard,
and the key is the design of difficulty metric. Zhao
et al. (2024) and Sun et al. (2024) have employed
the number of nodes in semantic trees and evalua-
tions by ChatGPT, respectively, to gauge difficulty
and create learning schedules. Lee et al. (2024)
leverages expert-designed educational frameworks
as basic curriculum outline and then synthesizes
easy-to-hard instruction dataset CORGI. However,
these rigid heuristic difficulties hindered dynamic
adjustment of curriculum schedules.

3 Method

3.1 Overall Framework

Previous curriculum instruction tuning typically
relied on static difficulty metrics, which limited
their ability to assess the difficulty variations of the
same data for different LLMs, and also hindered
dynamic adjustment of learning schedules based
on LLMs’ mastery of the training data during the
learning processes. To address these issues, we
propose a Competence-Aware Multi-Perspective
cUrriculum inStruction tuning framework, termed
CAMPUS. The overall framework is illustrated
in Figure 2. CAMPUS first sorts the instruction
dataset individually based on n difficulty metrics,
and then dynamically programs the training batch
during the training process utilizing a perplexity-
based curriculum scheduler. As for the difficulty
metrics, in addition to the heuristic metrics as in
past work, we introduce novel model competence-

Algorithm 1 Overall process of CAMPUS.

Input: Training instruction dataset D, ¢ € {1,2,3,4}.
Output: A LLM with CAMPUS learning.
1: Compute four difficulties d; for each data sample in D;
2: Initial Sort D based each difficulty of every sample, re-
sulting in D; (i.e., D1, D2, D3, Dy);
3: for:=1,2,3,4do
4: t; = 1; Initialize the learning scope from i perspec-
tive, s;(1), by Eq. (1);
Compute the perplexity (PPL) on top s;(1) portion,
PPL(S;(1)), by Eq. (2);
6: end for
7: repeat
8:  j = argmax(PPL(S;(t:)));

7

9:  Train the LLM with the S;(¢;);

10: if j* difficulty is competence-aware then

11: Re-sort the curriculum order after s;(¢;);

12:  endif

13: tj<—t; +1;

14: Update the learning scope from j'* perspective,
S;(t;), by Eq. (1); Update the candidate training batch
from the scope S, (¢;) portions of D;;

15 Compute the PPL of LLM on S;(t;) portion ,
PPL(S, (t;)), by Eq. (2);

16: until LLM converges.

(9,

aware metrics. Besides the inherent data difficulty,
these metrics also account for LLMs’ proficiency
in data and their learning capacity, enabling flex-
ible adjustments to the curriculum schedule. The
details of curriculum scheduler and metrics will be
provided in Section 3.2 and 3.3.

3.2 Dynamic Curriculum Scheduler

For the given n difficulties, CAMPUS separately or-
ganizes the original instruction dataset into n easy-
to-hard curriculum schedules {D1, Do, ..., D,},
which can be considered as designed from distinct
pedagogical perspectives. The primary objective is
to intricately devise a sub-curriculum program strat-
egy across these schedules to enhance the training
of LLM, tailored to the LLM capabilities and sub-
curriculum complexity. A straightforward method
might involve selecting sub-curricula in a sequen-
tial format (i.e., 1 — 2 — ... =& n — 1), with
the expectation that the overall curriculum order
would still adhere to a progressive difficulty gradi-
ent. However, this method proves ineffective as it
does not account for the incomparability of diffi-
culty across heterogeneous measurement scales of
different schedules. Hence, a dynamic curriculum
scheduler that leverages perplexity metrics is pro-
posed. First, we define the learning scope s(t) for
a particular curriculum schedule at training step ¢
as follows:

1—s(1)

s(t):min(l,f\”/t o Fs(P),t=23,.T (1)
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where s(1) = 0.01 represents the initial learning
scope, p = 2 controls the curriculum progression
rate, and 7' represents the total training steps. Each
curriculum D; is segmented into 7" sub-curricula.
The sub-curriculum range S;(t;) at step ¢; is de-
noted as by [s(t;_1), s(t;)], which is utilized as a
training batch. Given that s(¢) is an exponential

function proportional to (/; , its growth deceler-
ates with increasing ¢. In other words, the learning
granularity becomes finer as difficulty of curricu-
lum escalates, akin to human educational practices.
For each candidate training batch (sub-curriculum)
derived from these schedules, the scheduler calcu-

lates the perplexity (PPL), defined as:

PPL(S;(t)) = ——mMm

|5 (t:)]

(@3]
where X = {wi,ws,...,wy} represents a data
sample in S;(¢;). The PPL measures the model’s
confusion with real data samples. A training sam-
ple with a higher PPL indicates that the LLM has
not mastered the basic ability to comprehend it and
needs deferred learning. Consequently, the sched-
uler dynamically selects the training batch with the
minimum PPL among the candidates, maintaining
an orderly progression of overall difficulty. After
that, the curriculum order is updated if the selected
metric is competence-aware, and the process itera-
tively proceeds to the next sub-curriculum selection.
Algorithm 1 presents the entire process.

3.3 Competence-Aware Difficulty Metrics

In our experiments, we employed four difficulty
metrics (i.e., n=4), of which loss and reward score
are competence-aware. These metrics not only as-
sess the inherent difficulty of the instruction data
but also adjust according to the LLM’s proficiency
with the skills associated with the instruction data.
In other words, they serve as difficulty indicator
functions d; = f; (inst, O\ ) with data and model
parameter as inputs. Additionally, we introduced
heuristic difficulty metrics data length and textual
lexical diversity, considering their empirical effec-
tiveness. Each metric is viewed as capturing the
curriculum from a different perspective, thereby
reducing the potential bias that could arise from
relying on a single metric. More meaningful met-
rics can be integrated into CAMPUS in the future.
Data Length d; The data length is well-suited as
a heuristic difficulty metric, aligning with intuitive
human assessments: shorter instruction data are

typically easier for LLMs to comprehend and learn.
Consequently, we employed the total length of the
instruction and output tokens, denoted as len(z +
y),as dj.

