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Abstract

Recently, multimodal large language models
(MLLMs) have demonstrated remarkable per-
formance in visual-language tasks. However,
the authenticity of the responses generated by
MLLMs is often compromised by object hallu-
cinations. We identify that a key cause of these
hallucinations is the model’s over-susceptibility
to image frequency features in detecting ob-
jects. In this paper, we introduce Multi-
Frequency Perturbations (MFP), a simple, cost-
effective, and pluggable adversarial training
method that leverages both low-frequency and
high-frequency features of images to perturb
visual feature representations and explicitly
suppress redundant frequency-domain features
during inference, thereby mitigating hallucina-
tions. Experimental results demonstrate that
our method significantly mitigates object hal-
lucinations across various model architectures.
Furthermore, as a training-time method, MFP
can be combined with inference-time methods
to achieve state-of-the-art performance on the
CHAIR benchmark.

1 Introduction

Large language models (LLMs), exemplified by
ChatGPT (OpenAI, 2022), demonstrate remark-
able performance across diverse text-based tasks.
By integrating visual encoders like CLIP (Radford
et al., 2021), multimodal large language models
(MLLMs) extend these capabilities to visual do-
mains. These models excel in a range of vision-
language tasks, including image caption (Wang
et al., 2020), visual question answering (Antol et al.,
2015), and visual dialogue (Das et al., 2017).

However, MLLMs always face the challenge of
object hallucinations (Rohrbach et al., 2018; Li
et al., 2023d), where the model’s outputs fail to
accurately correspond to the objects in the real

* Equal contributions.
† Corresponding author.

image. This issue undermines model performance
and diminishes its credibility.

To tackle this issue, previous studies propose
various methods (Bai et al., 2024; Lan et al.,
2024), which can be broadly categorized into
training-time and inference-time methods. How-
ever, these approaches overlook a critical weak-
ness in MLLMs. Specifically, the MLLMs tend
to be over-susceptible to frequency features in
the image—namely, abrupt changes in pixel val-
ues—when detecting objects, often overlooking the
actual features of real images. For instance, as illus-
trated in Figure 1, MLLMs can still identify objects
in images, even when blurred images containing
certain frequencies are used. This characteristic
may contribute to the occurrence of object hallu-
cination. This phenomenon has also been widely
observed in studies on image frequency-domain
attacks targeting vision models (Wang et al., 2021;
Long et al., 2022; Feng et al., 2022) in other mod-
els.

Based on these insights, we introduce Multi-
Frequency Perturbations (MFP), a simple, cost-
effective, and pluggable method that leverages both
low-frequency and high-frequency features of im-
ages to perturb visual feature representations and
explicitly suppress redundant frequency-domain
features during inference. MFP partitions an im-
age into high-frequency and low-frequency com-
ponents, extracts their respective features, and per-
forms a fine-grained fusion of these features with
the original image features at the visual token
level. This process results in more robust image
features. The module is composed of two main
components: (1) Multi-Frequency Feature Extrac-
tion. In this step, Gaussian high-pass and low-pass
filters (Young and Van Vliet, 1995) are applied to
the original image to obtain its raw high-frequency
and low-frequency features. These raw features
are then fed into the visual encoder, producing the
corresponding high-frequency and low-frequency
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[Origin] The image shows a plate with two large pieces of broccoli covered in melted 
cheese. The cheese is browned and bubbly, indicating it has been baked or broiled. The 
broccoli is vibrant green, and the cheese appears creamy and slightly golden on top. In the 
background, there are a few pieces of roasted or fried potato wedges with a browned, 
crispy texture. The dish is presented on a white plate, giving it a clean and appetizing 
appearance.

[High Frequency] The image is a black and white illustration of a stylized face, possibly 
inspired by ancient or tribal art. The face is symmetrical and features large, round eyes with 
heavy lids and prominent, arched eyebrows. The nose is elongated and straight, and the 
mouth is small with slightly upturned corners. The entire face is enclosed within a circular 
outline, and there are intricate patterns and lines that add detail to the face and surrounding 
area. The style is bold, with strong contrasts and sharp lines.

[Low Frequency] The image shows a plate of food featuring a serving of rice, 
garnished with crispy fried shallots or onions on top. Surrounding the rice are slices 
of cucumber and a portion of what appears to be a dark, grilled or roasted meat. 
The dish is presented on a banana leaf, which adds an aesthetic touch typical of 
certain Southeast Asian cuisines. The overall presentation is appetizing and colorful.

Question: Please decribe this image in detail.

Figure 1: An example of GPT-4o. Unlike humans, the model is over-susceptible to limited high- and low-frequency
image features to detect objects, leading to incorrect object detection and erroneous image caption.

(a) Low-frequency

(b) High-frequency

Figure 2: Instance-level hallucination rate when using
only low or high frequency features. The x-axis repre-
sents the cutoff frequency. Features with frequencies
higher than the cutoff are retained as high-frequency
features, while those below the cutoff are selected as
low-frequency features.

features, represented as visual token sequences. (2)
Fine-Grained Frequency Feature Fusion. We use
the original visual token sequence derived from
the image encoder along with the high-frequency
and low-frequency token sequences. These are
fused at the token level using a cross-attention
mechanism to generate the final perturbed visual
token sequences. During inference, we apply a
decay to both high-frequency and low-frequency
feature perturbations, thereby reducing redundant
high-frequency and low-frequency features. Ex-
perimental results demonstrate that our method
achieves remarkable effectiveness in MLLM ob-
ject hallucination benchmarks, regardless of visual
encoders, LLM backbones, resolutions, or size. Ad-
ditionally, our training-time approach can be com-
bined with inference-time methods to achieve bet-
ter performance and even achieve SOTA results on
CHAIR (Rohrbach et al., 2018).

In this paper, our main contributions are:

• we are the first to address the cause of object
hallucinations from the frequency domain per-
spective and introduce MFP, a simple, efficient,
and pluggable method that effectively mitigates
object hallucination in MLLMs;

• we demonstrate the effectiveness of our proposed
method across models of various architectures,
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highlighting its strong generalization capabili-
ties;

• we demonstrate that our proposed training-time
method can be combined with inference-time
method to reach better results, even achiev-
ing state-of-the-art performance on the CHAIR
benchmark.