Measure of textual lexical diversity (MTLD) do
Lexical diversity refers to the variety of different
words employed in a text, which serves as a crucial
factor in studies of linguistic complexity. MTLD
(McCarthy and Jarvis, 2010) is a widely used quan-
titative measure for assessing lexical diversity. It is
calculated as the mean length of sequential token
lists in a text that maintains a given type-token ratio
threshold. We selected MTLD as a metric due to
its length-insensitivity, since text length does not
always accurately reflect the data complexity, e.g.,
redundancies. MTLD can be considered as a com-
plementary perspective on instruction complexity
that is distinct from data length.

Data Loss ds The data difficulty as perceived by
LLMs depends not only on the data’s inherent com-
plexity, but also on the LLMs’ comprehension abil-
ities. Therefore, in addition to the two heuristics
mentioned above, we introduce a simple, model
competence-aware difficulty metric, data loss, as
ds. Data loss indirectly quantifies problem-solving
capacity of LLM by measuring the difference be-
tween the predicted content and the ground-truth
value, which is defined as:

N
ds = L(z,y,00L0) = — > _ logpe, ., (vilz, y<i)
t=1

where N is the length of the output text sequence
and 017/ is the LLM parameter. A higher loss
suggests that LLM struggles with tasks related to
specific instruction data.
Competence-aware Data Score d; When assess-
ing the data difficulty under specific model, data
loss typically focuses solely on the difference be-
tween the model’s output and the actual results,
often neglecting the inherent data complexity and
inner state of model. Consequently, we propose
a model competent-aware scoring model R that
takes both the data and model state as joint input,
and outputs the data difficulty, denoted as d4. To
train the model R, we assign labels to each piece
of instruction data. Empirically, models typically
perceive data they have been trained on as straight-
forward, labeling these as 0; conversely, data they
have not encountered are considered challenging,
thus labeled as 1.

We commence by randomly shuffling the dataset
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D (We used the same training data in Appendix
B.1 to train the scoring model) and equally divid-
ing it into n portions, D1, Dy, ..., D,. At the i*"
epoch of training R, we choose the dataset pair
(D;, Dji41) to process. We update the LLM param-
eters from the last epoch using dataset D;:

0) vt = SFTocp, (0Y,3),i=1,2,....n (3
where 95:02 v = Orra. At the i epoch, each
data in D; forms a training instance with H(Ll)L  for
model R, and is assigned with a difficulty score
label of 0 since Q(Ll)L s has mastered it. Correspond-
ingly, data in D, is given a label of 1.

We intend to employ model R to leverage both
data and LLM’s model feature. For input data
x € [D;, D;i11], the initial model parameter 7,15/
is utilized to obtain data feature z;. To acquire
model features, we apply a trainable embedding
matrix with Kaiming initialization, serving as an
initial semantic segment. By processing the se-
mantics through G(LZ)L - model feature zo is ob-
tained. Then, two features are concatenated to
form a hidden feature z = concat(z1, z2). This
process is succinctly expressed as H(z,0) = z.
Subsequently, we use another MLP structure to
transform z into a quantifiable difficulty score, that
is, R(z,0) = MLP(z) = MLP(H(x,0)). The
corresponding cross-entropy loss is calculated as:
m}%n Lr = Ezep,[logR(x,0)]4+Ezep, ., [log(1—R(x,0))]

“
Additionally, we introduce an adversarial training
mechanism to further enhance generalization of
model R. In this process, discriminator D engages
in a rivalry with model R, progressively refining the
capability of model R in assessing data difficulty.
Specifically, model R tries to fool the discriminator
to correctly predict whether the instance is easy.
While the discriminator D with a two-layer MLP
structure is adversarially trained to accurately ap-
proximate the true difficulty label. Therefore, the
training objectives for model R and the discrimina-
tor D are symmetrically formulated as:

max Lr = Ezep,[logR(x,0)] + Erep, ., [logR(x, 0)]
(%)

min Lp = Egep, [logD(H (z,0)]
D (6)

+ EIED«H—l [lo.g(l - D(H(xv 0))]
4 Experiments

4.1 Experiment Setting

Training Dataset To intimate the educational sce-
nario in which students simultaneously engage with

multiple science curricula, we constructed a com-
prehensive instruction dataset for training, includ-
ing mathematical reasoning, code generation, and
general language understanding. They are sourced
from 3 instruction datasets: training set of GSM8K
(Cobbe et al., 2021), Code Alpaca (Chaudhary,
2023), and ShareGPT! (Chiang et al., 2023).
Evaluation Benchmark and Metrics We assess
the aforementioned three capabilities using the fol-
lowing benchmarks and metrics: evaluation set of
GSMS8K, HumanEval (Chen et al., 2021), and
MT-Bench (Zheng et al., 2023). The details about
evaluation metrics are in Appendix B.
Baselines We compare three categories of baseline
methods, and all baselines used the same training
dataset. The first category is efficient tuning meth-
ods based on data selection, including IFD (Li
etal., 2024) and DEITA (Liu et al., 2024), in which
DEITA represents the state-of-the-art methods. The
second category comprises efficient tuning meth-
ods based on training order optimization. In ad-
dition to random shuffle tuning and sequential
tuning on a dataset-by-dataset basis, Tree-Instruct
(Zhao et al., 2024) and Conifer (Sun et al., 2024)?
are introduced as representatives of heuristic cur-
riculum instruction tuning. DMT (Dong et al.,
2024) is also a data order optimization baseline.
We also incorporated a third category of meth-
ods, which individually train LLMs on three
separate training datasets. This approach is de-
signed to explore the impact of capability conflicts
(Dong et al., 2024) embodied in various curricula
(datasets). Additionally, we aim to assess whether
CAMPUS can potentially mitigate these conflicts
by adjusting curricula with the awareness of model
competence changes, compared to other baselines.

4.2 Main Experiments

We employ LLMs from the LLaMA (Touvron et al.)
and BLOOMZ (Muennighoff et al., 2023) families
as backbone models. The main results are shown
in Table 1 and 2. To validate the robustness of our
results, we include the standard deviation of the
average performance. We can observe that:

(1) Our CAMPUS significantly outperforms
other baselines, including efficient instruction tun-
ing methods based on data selection and training
order optimization. Taking LL.aMA as an instance,

1ht’cps: //huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_unfiltered

“We only used the metrics in the two papers to measure
the data difficulty in our experiments.
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Backbone LLM LLaMA-7B LLaMA-13B Avg
Dataset GSMS8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

Individual Training

Math only 35.56 - - 41.85 - -

Code only 11.59 - - 12.20 -

General only 9.55 7.93 5.83 12.28 9.15 5.98 26.1740.13
Data Selection

IFD (Li et al., 2024) 3343 13.40 5.69 37.62 15.24 5.78 35.73+0.07
DEITA (Liu et al., 2024) 33.21 14.02 5.73 37.83 15.24 5.88 36.07+0.15
Training Order Optimization

Random Shuffle Tuning 35.03 14.63 5.63 40.11 15.24 5.76 36.4940.11
Sequential Tuning 3245 13.41 5.65 36.62 15.85 5.71 35.3240.14
DMT (Dong et al., 2024) 33.81 14.02 5.75 38.14 15.85 5.83 36.27+0.19
Tree-Instruct (Zhao et al., 2024)  33.02 13.62 5.51 3791 15.72 5.36 34.8340.08
Conifer (Sun et al., 2024) 34.70 14.00 5.74 38.37 16.46 5.85 36.57. 011
CAMPUS (ours) 35.86 15.24 5.95 40.56 17.68 6.01 38.16.0.09

Table 1: The average results of three times for LLaMA-7B, 13B on three benchmarks. Since MT-Bench scores are
in tenths, we multiplied them by 10 when calculating overall performance averages in the last column (the same

below). See Appendix D.4 for performance on other models such as LLaMA-33B.

Backbone LLM

BLOOMZ-560M

BLOOMZ-1B7

BLOOMZ-3B

Av;
Dataset GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench #
Individual Training
Math only 7.81 - - 12.66 - - 15.24 - - -
Code only - 4.88 - - 7.93 - - 9.76 - -
General only 0.68 3.05 3.26 1.36 3.66 3.78 233 6.10 4.11 14.3040.17
Data Selection
IFD (Li et al., 2024) 6.22 4.27 3.28 9.37 7.93 3.6 13.56 10.97 4.05 17.9640.11
DEITA (Liu et al., 2024) 6.60 4.88 3.24 10.24 9.76 3.71 13.65 11.59 4.13 18.6140.09
Training Order Optimization
Random Shuffle Tuning 7.43 4.88 3.14 11.37 7.93 3.61 14.94 11.59 3.94 18.3410.11
Sequential Tuning 6.37 4.88 3.15 9.55 8.54 3.65 13.42 11.59 4.09 18.1440.11
DMT (Dong et al., 2024) 6.98 549 3.28 9.86 8.54 3.81 13.95 12.80 4.25 19.004.9 g9
Tree-Instruct (Zhao et al., 2024)  6.19 4.39 3.14 9.41 8.23 3.74 14.03 11.49 4.09 18.1640.13
Conifer (Sun et al., 2024) 6.79 4.88 3.28 9.89 8.54 3.8 13.83 11.59 4.16 18.6640.10
CAMPUS (ours) 7.06 6.10 343 10.84 10.37 4.13 15.09 13.41 4.46 20.34.10.08

Table 2: The results of BLOOMZ-560M, 1B7, 3B on three benchmarks.

CAMPUS achieves an average gain of 7.0% over
other curriculum instruction tuning baselines Tree-
Instruct and Conifer, which rely on a single heuris-
tic difficulty. The improvement can be attributed
to two aspects: on the one hand, CAMPUS dy-
namically selects the most suitable sub-curriculum
during the training process based on LLM capabil-
ity and data difficulty. On the other hand, its dif-
ficulty metrics are also model competence-aware,
enabling flexible adjustments to the whole curricu-
lum schedule.

(2) It is noted that existing curriculum instruc-
tion tuning did not even outperform random shuf-
fle tuning on partial benchmarks, despite perform-
ing well under specific conditions reported in their
original studies. This underperformance demon-
strates their limited generalization, primarily due to
their reliance on static metrics. For example, Tree-
Instruct utilized the number of nodes in semantic
tree formed by instruction as the difficulty metric,
which may not be applicable to code instruction
data, as its difficulty is not necessarily related to

the code length.

(3) We find that some baselines trained on the
full training set exhibit varying degrees of “catas-
trophic forgetting” compared to individual training,
which is caused by the capability conflicting of the
different training sets. Especially in mathemati-
cal reasoning, since both training and test sets are
derived from the same GSM8K benchmark, the
mixture of multiple datasets results in a significant
degradation in mathematical capability. In contrast,
CAMPUS shows marginal performance degrada-
tion, and in some cases, surpasses the performance
of training solely on math data. This demonstrates
that CAMPUS is capable of mitigating such con-
flict by perceiving the model capability changes on
the fly and dynamically planning the most “suitable”
sub-curriculum for the current LLMs.