2 Related Work

Multimodal Large Language Models MLLMs,
represented by GPT-4 (OpenAI, 2024), have
demonstrated remarkable capabilities and are
rapidly becoming a key area of research in Deep
Learning. By combining visual and language mod-
els, they enable cross-modal understanding and
reasoning. Models like CLIP (Radford et al., 2021)
have bridged the gap between language models
and visual tasks, showcasing the potential of cross-
modal applications. The BLIP (Li et al., 2022,
2023b; Dai et al., 2023) series has advanced to
support tasks such as visual question answering,
while LLaVA (Liu et al., 2024c,b) employs a sim-
ple linear projection layer and a two-stage train-
ing method to enhance image-text spatial align-
ment and overall model performance. Additionally,
MouSi (Fan et al., 2024) and Cambrian-1 (Tong
et al., 2024a) utilize the strengths of diverse vi-
sual encoders to enrich multimodal understanding.
Recently, the InternLM-XComposer (Zhang et al.,
2023; Dong et al., 2024) and InternVL (Chen et al.,
2023a, 2024b) families of models demonstrate lead-
ing performance, typically following an architec-
ture similar to LLaVA.

Object Hallucinations in MLLMs Object hal-
lucinations in MLLMs occur when the model
generates outputs related to objects that do not
correspond to actual objects in the input image,
leading to false or inaccurate visual associations.
This misalignment often arises from insufficient
cross-modal fusion (Tong et al., 2024b), over-
reliance on dataset biases (Yu et al., 2024a), and
the model’s tendency to generate text-driven pre-
dictions rather than faithfully grounding outputs
in visual inputs (Liu et al., 2024d). Existing meth-
ods to address this issue can be broadly classified
into training-time and inference-time methods. In
training-time methods, (Chen et al., 2023b; Jiang
et al., 2024; Yue et al., 2024) focus on auxiliary
supervision, while (Zhao et al., 2023; Zhou et al.,
2024; Sun et al., 2023b; Ben-Kish et al., 2023;

Yu et al., 2024b) using reinforcement learning to
mitigate hallucinations. For inference-time meth-
ods, (Leng et al., 2024; Zhu et al., 2024; Zhao et al.,
2024; Huang et al., 2024; Han et al., 2024) employ
generative interventions to reduce object halluci-
nations, while (Yin et al., 2024; Lee et al., 2023;
Zhou et al., 2023) apply post-correction strategies.
However, as we know, all these methods neglect
the perspective of the frequency domain.

Visual Feature in Frequency Domain In im-
age representation learning (Xu et al., 2020), fre-
quency domain features are extracted using meth-
ods such as fourier transform (Bracewell, 1989)
and wavelet transform (Zhang, 2019). While RGB
features represent the magnitude of image pixel
values, frequency domain features capture the in-
tensity of pixel value changes. High-frequency
information highlights object edges, whereas low-
frequency information defines the general outline
of objects. Frequency domain features have been
widely applied in areas such as camouflage object
detection (Cong et al., 2023; Lin et al., 2023; Xie
et al., 2023) and super-resolution restoration (Guan
et al., 2024; Behjati et al., 2022). However, to
the best of our knowledge, there is still a lack of
research (Liu et al., 2024e) exploring the role of
the visual feature in the frequency domain within
MLLMs. Even no prior work explores their role in
object hallucinations in MLLMs.

Figure 3: An example of applying the logits-lens. The
red text indicates the textual representation of the visual
token at its corresponding position, with meaningless
texts filtered out.
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3 Over-Susceptibility to Frequency in
MLLM

Unlike most previous work that attributes halluci-
nations to text tokens’ interference or insufficient
attention to visual tokens, we find that the models
are over-susceptible to the frequency of the image
(that is, how drastically the pixel values of the im-
age change) when recognizing objects. We explore
two experimental settings: (1) natural images and
(2) isolated frequency features.

3.1 Analysis in Natural Images

Logits Lens To exclude the interference of text
tokens and focus solely on image features, we use
images as the only input and decode each visual
token into text representations using the logits lens
method (Nostalgebraist, 2020; Wendler et al., 2024;
Neo et al., 2025) in LLaVA-1.5 (Liu et al., 2024a).
Formally, given model parameters Θ̄ , an input im-
age I and vocabulary V B, we obtain the last layer’s
hidden states for each i-th visual token from the
forward pass hi = H(Θ̄ , Ii) and project it onto
the vocabulary probability distribution using the
unembedding matrix Wu:

ti = argmax(hiWu), ti ∈ V B, (1)

where ti is the text token corresponding to the i-
th visual token. Figure 3 presents an example of
applying the logits-lens method.

Using the logits-lens method, we probe 500
randomly selected images from the MSCOCO
dataset (Lin et al., 2014) and find that in at least
34% of hallucinating cases, the hallucinated ob-
jects mentioned in the generated captions also ap-
pear in the textual representations of the corre-
sponding visual tokens extracted via logits lens.
This suggests that the model hallucinates objects
as early as the visual perception.

Slight Perturbations To reveal the model’s over-
susceptibility to frequency changes in images, we
apply slight perturbations to the image’s frequency
content—specifically, mild blurring and sharpen-
ing using Gaussian filtering. These alterations are
subtle and typically inconspicuous to the human.
We then compare the logits-lens probing results
before and after the perturbation. Our observations,
as illustrated in Figure 4, show that the objects rec-
ognized by the model through logits-lens change
significantly, and this shift also influences the gen-
erated image captions.

3.2 Analysis in Isolated Frequency Features
Considering that the experimental results on natu-
ral images may be influenced by various intrinsic
factors—such as absolute pixel values and objects’
layouts—we further explore the model’s outputs
using isolated frequency features.