(4) Efficient instruction tuning based on data
selection are originally intended to enhance the
LLM performance by filtering out harmful data.
However, these methods also employ heuristic al-
gorithms, which rendering them less generalizable.
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Backbone LLM LLaMA-7B Avg
Metrics GSM8K HumanEval MT-Bench
Random Shuffle 553 14 63 563 3532
Tuning

Length d; 33.36 14.63 5.74 35.12
MTLD d» 33.43 15.85 5.73 35.51
Loss d3 34.72 14.02 5.69 35.21
Scoring Model dy  35.48 15.85 591 36.82
CAMPUS 35.86 15.24 5.95 36.87

Table 3: Ablation experiments on difficulty metrics.

Backbone LLM LLaMA-7B Avg
Scheduler GSM8K HumanEval MT-Bench

Random 34.23 14.29 5.59 34.81
Sequential 34.26 14.37 5.54 34.68
PPL max 34.41 14.63 5.61 35.05
PPL min 35.86 15.24 5.95 36.87

Table 4: Comparison experiments on different sub-
curriculum scheduling strategies.

In the experiments, they also did not outperform
random shuffle tuning. Instead of improving the
performance of the model with reduced training
data, it turns into a sacrifice of performance for
time-efficiency.

(5) CAMPUS leads to a more pronounced per-
formance rise on larger LLMs compared to smaller
ones. This also emphasizes the importance of effi-
cient instruction tuning for nowadays LLMs with
increasingly larger parameter sizes.

4.3 Ablation Experiments on CAMPUS
4.3.1 Ablation on Difficulty Metrics

Table 3 illustrates the results using a single diffi-
culty metric, which is one of the difficulty metrics
for the CAMPUS. The benefits from curriculum
tuning based on single difficulties are relatively
modest compared to the multiple difficulty-based
CAMPUS. Static metrics, such as data length dy,
even have negative impacts on GSM8K and Hu-
manEval, highlighting the limited generalization of
conventional heuristic difficulties. This also con-
firms that data length is not a suitable metric for as-
sessing the complexity of mathematical and coded
data. Additionally, the scoring model we devel-
oped demonstrates promising performance, which
is close to CAMPUS overall.

4.3.2 Comparison on Different Schedulers

We compare different sub-curriculum scheduling
strategies in Table 4, including random selection,
sequential selection from 1 to n, and both maxi-
mum and minimum PPL (used in CAMPUS). It is
evident that selecting the sub-curriculum with the
minimum PPL is the optimal scheduling strategy,

Backbone LLM LLaMA-7B A

Dataset GSM8K HumanEval MT-Bench Ve
Full & Random 35.03 14.63 5.63 35.32
1/3 Easy 32.30 13.41 5.89 34.86
1/3 Medium 33.21 13.41 5.83 34.96
1/3 Hard 34.34 14.02 5.76 35.33
Full & CAMPUS  35.86 15.24 5.95 36.87

Table 5: Data difficulty level experiments.

which is in line with the curriculum learning prin-
ciples and human intuition. Sub-curriculum with
minimal perplexity implies that the LLM is primed
to comprehend it, and thus the associated compe-
tencies of them can be more easily internalized
by LLM. In contrast, sequential selection of sub-
curriculum disrupts the ordered progression of the
curriculum, as the difficulty of sub-curricula across
different schedules cannot be directly compared.
Consequently, the performance of sequential selec-
tion strategy is inferior even to random selection.

4.3.3 Comparison on Data with Different
Difficulty

Table 5 illustrates the impact of data with differ-
ent difficulty levels. Specifically, we evenly di-
vided the instruction data programmed by CAM-
PUS into three portions, and categorized them as
easy, medium, and hard, according to their prece-
dence order. The results indicate that no single
data segment provides more significant gains to
LLMs than CAMPUS trained with the complete
data, underscoring that each portion contributes
to the overall performance. Similar experiments
are conducted in Tree-Instruct (Zhao et al., 2024),
and its experiments show that the gain brought
by the hard sub-dataset exceeds that of curricu-
lum learning with the complete dataset. This con-
trary experimental conclusion is attributed to the
sub-optimization of Tree-Instruct, which does not
fully stimulate the potential of curriculum learning.
Unlike Tree-Instruct, CAMPUS employs dynamic,
multi-perspective difficulty metrics that customize
the curriculum specifically to the competence and
learning needs of the particular LLM. Of course,
referring to the middle portion of Table 5, we can
similarly conclude that harder data is more critical
for LLMs, which aligns with the view of previous
work (Xu et al., 2023; Lu et al.).

4.4 Generalization of CAMPUS

4.4.1 Compatibility with Other Methods

Our CAMPUS framework is designed to be com-
patible with various data selection-based efficient
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Backbone LLM LLaMA-7B

LLaMA-13B

Dataset

Avg

GSMSK HumanEval MT-Bench Training Time (h) GSM8K HumanEval MT-Bench Training Time (h)

Random Shuffle Tuning  35.03 14.63 5.63

47

40.11 15.24 5.76 53 36.49

IFD 33.43 13.40 5.69 37+8 37.62 15.24 578 37+ 10 35.73
+ CAMPUS 3477 14.63 5.79 17 38.49 15.85 585 20 36.69
DEITA 33.21 14.02 5.73 41+4 37.83 15.24 5.88 4145 36.07
+ CAMPUS 34.93 14.63 5.83 9 39.21 16.46 5.94 11 37.16
CAMPUS 35.86 15.24 5.95 54 40.56 17.68 6.01 64 38.16

Table 6: Experiments on our CAMPUS combined with other data selection-based efficient tuning methods. x + y in
training time for data selection methods means data selecting and LLM training time, respectively.

tuning methods, further enhancing the performance
of LLMs. To verify the effectiveness of CAM-
PUS combined with them, we first filter the origi-
nal training set leveraging the data selection-based
method, and then apply our CAMPUS to the re-
fined dataset. The results in Table 6 demonstrate
that CAMPUS further boosts the performance of
both IFD and DEITA, confirming its excellent
adaptability. Moreover, while the selection-based
method reduces the training time for LLMs, it si-
multaneously requires considerable time for se-
lecting. Interestingly, the performance gain from
CAMPUS is more pronounced with DEITA, which
retains more data compared to IFD. This observa-
tion suggests that DEITA and IFD may inadver-
tently discard potentially useful data. Inspired by
this, we believe that future work could combine the
ideas of several types of efficient tuning methods
in a unified way, and propose a more comprehen-
sive data management strategy, considering more
aspects such as data order, ratio, and the criteria for
data exclusion, etc. This could potentially maxi-
mize the synergistic effects of combining different
tuning methods and further enhance LLM training
efficacy.