As shown in Figure 5, we apply filters to retain
only the high- or low-frequency features of an im-
age, causing significant distortion that makes the
objects barely distinguishable. We then prompt the
MLLMs with the instruction: “Please describe this
image in detail.” However, we observe a common
phenomenon: almost all of the MLLMs, includ-
ing GPT-4o (Hurst et al., 2024)—one of the most
advanced MLLMs—fail to recognize images as
meaningless or devoid of objects. Instead, they
often generate incorrect captions and hallucinate
objects.

Next, we use quantitative methods to validate the
existence of this phenomenon. As shown in Fig-
ure 2, we randomly selected 200 images from the
MSCOCO dataset, retaining only a portion of the
high- or low-frequency features. We then prompted
the LLaVA-1.5 to describe these images and calcu-
lated the proportion of instances containing object
hallucinations (Recognizing images as meaning-
less or devoid of objects will not be classified as
hallucination). We observed a significant increase
in the proportion of hallucinatory sentences as less
high-frequency feature was preserved (with the cut-
off frequency ranging from 0 to 120), rising from
15.0 to 32.1. A similar trend was seen with low-
frequency features (cutoff frequency from infinity
to 30), where the proportion increased from 15.0
to 24.4.

Based on these results, we observe that MLLMs
tend to be over-susceptible to frequency features
in the image for detecting objects. However, this
tendency makes MLLMs vulnerable and overly
sensitive, which can lead to hallucinations in the
models.

4 Multi-Frequency Perturbutaions

In Section 3, we demonstrate that MLLMs are
overly sensitive to frequency features during ob-
ject recognition, which leads to object hallucina-
tions. In this section, we present our proposed
robust training method based on multi-frequency
perturbations to address this issue.

Model Architecture Our model architecture,
similar to most MLLMs, as shown in Figure 5,
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Slight Frequency

The image features two men standing in a kitchen, preparing hot 
dogs. One man is positioned on the left side of the kitchen, while 
the other is on the right. They are both smiling and enjoying their 
time together as they cook the hot dogs. The kitchen is well-
equipped with various items such as a refrigerator located on the 
left side, a sink in the middle, and a microwave above the sink. 
There are also several hot dogs placed on the counter, with some of 
them being closer to the men and others further away. A bottle can 
be seen on the counter as well, possibly containing a beverage to 
accompany their meal.

The image features two men standing in a kitchen, preparing hot 
dogs. One man is on the left side of the kitchen, while the other is 
on the right side. They are both smiling and enjoying the process of 
making hot dogs. There are several hot dogs in the scene, with one 
hot dog placed on the counter near the left man, another hot dog on 
the counter near the right man, and a third hot dog closer to the 
right side of the kitchen. Additionally, there are two bottles in the 
scene, one located near the right man and the other near the left 
man.

  Perturbation

Question: Please decribe this image in detail. No “sink”!

Figure 4: An example of the comparison of results before and after slight frequency perturbation.

Figure 5: The model architecture of our proposed method. Where γ is only employed at inference time.

consists of three main components: a CLIP-like
visual encoder, connectors, and a large Language
Model (LLM). During training, the Gaussian fil-
ter is used to extract both high- and low-frequency
features from the image. These features are then
fine-grained and fused with the original image fea-
tures. The resulting fused features as visual tokens
are aligned with the text tokens via the connector.
The concatenated tokens are then fed into the LLM
backbone to generate the response.

Multi-Frequency Feature Extraction We use
a Gaussian filter to extract the high-frequency and
low-frequency features from the image. Specif-

ically, let Io(u, v) ∈ Rh×w×3 denote the origi-
nal image, an RGB three-channel image of height
u ∈ [0, h] and width v ∈ [0, w]. First, we apply the
Fourier transform to each channel separately:

Fc(u, v) = FFT (Ic(u, v)), c ∈ {R,G,B}, (2)

then we define the Gaussian low-frequency filter
Hl

c(u, v) and high-frequency filter Hh
c (u, v) as fol-

lows:



Hl

c(u, v) = exp
(
−D2(u,v)

2D2
0

)

Hh
c (u, v) = 1− exp

(
−D2(u,v)

2D2
0

)
,

(3)
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where D2(u, v) represents the distance from the
pixel point (u, v) to the center of the frequency rect-
angle, and D0 denotes the cutoff frequency.These
filters are then applied to filter the low and high
frequency of the original image:

{
F l
c(u, v) = Fc(u, v) · Hl

c(u, v)

Fh
c (u, v) = Fc(u, v) · Hh

c (u, v).
(4)

Finally, we apply the inverse Fourier transform to
these frequencies:

{
I l
c(u, v) = FFT−1(F l

c(u, v))

Ih
c (u, v) = FFT−1(Fh

c (u, v)),
(5)

and combine them into the RGB channels to ob-
tain the low-frequency features I l(u, v) and high-
frequency features Ih(u, v) of the image.

Fine-Grained Frequency Feature Fusion After
obtaining the low-frequency features I l(u, v) and
high-frequency features Ih(u, v) of the image, we
fuse them to the origin image features using a cost-
effective method. We then encode these features
with the visual encoder V G(e.g., CLIP) to obtain a
sequence of visual tokens V ∈ RL×dim:

V = VG(I), (6)

where L depends on the settings of the visual en-
coder, and dim refers to the dimension of the visual
encoder’s hidden layer.

For each token v in the visual token sequence we
obtained, we use cross-attention to fuse the high-
frequency token vh and low-frequency visual token
vl into the visual token vo of the original image at
the same position in the sequence. This process
can be expressed as follows:

vo ∈ Vo, vl ∈ V l, vh ∈ Vh,

vf = vl ⊕ vh,

ṽ = softmax

(
voW q(vfW k)⊤√

dk

)
vfW v + vo,

(7)

where ⊕ represents the concatenation operation,
vf ∈ R2×dim is the multi-frequency token obtained
by concatenating vl and vh. W q, W k, and W v ∈
Rdim×dim are the projection matrices. This means
that the original image token is used as the query in
the attention calculation, while the multi-frequency
token serves as the key and value. Since our cross
attention only applies to tokens in the same position

of the sequence, we only have a small attention
score matrix, which means a small computational
cost.

Finally, we stack ṽ to obtain the final visual to-
ken sequence Ṽ , which is aligned with the text
tokens through the connector. These tokens are
then concatenated and fed into the LLM backbone
to generate the response.

Training & Inference Our training method fol-
lows the setting used in LLaVA (Liu et al., 2024c),
consisting of two stages: the pre-training (PT) stage
and the supervised-finetuning (SFT) stage. During
the PT stage, only the connector and the three pro-
jection matrices (Wq,Wk,Wv) are trained. In the
SFT stage, the model connector, the three projec-
tion matrices in Equation 7, and the LLM back-
bone are trained. Compared to LLaVA, we intro-
duce very few additional training parameters (only
Wq,Wk,Wv, ≈ 3M).

During model inference, similar to practices in
adversarial training, we introduce a decay factor γ
in the multi-frequency feature extraction process to
modulate the influence of perturbed frequency fea-
tures, considering that these features are not pure
noise but still contain informative signals. Specifi-
cally, we rewrite the process in the Equation 4 as
follows:
{
F l
c(u, v) = Fc(u, v) · Hl

c(u, v) ·G(γ)

Fh
c (u, v) = Fc(u, v) · Hh

c (u, v) ·G(γ),
(8)

where G(γ) is a matrix whose values are obtained
by randomly sampling from the uniform distribu-
tion U(0, γ), where γ ≤ 1.

5 Experiment

5.1 Setup

Implementation Detail Similar to most work in
the field of MLLM hallucination, we apply our pro-
posed method on LLaVA-1.5-7B (Liu et al., 2024a)
for our experiments. The LCS-558k dataset (Liu
et al., 2024a) is used during the pre-training phase,
while the LLaVA-mixed-665k dataset (Liu et al.,
2024a) is used during the SFT stage. As Ap-
pendix C, We keep the training parameters con-
sistent with LLaVA-1.5. We set D0=30. At in-
ference time, we employ sampling decoding with
temperature=0.2. The codebase framework is Py-
Torch (Paszke et al., 2019), and experiments are
conducted with 8×H100 GPUs.
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Baseline In this paper, we select several
established methods as baselines, including
DoLa (Chuang et al., 2023), ITI (Li et al., 2023c),
VCD (Leng et al., 2024), ICD (Wang et al., 2024),
SID (Huo et al., 2024), AGLA (An et al., 2024),
OPERA (Huang et al., 2024), DOPRA (Wei and
Zhang, 2024), HALC (Chen et al., 2024a), and
CCA-LLaVA (Xing et al., 2025). Further details
are provided in the Appendix A.1.

Benchmark We adopt widely used benchmarks
from prior work, including CHAIR (Rohrbach
et al., 2018), POPE (Li et al., 2023d), MME (Fu
et al., 2024), and MMBench (Liu et al., 2024f), to
ensure comprehensive and consistent evaluation.
Further details are provided in the Appendix A.2.

5.2 Main Results

Comparison of MFP with existing methods To
comprehensively evaluate the effectiveness of our
proposed method, we compare its performance
against various existing approaches across multiple
evaluation metrics, as presented in Table 1. Our
method consistently outperforms the baseline and
other competing methods in key aspects.

First, in terms of POPE, our method achieves
the highest F1 score of 86.2, surpassing the base-
line (85.9) and all other methods, including DO-
PRA (85.6), SID (85.1), and CCA-LLAVA (85.5).
Regarding CHAIRs, our method attains a signif-
icantly lower score of 41.2, indicating mitigated
sentence-level object hallucinations compared to
the baseline (50.2) and most other methods, such
as VCD (51.0) and DoLa (57.0). Notably, our
method also outperforms AGLA (43.0) and CCA-
LLAVA (43.0). For CHAIRi, our method achieves
a score of 11.7, which is competitive with the best-
performing method (CCA-LLAVA, 11.5). This sug-
gests that our method effectively mitigates instance-
level hallucinations. Furthermore, the image cap-
tions generated by our model also maintain com-
pleteness relative to the baseline, as evidenced by
the CHAIR F1 score (77.6 vs. 76.8). On MME,
our method achieves the highest scores in Exis-
tence (195.0), Count (150.0), and Position (138.3),
demonstrating strong performance in reducing hal-
lucinations related to object presence, quantity, and
spatial arrangement. With an overall MME score
of 643.3, our approach ranks first, outperforming
strong baselines such as VCD (604.6) and OPERA
(592.3), further validating its effectiveness in hallu-
cination mitigation.

Second, in terms of MMBench, our method
achieves the highest accuracy of 68.2, outperform-
ing all other approaches, including SID (65.1),
OPERA (64.4), and DoLa (63.8).

In summary, our method demonstrates compet-
itive performance in mitigating object hallucina-
tions while maintaining and improving the baseline
model’s general capabilities.

Generalization of MFP across Architectures
Table 2 demonstrates that MFP consistently im-
proves performance across various model architec-
tures, including different LLMs, visual encoders,
model sizes, and input resolutions. For LLMs
such as Vicuna1.5-7B (Zheng et al., 2023) and
LLaMA2-7B (Touvron et al., 2023), MFP slightly
increases POPE scores while significantly reducing
CHAIRs and CHAIRi, indicating reduced halluci-
nation. Similar improvements are observed across
model sizes (e.g., CHAIRs drops from 42.3 to
37.6 in Vicuna1.5-13B), and across visual encoders
like CLIP (Radford et al., 2021) and SigLIP (Zhai
et al., 2023). MFP also generalizes well across
input resolutions, maintaining or improving POPE
scores (e.g., 86.4 to 86.8 in LLaVA-Next (Liu et al.,
2024b)) while reducing hallucination rates. These
results confirm that MFP is architecture-agnostic
and effective across diverse model settings.