4.5 Training Process of CAMPUS
4.5.1 Data Composition at Different Stages

Figure 3 reports the data type composition of the
first and last 5K data scheduled by CAMPUS for
different LLMs. Variations in data composition
across different LLMs and training phases can be
clearly observed. During the early stages of train-
ing, the code data proportion is relatively high,
which may arise from the fact that LLMs require
the underlying reasoning capabilities embodied in
the code tasks, which is also indicated in some
works (Bi et al., 2024; Cheng et al.). In contrast,
the later stages of training witness an increase in
math and general instruction data. Further case
analysis in Table 16 and 17 in Appendix reveals
that these later stages involve a significant number
of mathematical tasks that require complex logical

100
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Top IK 2K 3K 4K 5K Last 4K 3K 2K
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Math = Code  General
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Percentage

0
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5K
Math = Code ~ General

Figure 3: Data composition of first/last 5K data by
CAMPUS. Top: LLaMA-7B. Bottom: LLaMA-13B.

reasoning and intricate multi-round conversation
data which proves that CAMPUS behaves in line
with our intuition. As for the different LLMs, it is
notable that math data are introduced earlier in the
training process for larger LLMs (LLaMA-13B).
Since larger LLLMs possess more advanced foun-
dational capabilities, allowing them to tackle com-
plex mathematical tasks more readily and reducing
their perceived difficulty more quickly. This phe-
nomenon again confirms the CAMPUS’s ability
to perceive the model’s competence and tailor the
LLM-specific curriculum dynamically.

5 Conclusion

In this paper, to address the rigidity issue of ex-
isting curriculum instruction tuning methods, we
propose a Competence-Aware Multi-Perspective
cUrriculum inStruction tuning framework termed
CAMPUS. CAMPUS offers the following advan-
tages: (1) dynamic selection for sub-curriculum.
(2) competency-aware adjustment to the curriculum
schedule. (3) multiple difficulty-based curriculum
schedule. Extensive experiments prove the superior
performance of CAMPUS, compared to state-of-
the-art efficient instruction tuning methods.
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Limitations

In this paper, we discuss efficient instruction tun-
ing methods based on training order optimization,
aiming to enable models to achieve higher perfor-
mance using the same training data. The potential
for combining with other types of efficient instruc-
tion tuning methods was primarily explored in our
experiments. Specifically, we integrated our CAM-
PUS with the data selection based methods DEITA
and IFD. The results demonstrate the feasibility
of this idea, and future work could further explore
how to generalize the ideas of different efficient
instruction tuning methods in a unified way. For
example, by drawing on the idea of reinforcement
learning to view a data-wise management strategy
as an action of agent.
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A Appendix for CAMPUS Method

A.1 Supplementary Description of Difficulty
Metrics for CAMPUS

In our experiments, we employed four difficulty
metrics (i.e., n=4), of which loss and reward score
are competence-aware. These metrics not only as-
sess the inherent difficulty of the instruction data
but also adjust according to the LLM’s proficiency
with the skills associated with the instruction data.
In other words, they serve as difficulty indicator
functions d; = f; (inst, O,M) with data and model
parameter as inputs. Additionally, we introduced
heuristic difficulty metrics data length and textual
lexical diversity, considering their empirical effec-
tiveness.

Data Length d; The data length is well-suited
as a heuristic difficulty metric, aligning with intu-
itive human assessments: shorter instruction data
are typically easier for LLMs to comprehend and
learn. Conversely, longer instruction data often oc-
curs in multi-round conversations, indicating that
the instructions contain more diverse information
and complex interactions requiring extended pro-
cessing, thus making them more challenging to
learn. Consequently, we employed the total length
of the instruction and output tokens, denoted as
len(x + y), as di. From the perspective of data
length, it is natural for LLMs to first master basic
skills from simple single-round conversations, and
then learn to comprehensively utilize these skills in
complex multi-round conversations.

Measure of textual lexical diversity (MTLD) d»
Lexical diversity refers to the variety of different
words employed in a text, which serves as a crucial
factor in studies of linguistic complexity. MTLD
(McCarthy and Jarvis, 2010) is a widely used quan-
titative measure for assessing lexical diversity. It is
calculated as the mean length of sequential token
lists in a text that maintains a given type-token ratio
(TTR) threshold (0.72 in our paper). The TTR is
defined as %, where [ and m are the token length
and the number of unique token types, respectively.
A higher MTLD indicates greater vocabulary diver-
sity in instruction data, which may contain more
advanced vocabulary, or varied word combinations
to convey the same meanings, which is more dif-
ficult to be learned by the LLMs. We selected
MTLD as a metric due to its length-insensitivity
compared to traditional lexical diversity metrics
such as TTR. Text length does not always accu-
rately reflect the data complexity. For instance,

in programming code, lengthy text may include
blocks with duplicated functionality, leading to
an artificially inflated complexity solely based on
length. Therefore, MTLD can be considered as
a complementary perspective on instruction com-
plexity that is distinct from data length.