Compatibility of MFP with existing SOTA
method As our method mitigates hallucinations
from a novel perspective, it can be seamlessly inte-
grated with existing method in an orthogonal man-
ner. To our knowledge, PAI (Liu et al., 2024d)
is the current SOTA method without additional
data, achieving the best performance on the CHAIR
benchmark. PAI enhances image token attention
and adjusts logits to reduce text bias. However, due
to its operation at the decoding and attention layers,
PAI is not easily compatible with many methods
(e.g., VCD, OPERA). Nonetheless, As a training-
free inference-time method, PAI can be effectively
combined with our training-time MFP.

As shown in Table 3, both methods perform well
independently—MFP reduces CHIARs by 9.0 and
CHAIRi by 3.3, while PAI achieves reductions
of 25.6 and 7.2, respectively. When combined,
CHIARs and CHIARi are further reduced by 6.6
and 2.0 over PAI alone, with the F1 score main-
tained at 74.4, establishing a new SOTA on the
CHAIR benchmark. These results demonstrate the
strong compatibility of our method.
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Method
POPE CHAIR MME MMB

F1 CHAIR↓
s CHAIR↓

i F1 Avg. Len Existence Count Position Color Overall Acc.

Baseline 85.9 50.2 15.0 76.8 99.2 175.7 124.7 114.0 51.0 565.3 63.0
DoLa (2023) 80.2 57.0 15.2 - 97.5 175.0 108.3 90.0 138.3 511.7 63.8
ITI (2023c) 83.7 48.2 13.9 - 98.6 - - - - - -
VCD (2024) 83.2 51.0 14.9 - 101.9 184.7 138.3 128.7 53.0 604.7 63.9
ICD (2024) - 47.4 13.9 - - 185.0 117.9 117.5 162.1 582.5 63.1
SID (2024) 85.1 45.0 11.7 - - 190.0 148.3 128.3 175.0 641.7 65.1
AGLA (2024) 84.6 43.0 14.1 78.9 98.8 - - - - - -
OPERA (2024) 85.2 47.0 14.6 - 95.3 180.7 133.3 123.3 155.0 592.3 64.4
DOPRA (2024) 85.6 46.3 13.8 - 96.1 - - - - - -
HALC (2024a) 83.9 50.2 12.4 - 97.2 - - - - -
CCA-LLaVA (2025) 85.5 43.0 11.5 - 96.6 190.0 148.3 128.3 175.0 641.7 65.4
Ours 86.2 41.2 11.7 77.6 94.4 195.0 150.0 138.3 160.0 643.3 68.2

Table 1: Compare results of MFP with other SOTA methods on POPE and CHAIR datasets. We set γ = 0.23. The
evaluation results of the compared methods are from published papers. The best performances within each metric
are bolded. The second best performances are underlined.

LLaVA V. E. LLM Res. POPE CHAIR↓
s CHAIR↓

i

V1.5 CLIP vicuna1.57B 336 85.9 50.2 15.0
w/ MFP CLIP vicuna1.57B 336 86.2 41.2 11.7

V1.5 CLIP vicuna1.513B 336 85.9 53.0 14.6
w/ MFP CLIP vicuna1.513B 336 86.4 37.6 10.4

V1.5 SigLIP vicuna1.57B 384 86.4 47.0 12.0
w/ MFP SigLIP vicuna1.57B 384 85.4 42.0 11.9

V1.5 CLIP llama27B 336 85.4 48.0 14.8
w/ MFP CLIP llama27B 336 86.2 46.0 14.1

Next CLIP vicuna1.57B 672 86.4 51.0 12.8
w/ MFP CLIP vicuna1.57B 672 86.8 45.4 11.7

Table 2: Results of MFP cross different architectures.
The best performances within each setting are bolded.
V. E. refer to visual encoder and Res. refer to resolution.
From top to bottom we set γ to 0.23, 0.1, 0.1, 0.3 and
0.4. Considering that the data of LLaVA-Next is not
publicly available, we train LLaVA-Next using the data
of LLaVA-1.5.

Training Inference CHAIR↓
s CHAIR↓

i F1 Avg. Len

Vanilla Vanilla 50.2 15.0 76.8 99.2

MFP Vanilla 41.2 11.7 77.6 94.4
Vanilla PAI 24.6 7.2 74.4 87.6
MFP PAI 18.0 5.2 74.4 68.8

Table 3: Results of compatibility of MFP with exist-
ing SOTA method on CHAIR benchmark. γ = 0.23.
The best performances within each setting are bolded.
The experiments are conducted on the LLaVA-1.5-7B
model.

5.3 More Results

Due to space limitations, we present additional
experimental results and detailed analyses in the
Appendix B. Specifically, we demonstrate that our
proposed method preserves the general capabili-
ties of MLLMs across several widely used bench-
marks. To further validate its effectiveness, we
evaluate the method on a broader set of hallucina-
tion benchmarks, where consistent improvements
are observed. Additionally, we conduct a sensi-
tivity analysis to better understand the underlying
mechanism of MFP, and perform comprehensive
ablation studies to evaluate the contribution of each
component in the method.

6 Conclusion

We present the first study of object hallucination
in MLLMs from a frequency-domain perspective,
showing that models are overly sensitive to fre-
quency features during object recognition. To ad-
dress this, we propose MFP—a simple and ef-
ficient training-time method that effectively mit-
igates hallucinations. MFP achieves strong re-
sults across multiple benchmarks, generalizes well
across architectures, and can be seamlessly com-
bined with inference-time methods like PAI to
achieve state-of-the-art performance on the CHAIR
benchmark. These findings underscore the poten-
tial of frequency-domain techniques for hallucina-
tion mitigation and highlight the importance of fur-
ther investigating the relationship between image
features and object recognition in MLLMs.
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Limitations