Data Loss d3 The data difficulty as perceived by
LLMs depends not only on the data’s inherent com-
plexity, but also on the LLMs’ comprehension abil-
ities. Therefore, in addition to the two heuristics
mentioned above, we introduce a simple, model
competence-aware difficulty metric, data loss, as
ds. Data loss indirectly quantifies problem-solving
capacity of LLM by measuring the difference be-
tween the predicted content and the ground-truth
value, which is defined as:

N
dz = L(xa Y, HLLm) = - Z lng@LLM (yt’xa y<t)
t=1

where N is the length of the output text sequence
and 011, is the LLM parameter. Predicting the
next token y; requires utilizing the input x and
the preceding output sequence y;. A higher loss
suggests that LLM struggles with tasks related to
specific instruction data. The difficulty stems from
either the intricate knowledge inherent in the data
or the models’ limited comprehension and reason-
ing capabilities. By monitoring the loss, we can
orderly manage the instructional data.

B Appendix for Experiment Setting
B.1 Training Dataset

To imitate the educational scenario in which stu-
dents simultaneously engage with multiple science
curricula, we constructed a comprehensive instruc-
tion dataset for training, including mathematical
reasoning, code generation, and general language
understanding. They are sourced from the follow-
ing instruction datasets, respectively:

e GSMSK (Cobbe et al., 2021) is a mathemati-
cal dataset consisting of ~8.5K high-quality grade
school math problems that require multi-step rea-
soning. The dataset is divided into 6K training and
2K test instances.

* Code Alpaca (Chaudhary, 2023) aims to
build an instruction-following LLaMA model for
code generation, which contains 20K instruction-
following data generated by the techniques in the
Self-Instruct.
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* ShareGPT? (Chiang et al., 2023) is a multi-
round human-machine dialog dataset comprising
90K human queries and responses from ChatGPT
or other chatbots. We cleaned it to reduce the size
to 53K.

B.2 Evaluation Benchmark and Metrics

We assess the aforementioned three capabilities of
LLMs using the following benchmarks and metrics:

* The test set of GSM8K is utilized to evaluate
the mathematical reasoning ability of LLMs, which
comprises 3K data. Following Yuan et al. (2023),
we use the accuracy of answers generated by greedy
decoding (i.e., maj@1) as our metrics.

* HumanEval (Chen et al., 2021) is the bench-
mark for code-writing with 164 handwritten pro-
gramming problems, with an average of 7.7 tests
per problem. Similar to (Chen et al., 2021), we mea-
sure pass @k on the HumanEval, where correctness
is defined by an unbiased estimate of passing a set
of unit tests within £ samples.

* MT-Bench (Zheng et al., 2023) is a challeng-
ing benchmark widely adopted to assess the gen-
eral instruction-following ability. It features multi-
turn conversations across 8 domains. GPT-4 is
employed as the judge to score model responses on
a ten-point scale.

B.3 Baselines

We compare three categories of baseline methods.
The first category encompasses efficient tuning
methods based on data selection. These methods
primarily employ metrics to assess the benefit of
raw instruction data for LLMs from perspectives of
quality, diversity, and complexity, and then discard-
ing harmful data. IFD (Li et al., 2024) and DEITA
(Liu et al., 2024) are included, where DEITA rep-
resents the state-of-the-art methods. The second
category comprises efficient tuning methods based
on training order optimization, which enhance
the efficiency by adjusting the training order of
original instruction data. In addition to random
shuffle tuning and sequential tuning on a dataset-
by-dataset basis, Tree-Instruct (Zhao et al., 2024)
and Conifer (Sun et al., 2024)* are introduced as
representatives of heuristic curriculum instruction

3https://huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_unfiltered

“We only used the metrics in the two papers to measure
the data difficulty in our experiments.

tuning. DMT (Dong et al., 2024) is also a data
order optimization baseline.

We also incorporated a third category of meth-
ods, which individually train LLMs on three
separate training datasets. This approach is de-
signed to explore the impact of capability conflicts
(Dong et al., 2024) embodied in various curricula
(datasets). Additionally, we aim to assess whether
CAMPUS can potentially mitigate these conflicts
by adjusting curricula with the awareness of model
competence changes, compared to other baselines.

B.4 Training Details

The CAMPUS is implemented by LLaMA-Factory
framework® and fine-tuned with full parameters.
The temperature is configured to 0.95, and the top-
k is set to 50, indicating that each generation step
involves sampling from 50 candidate tokens. The
learning rate is managed with a 0.03 warm-up ratio,
ramping up linearly to 2e-5 during the initial 3%
of the training data. Furthermore, we implement a
cosine annealing strategy to adjust the learning rate
in a cyclical manner, helping the model converge
on the optimal solution.

When training the reward model R and the dis-
criminator D, we choose a batch size of 4 and a
learning rate of le-5. Both models utilize identi-
cal MLP structures to map the hidden feature z
into a score, with a hidden dimension of 256. Em-
ploying the Kaiming initialization technique, they
undergo continuous training through stochastic gra-
dient descent (SGD), operating iteratively without
parameter sharing. To accelerate convergence, we
iterate twice for the training of R and D after each
fine-tuning of the LLM.

C Supplementary Experiments on
Generalization of CAMPUS

C.1 Performance Differences on Different
Domains of MT-Bench

In Figure 4, we compare the performance of differ-
ent models across the eight domains of MT-Bench,
as represented in a radar chart. The chart demon-
strates that CAMPUS covers a relatively larger area,
indicating a more comprehensive and stable perfor-
mance across all domains. While DEITA and ran-
dom shuffle tuning exhibit superior performance in
specific domains, CAMPUS consistently maintains
robust performance without significant drawbacks
in any particular area. In contrast, the other two

Shttps://github.com/hiyouga/LLaMA-Factory
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LLaMA-13B

GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

Backbone LLM— LLaMA-7B
Reward Model

Trained on |

LLaMA-7B 35.48 15.85
LLaMA-13B 38.61 16.89

5.91
595

37.86
40.56

16.46
17.68

5.96
6.01

Table 7: Experiments on the generalization of scoring models.

Backbone LLM

LLaMA-7B

LLaMA-13B

Avg
Method GSMS8K HumanEval MT-Bench GSM8K HumanEval MT-Bench
CAMPUS 35.86 15.24 5.95 40.56 17.68 6.01 38.16
+ Label Smoothing & Upsampling  36.39 15.93 5.99 41.22 18.03 6.09 38.73

Table 8: The performance of CAMPUS with label smoothing and upsampling on LLaMA-7B and LLaMA-13B.

Writing

STE

Extraction Math

Coding

—— CAMPUS: 5.95
—— DEITA:5.73

Random Shuffle Tuning: 5.63

Figure 4: Model performance comparison on different
domains of MT-Bench.

baseline methods display pronounced deficiencies
in challenging domains such as math, writing, and
code. We attribute the stability of CAMPUS to its
ability to perceive whether the abilities correspond-
ing to different training data can be internalized by
the current LLM. This capability allows CAMPUS
to select the most appropriate training data tailored
to the needs of the LLM, rather than employing
a blind selection. This strategic selection process
ensures that CAMPUS enhances LLM capabilities
uniformly across diverse domains, preventing sig-
nificant performance drops in any single area and
promoting a well-rounded skill set in the model.

C.2 Generalization of Scoring Model

In this section, we explore the generalization ca-
pabilities of the scoring model R when trained

with different LLMs. Table 7 assesses the cur-
riculum scheduling ability of scoring models ob-
tained by training with LLaMA-7B and 13B, re-
spectively. The results, particularly evident from
the first row, reveal that the scoring model trained
with the smaller model (LLaMA-7B) can also ef-
fectively aid in the training of the larger model
(LLaMA-13B). This transfer ability is highly de-
sired in industrial scenarios. When computational
resources are tight, instead of developing a new
scoring model from scratch to perfectly align with
the target LLM, organizations can employ an ex-
isting scoring model as an off-the-shelf dynamic
curriculum schedule model directly for optimizing
the training strategy of the target LLM.

Besides, we introduce two improvements to the
scoring model to enhance its effectiveness: (1) ap-
plying label smoothing to the loss in Equation 4 to
overcome overfitting, and (2) performing upsam-
pling to mitigate label imbalance. Table 8 shows
that these refinements to scoring model lead to fur-
ther performance gains.

C.3 Generalization on other benchmarks

To further demonstrate the generalization
of CAMPUS, we extend our evaluation to
three additional widely used benchmarks:
MATH (Hendrycks et al., 2021) for mathematics
reasoning, MBPP (Austin et al., 2021) for code
generation, and MMLU (Hendrycks et al.) for
general instruction following. As shown in Table
9, CAMPUS consistently outperforms other
state-of-the-art methods on these benchmarks,
illustrating strong generalization ability.
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Backbone LLM LLaMA-7B LLaMA-13B Ave
Method MATH MBPP MMLU MATH MBPP MMLU

DEITA 14.71 20.29 40.52 17.02 25.78 48.29 27.77
Random Shuffle Tuning 15.33 20.45 38.23 18.67 26.25 47.13 27.68
DMT 15.52 20.87 42.41 18.34 26.87 49.52 28.92
Conifer 15.28 20.62 41.57 18.59 25.96 49.27 28.55
CAMPUS(ours) 16.24 21.71 44.18 19.31 27.33 5241 30.20

Table 9: The performance of CAMPUS on three benchmarks.
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Figure 5: Visualization of performance and loss.

D Supplementary Experiments on
Training Process of CAMPUS

D.1 Model Convergence During Training

We visualize the training process for CAMPUS
and the other two baselines in Figure 5. Figure 5(a)
illustrates the average performance of the model af-
ter training with the corresponding amount of data,
where D represents the full dataset. Figure 5(b)
records the average loss values at the correspond-
ing step. We can observe that CAMPUS achieves
faster loss convergence compared to the baseline
model. Additionally, throughout the training pro-

Method GSM8K HumanEval MT-Bench Avg
Random Shuffle Tuning ~ 35.03 14.63 5.63 35.32
CAMPUS 35.86 15.24 5.95 36.87
w/o Length d; 36.39 14.98 5.83 36.56
w/o MTLD da 36.41 14.93 5.68 36.05
w/o Loss d3 36.02 15.31 5.76 36.31
w/o Scoring Model dy4 34.81 14.69 5.74 35.63

Table 10: Supplementary ablation experiments on diffi-
culty metrics.

Training Time (Scoring Model)

15 h (75%)
41 h (76%)

Training Time (LLMs)

20h
54h

BLOOMZ 3B
LLaMA 7B

Table 11: Training time comparison for both the scoring
model and the LLMs.

cess, CAMPUS consistently outperforms the base-
line models and reaches higher performance upper
bounds. This performance trend effectively demon-
strates that CAMPUS aligns with the ultimate goal
of curriculum instruction tuning, optimizing overall
model performance, meanwhile facilitating learn-
ing efficiency.

D.2 Supplementary Ablation on Difficulty
Metrics

The ablation experiments on difficult metrics in
Table 10 are complementary to those in Table 3.
In Table 10, we removed the individual metrics
of CAMPUS to provide a different perspective on
understanding the different metrics. The trends
observed are consistent with Table 3. For exam-
ple, removing the length metric improved GSM8K
performance slightly, but overall, all metrics con-
tributed to the performance gains of CAMPUS.
These results support the complementary nature of
the difficulty metrics.