Due to time and computational constraints, our
evaluation is conducted on a limited set of model
architectures, which may impact the generalizabil-
ity of our findings to a broader range of architec-
tures. Additionally, our experiments do not include
a comprehensive analysis of key hyperparameters,
such as the number of feature fusion layers and
the specific frequency ranges utilized. A more sys-
tematic exploration of these factors could provide
deeper insights into their influence on performance
and potentially lead to further improvements.
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put distributions from original and perturbed vi-
sual inputs to minimize bias and unimodal pri-
ors. ICD (Wang et al., 2024)contrasts distribu-
tions from standard and instruction disturbance,
thereby increasing alignment uncertainty and ef-
fectively subtracting hallucinated concepts from
the original distribution. SID (Huo et al., 2024)
reduces vision-and-text association hallucinations
by selectively preserving only the least important
vision tokens early in decoding. AGLA (An et al.,
2024) is a training-free method that mitigates ob-
ject hallucinations by leveraging global features for
response generation and local features for visual
discrimination. OPERA (Huang et al., 2024) in-
troduces a novel MLLM decoding strategy that re-
duces hallucinations through an over-trust penalty
and a retrospection-allocation mechanism. DO-
PRA (Wei and Zhang, 2024) addresses hallucina-
tions by applying weighted layer penalties and re-
distribution during decoding. HALC (Chen et al.,
2024a) enhances vision-language tasks by incor-
porating fine-grained visual information and in-
tegrating both local and global contexts. CCA-
LLaVA (Xing et al., 2025) proposes Concentric
Causal Attention (CCA), a positional alignment
strategy that mitigates RoPE’s long-term decay by
reducing the relative distance between visual and
instruction tokens in MLLMs.

A.2 More Detail About the Benchmarks
CHAIR (Rohrbach et al., 2018) Caption Hal-
lucination Assessment with Image Relevance
(CHAIR) is a widely used benchmark for assess-
ing hallucinations in image captioning tasks. It
works by creating a set of ground-truth object la-
bels for each image, where any object mentioned
in the caption that is not present in the label set
is considered a hallucinated object. CHAIR con-
sists of two variants: CHAIRi (instance-level) and
CHAIRs (sentence-level), which are calculated as
follows:

CHAIRi =
|{hallucinated objects}|
|{all mentioned objects}| , (9)

CHAIRs =
|{captions w/ hal. objects}|

|{all captions}| . (10)

Consistent with the evaluation settings of previous
work (Leng et al., 2024), we randomly sample 500
images from the MSCOCO 2014 validation set (Lin
et al., 2014), set the max-tokens to 512, and use the
prompt “Please describe this image in detail.” In
addition to the CHAIR metric, we also report F1
scores to assess the completeness of the generated
image descriptions.

POPE (Li et al., 2023d) The Polling-based Ob-
ject Probing Evaluation (POPE) is a benchmark
created to evaluate object hallucinations within the
VQA framework. It works by asking MLLMs tar-
geted questions like “Is there a {object} in the im-
age?”, where {object} refers to a ground-truth item
selected from three distinct splits. In the “random”
split, objects are randomly chosen from the en-
tire dataset. The “popular” split includes the most
frequently occurring objects, and the “adversar-
ial” split presents objects that are closely related
to those in the image. For our analysis, we use
the COCO dataset (Lin et al., 2014), selecting 500
images and posing six questions per image for each
POPE split. We use the average F1 score of the
three split sets as the evaluation metric.

MME (Fu et al., 2024) In line with prior meth-
ods (Leng et al., 2024; Chuang et al., 2023; Huo
et al., 2024), we employ the hallucination subset of
MME to systematically assess the model’s perfor-
mance. This subset enables a detailed evaluation
of both object-level and attribute-level hallucina-
tions. For object-level hallucination, we employ
the existence and count subsets, which enable the
evaluation of a model’s ability to correctly iden-
tify the presence and quantity of objects within an
image. Meanwhile, attribute-level hallucinations
are examined using the position and color subsets,
allowing us to assess how well MLLMs capture
spatial relationships and color attributes.

MMBench (Liu et al., 2024f) To assess whether
the overall capabilities of MLLMs are well pre-
served, we employ MMbench, a widely recognized
benchmark specifically designed for evaluating the
comprehensive abilities of MLLMs. MMbench
serves as an objective and standardized evalua-
tion framework, enabling a rigorous assessment
of model performance across diverse multimodal
tasks. It encompasses a meticulously curated set
of over 3,000 multiple-choice questions, system-
atically categorized into 20 distinct ability dimen-
sions, including but not limited to object localiza-
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tion, social reasoning, spatial understanding, and
commonsense inference. By covering a broad spec-
trum of cognitive and perceptual skills, MMbench
provides a holistic measure of an MLLM’s capac-
ity, ensuring a robust and fair comparison across
different models.

B More Experimental Results

B.1 Comparison on General Benchmarks

Table 4 illustrates the performance comparison be-
tween our proposed MFP method and the baseline
model across 9 general benchmarks. Our evalua-
tion is conducted on a diverse set of benchmarks, in-
cluding TextVQA (Singh et al., 2019), VizWiz (Gu-
rari et al., 2018), MMBench (English & Chinese),
MME, MM-Vet (Yu et al., 2024c), ScienceQA (Lu
et al., 2022), SEED-Image (Li et al., 2023a), and
VQAv2 (Goyal et al., 2017), covering various as-
pects of multimodal understanding and reasoning.

Overall, MFP achieves a comparable perfor-
mance to the baseline, with an average score of
61.2, slightly surpassing the baseline’s 61.0. While
MFP demonstrates improvements on certain bench-
marks, such as MMBench (EN & CN) and Sci-
enceQA, it exhibits minor performance drops on
others, including VQAv2 and MME. According
to the evaluation results, our model maintains the
same general capability as the baseline.

B.2 Evaluation Results on More
Hallucination Benchmarks

GPT-4o Assistant Evaluation In keeping with
PAI, we also choose to use GPT-assisted evaluation.
Since GPT-4V has been removed from the market,
we choose the more advanced GPT-4o to evaluate
our model. We construct prompts and input both
the images and the description responses from two
assistants into GPT-4o as follow:

{image}
You are required to score the performance
of two AI assistants in describing a given
image. You should pay extra attention to the
hallucination, which refers to the part of de-
scriptions that are inconsistent with the im-
age content, such as claiming the existence
of something not present in the image or de-
scribing incorrectly in terms of the counts,
positions, or colors of objects in the image.
Please rate the responses of the assistants

on a scale of 1 to 10, where a higher score
indicates better performance, according to
the following criteria:
1: Accuracy: whether the response is accu-
rate with respect to the image content. Re-
sponses with fewer hallucinations should be
given higher scores.
2: Detailedness: whether the response is
rich in necessary details. Note that halluci-
nated descriptions should not count as nec-
essary details.
Please output the scores for each criterion,
containing only two values indicating the
scores for Assistant 1 and 2, respectively.
The two scores are separated by a space.
Following the scores, please provide an
explanation of your evaluation, avoiding
any potential bias and ensuring that the
order in which the responses were presented
does not affect your judgment.

[Assistant 1]
{Response of Assistant 1}
[Assistant 2]
{Response of Assistant 2}

Output format:

Accuracy: {Scores}
Reason:
Detailedness: {Scores}
Reason:

The evaluation considers two key dimensions:
Accuracy and Detailedness Our evaluation Settings
are consistent with PAI, and the results are shown
in Table 5. Compared with the baseline and VCD,
our method has better accuracy and detailedness.

Evaluation Results on MMhal-Bench We adopt
MMHal-Bench (Sun et al., 2023a), a benchmark
specifically designed to assess hallucination in mul-
timodal large language models. MMHal-Bench
comprises 96 image-question pairs, structured
across 8 question categories and 12 object topics,
encompassing a diverse set of visual and reason-
ing challenges. The question types include object
attributes, adversarial object presence, object com-
parisons, counting, spatial relations, environmental
context, holistic scene descriptions, and other com-
plex reasoning forms. Since the original evalua-
tion was conducted using GPT-4-0314, which is no
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Method VQAT VizWiz MMBEN MMBCN MME MM-Vet SQAI SEEDI VQAv2 Overall

Baseline 58.6 50.0 64.3 58.3 75.5 30.5 66.8 66.1 78.5 61.0
MFP 56.5 53.4 68.2 59.0 73.3 30.4 67.7 65.1 76.9 61.2

Table 4: Result of General Benchmarks. The best performance is bolded.

Method Accuracy↑ Detailedness↑
Baseline 5.38 5.88

VCD 5.83 5.93
MFP 6.29 6.52

Table 5: Result of GPT-4o Assistant Evalution. The best
performance is bolded.

Method Avg. Score↑ Hal. Rate↓
Baseline 1.55 0.74

MFP 1.82 0.68

Table 6: Result of MMHal-Bench Evalution. The best
performance is bolded.

longer accessible, we employ the latest available
version, GPT-4o, for scoring the model responses.

Table 6 presents the evaluation results on
MMHal-Bench. Our proposed method, MFP,
achieves a higher average score of 1.82 compared
to the baseline’s 1.55, indicating improved re-
sponse quality across diverse hallucination-related
question types. Furthermore, MFP significantly
reduces the hallucination rate from 0.74 to 0.68,
demonstrating its effectiveness in mitigating object
hallucinations under complex and high-difficulty
scenarios. These results further validate the effec-
tiveness of MFP in enhancing model performance
and mitigating hallucinations.

B.3 Evaluation Results on More Models

We additionally evaluate MFP on the InternVL2
and Qwen2.5-VL model. Considering that MFP
incorporates additional modules, both the baseline
and MFP are fine-tuned on the same post-SFT

Model V. E. LLM Res. POPE CHAIR↓
s CHAIR↓

i

InternVL21B InternViT qwen2.50.5B anyres 87.1 45.6 12.0
w/ MFP InternViT qwen2.50.5B anyres 88.1 42.2 10.9

QwenVL2.53B ViT qwen2.53B anyres 84.3 42.4 14.6
w/ MFP ViT qwen2.53B anyres 83.4 30.8 9.9

Table 7: Results of MFP cross different models. From
top to bottom we set γ to 0.23 and 0.33.

Figure 6: Results of sensitivity analysis on CHAIR
benchmark for the parameter γ. The experiments are
conducted on the LLaVA-1.5-7B model.

dataset, LLaVA-665K, to ensure a fair and con-
trolled comparison. The results are shown in Ta-
ble 7.

According to the results on POPE and CHAIR
benchmarks, the effectiveness of MFP on different
MLLM architectures is further demonstrated.

B.4 Efficiency Comparison Between MFP and
Baseline

Considering that MFP introduces additional compo-
nents, we compare its training and inference time
with that of the baseline to assess the impact on
computational efficiency.

For training time, we report the average time per
step across 100 steps after the training process has
stabilized. Additionally, we measure the time spent
specifically on image processing (i.e., frequency
filtering and image encoding) during each of these
steps. For inference time, we compute the average
time per sample based on evaluation conducted on
the CHAIR benchmark.

B.5 Sensitivity Analysis

We choose the parameter γ at inference time for
sensitivity analysis, using recall, precision, and F1
score from the CHAIR benchmark as evaluation
metrics. A lower γ means fewer low- and high-
frequency features are injected, and vice versa.
As shown in Figure 6, when γ decreases from
0.4 to 0.3, recall, precision, and F1 score all in-
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Method Stage POPE CHAIR↓
s CHAIR↓

i

Baseline - 85.9 50.2 15.0

MFP - 86.2 41.2 11.7
w/o low Training 86.7 49.8 14.8
w/o high Training 86.5 51.4 14.4
w/o γ Inference 86.5 51.2 14.3

Table 8: Result of ablating different parts of MFP.
The best performance is bolded. γ=0.23 is set for all
experiments. The experiments are conducted on the
LLaVA1.5-7B model.

crease, reaching their peak values of 76.5, 78.2, and
77.2, respectively. This improvement suggests that
our method effectively suppresses redundant high-
and low-frequency features, thereby enhancing the
model’s object detection capacity. However, when
γ is further reduced from 0.3 to 0.0, recall exhibits
a decreasing trend (from 76.5 to 69.4), while pre-
cision increases (from 78.2 to 82.5). The F1 score
initially improves slightly at γ = 0.2 before declin-
ing from 77.2 to 75.4 at γ = 0.0. This indicates
that while reducing multi-frequency features alle-
viates object hallucination and improves precision,
it may also lead to the loss of essential frequency-
domain information, negatively impacting object
detection and reducing recall. The observed trade-
off between recall and precision highlights the im-
portance of selecting an optimal γ to balance fea-
ture suppression and retention. This result supports
the conclusion that the core mechanism of our pro-
posed method is to reduce redundant frequency-
domain features, thereby improving overall model
robustness.