D.3 Training Time Analysis

We include a detailed analysis of training times for
both the scoring model and the LLMs, as shown in
Table 11:
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Backbone LLM LLaMA-3.2 1B LLaMA-3.1 8B Deepseek-V2-Lite 16B Avg
Method GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench GSM8K HumanEval MT-Bench

DEITA 33.17 13.52 5.59 46.35 20.14 6.57 53.17 28.12 6.68 42.54
Random Shuffle Tuning  34.87 14.72 5.37 49.17 21.72 6.44 54.85 28.91 6.46 42.99
DMT 34.23 14.57 5.51 48.29 21.96 6.61 53.71 29.27 6.68 43.34
Conifer 34.49 14.36 5.63 49.02 22.13 6.55 54.66 28.83 6.72 43.61
CAMPUS(ours) 35.29 15.13 5.85 50.21 23.27 6.86 56.27 30.52 6.93 45.23

Table 12: We use LLaMA and more recent LLMs as our backbone following some important baselines.

Method GSM8K HumanEval MT-Bench Avg
DEITA 47.43 21.44 6.22 43.69
Random Shuffle Tuning ~ 46.23 17.32 5.93 40.95
DMT 49.51 22.62 6.45 45.54
Conifer 48.74 23.15 6.37 45.20
CAMPUS (ours) 51.38 25.84 6.79 48.37

Table 13: The performance of CAMPUS and other base-
lines on LLaMA-33B.

p GSMS8K HumanEval MT-Bench Avg

1.5  36.01 15.21 5.99 37.04
20  35.86 15.24 5.95 36.87
25 3583 15.19 5.89 36.64
30 35.88 15.21 5.92 36.76

Table 14: The performance of CAMPUS on different
hyperparameter p.

All baselines used the same training data. Hence,
training time for training order optimization-based
methods remains consistent. Data selection-based
methods reduce time but sacrifice performance due
to data over-deletion.

D.4 CAMPUS Performance on Other LLMs

To verify the performance of CAMPUS on larger
or more recent LLMs, we conduct additional ex-
periments on LLaMA-33B in Table 13. The re-
sults of CAMPUS on more recent LLaMA-3.2 1B,
LLaMA-3.1 8B, and Deepseek-V2-Lite 16B are
also supplemented in Table 12. As expected, CAM-
PUS demonstrated stable and superior performance
compared to baselines, showcasing excellent scala-
bility.

s(1) GSMSK HumanEval MT-Bench Avg
0.005 35.63 15.11 5.97 36.81
0.01 35.86 15.24 5.95 36.87
0.1 35.92 15.22 5.93 36.81
0.2 35.89 15.29 591 36.76

Table 15: The performance of CAMPUS on different
hyperparameter s(1).

D.5

We add experiments to analyze the influence of two
curriculum parameters: p (curriculum expansion
progression rate) in Table 14 and s(1) (initial learn-
ing scope) in Table 15. The results suggest that
CAMPUS is robust across a range of reasonable
values. Besides, a smaller p (slower curriculum
progression) tends to encourage more fine-grained
learning and sometimes leads to slightly better re-
sults.

Hyperparameter Sensitivity Analysis
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Data Stage Data Type Instruction Data

### Instruction:
Output the 5th Fibonacci number.
. Math
First 1K ### Response:
Data

5.

### Instruction:

Create an HTML page with a text box that stores entered data in the local storage.

### Response:

<html>

<head>

<title>Text Box</title>

</head>

<body>

<input type="text" id="text_box" />

</body>

<script>

/I Store data in localStorage

Code function storeData() {

let inputValue = document.getElementByld("text_box").value;
localStorage.setltem("inputValue", inputValue);

}

/I Set the text box value from localStorage

window.onload = () => {
if(localStorage.getltem("inputValue"))
document.getElementById("text_box").value = localStorage.getltem("inputValue");

}

/I Set up the event listener

document.getElementById("text_box’).addEventListener(’input’, storeData);

</script>

</html>

### Instruction:

Hello.

General
### Response:

Hello! How can I help you today?

Table 16: The data cases sampled from the first 1K data.
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Data Stage

Data Type

Instruction Data

Last 1K
Data

Math

### Instruction:

John buys a chair. He then buys a table that is 3 times the price of the chair. Then,
he buys a couch that is 5 times the price of the table. If John paid $380 for all these
items, what is the price of the couch?

### Response:

Let x be the price of the chair.

The table costs 3*x.

The couch costs 3*x*5=15%x.

x+3*x+15%x=380

19#x=380

x=«20=20»20

The couch costs 20*15=«20%15=300»300 dollars.

Code

### Instruction:
Generate a function in python that takes two lists and returns the product of their
longest common substrings.

### Input:
listl =[1,2,3,4, 5]
list2 =12, 3,5,7]

### Response:
def longest_common_substring(list1, list2):
longest_substring = 0
for i in range(len(listl)):
for j in range(len(list2)):
if list1[i] == list2[j]:
current_substring = 1
k, 1=i+1, j+1
while k < len(list1) and I < len(list2) and list1[k] == list2[1]:
current_substring += 1
k+=1
I+=1
longest_substring = max(longest_substring, current_substring)

if longest_substring == 0:
return 0
else:
return list1[0] * list2[0] * longest_substring

General

### Instruction:

5.0 Varying Magical Theories

5.1 Miseishun Theory; Spiritual Belief Method

The Miseishun hubworld has a comparatively spiritual take on arcanum, known as
the Spiritual Belief Method (SBM), opposed to the theoretical views practiced in
TOR, Theoretical Magical Formulae (TMF)...

### Response:
It seems that the "Looped Filter Theory" is a theory about...

### Instruction:

"6.0 Duinn

This section was written in coalition with TOR Combined Holy Clergy (TORCHC).
Despite the focus of this document being Arcanum, a necessary distinction to make
in this report is that Duinn is not classified as magic...

### Response:

It seems that in this fictional universe, there are multiple types of magic and magical
abilities that people can possess and use...

More than 7 round conversations.

Table 17: The data cases that sampled from the last 1K data.
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