B.6 Ablation Study

To further investigate the effectiveness of our pro-
posed Multi-Frequency Processing (MFP) method,
we conduct an ablation study by removing dif-
ferent frequency features and the inference-time
parameter γ, as shown in Table 8. Compared to
the baseline, MFP significantly reduces CHAIRs

and CHAIRi scores from 50.2 to 41.2 and from
15.0 to 11.7, respectively, demonstrating its effec-
tiveness in mitigating object hallucinations. When
low-frequency features are removed during train-
ing (w/o low), CHAIRs and CHAIRi increase to
49.8 and 14.8, respectively, suggesting that low-
frequency features play a crucial role in suppress-
ing spurious detections. Removing low-frequency
features (w/o low) or high-frequency features (w/o

high) degrades performance, indicating that both
components are critical—though low-frequency
features contribute slightly more. Furthermore,
when γ is removed at inference time (w/o γ),
CHAIRs and CHAIRi degrade to 51.2 and 14.3,
respectively, underscoring the importance of de-
caying frequency features during inference. Impor-
tantly, across all ablation settings, the POPE score
remains consistently higher than the baseline, rang-
ing from 86.2 to 86.7, indicating that our method ro-
bustly increases POPE score regardless of specific
frequency feature being removed. These results
validate that while both low- and high-frequency
features contribute to hallucination mitigating, their
joint utilization within MFP leads to the most ef-
fective mitigating.

Method
Train (s / step) Test (s / item)

Img. Pro. Total Total

Baseline 0.1 3.4 2.1
MFP 0.3 4.0 2.1

Table 9: Efficiency comparison between MFP and the
baseline.

C More Training Parameters Details

Hyperparameter PT SFT

batch size 256 128
lr 1e-3 2e-5
lr schedule cosine decay
lr warmup ratio 0.03
weight decay 0
epoch 1
optimizer AdamW
DeepSpeed stage 2 3

Table 10: Hyperparameters of our model’s pretrain and
finetune.

For main results, we keep all training hyperpa-
rameters roughly the same as the LLaVA series.
Table 10 presents a detailed training setup during
PT and SFT stage.

Table 9 presents the training and inference effi-
ciency comparison between MFP and the baseline.
During training, MFP introduces a slight increase
in image processing time (0.3s vs. 0.1s) due to the
additional frequency processing. As a result, the
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total training time per step rises modestly from 3.4s
to 4.0s. However, this overhead remains relatively
small considering the performance gains achieved.
At inference time, the average duration per item re-
mains almost unchanged (2.1s for both), indicating
that MFP introduces negligible overhead during
inference. These results confirm that MFP offers
enhanced hallucination mitigation with minimal
impact on computational efficiency.

D Case Study

Figure 7 presents a case-by-case comparison be-
tween our proposed MFP method and the original
output. The results demonstrate that our method
significantly mitigates hallucinations.
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[MFP] The image features a young woman wearing a green 

shirt, standing in front of a window. She is holding a piece of 

food, possibly a donut, in her hand, and appears to be smiling. 

The woman is the main focus of the scene, and her expression 

suggests that she is enjoying the treat.

[LLaVA]The image features a woman wearing glasses and a 

green shirt, sitting down and holding a piece of cake in her hand. 

She appears to be enjoying the dessert and smiling as she eats it. 

The woman is positioned in the center of the scene, with the 

cake in her hand. There are two other people in the background, 

one on the left side and another on the right side of the image. A 

chair is also visible in the background, likely where the woman 

is sitting.

Question: Please help me describe the image 

in detail.

[MFP] The image features a large, delicious pizza topped with 

eggs, cheese, and various vegetables. The pizza is placed on a 

dining table, occupying a significant portion of the table's surface. 

The eggs are scattered across the pizza, with some closer to the 

center and others near the edges. The cheese is melted and evenly 

distributed, adding to the appetizing appearance of the pizza. The 

vegetables, which include onions, are also visible on the pizza, 

adding a burst of color and flavor to the dish.

[LLaVA] The image features a large, freshly baked pizza with a 

variety of toppings, including eggs, onions, tomatoes, and cheese. 

The pizza is placed on a wooden table, and it appears to be a 

personal-sized pizza. The pizza is cut into slices, making it easy 

to serve and enjoy. In addition to the pizza, there are several 

carrots scattered around the table, adding a touch of color and 

freshness to the scene. A cup can also be seen on the table, 

possibly containing a beverage to accompany the meal.

Question: Please help me describe the 

image in detail.

Question: Please help me describe the 

image in detail.

[MFP] The image features two giraffes standing next to each 

other in a zoo enclosure. One giraffe is larger and occupies most 

of the scene, while the other giraffe is smaller and positioned 

closer to the right side of the enclosure. They are both eating 

from a trough, with the larger giraffe reaching for food and the 

smaller one eating as well. The scene captures the natural 

behavior of these animals as they feed together in their 

enclosure.

[LLaVA] The image features two giraffes standing next to 

each other in an enclosure. One giraffe is positioned towards 

the left side of the image, while the other is on the right side. 

They are both standing near a wall, possibly in a zoo or 

wildlife park. In the background, there is a bench located on 

the left side of the image, and a potted plant can be seen on the 

right side, adding to the natural ambiance of the enclosure.

Figure 7: Comparison between our proposed MFP method and the original output in some cases. The hallucinating
responses are highlighted in red.
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