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Abstract

Autonomous Driving Systems (ADSs) are revo-
lutionizing transportation by reducing human
intervention, improving operational efficiency,
and enhancing safety. Large Language Mod-
els (LLMs) have been integrated into ADSs
to support high-level decision-making through
their powerful reasoning, instruction-following,
and communication abilities. However, LLM-
based single-agent ADSs face three major chal-
lenges: limited perception, insufficient collab-
oration, and high computational demands. To
address these issues, recent advances in LLM-
based multi-agent ADSs leverage language-
driven communication and coordination to en-
hance inter-agent collaboration. This paper pro-
vides a frontier survey of this emerging inter-
section between NLP and multi-agent ADSs.
We begin with a background introduction to re-
lated concepts, followed by a categorization of
existing LLM-based methods based on differ-
ent agent interaction modes. We then discuss
agent-human interactions in scenarios where
LLM-based agents engage with humans. Fi-
nally, we summarize key applications, datasets,
and challenges to support future research.

1 Introduction

Autonomous driving systems (ADSs) are redefin-
ing driving behaviors, reshaping global transporta-
tion networks, and driving a technological revolu-
tion (Yurtsever et al., 2020). Traditional ADSs pri-
marily rely on data-driven approaches (as detailed
in Appendix A), focusing on system development
while overlooking dynamic interactions with the
environment. To enhance engagement with diverse
and complex driving scenarios, agentic roles have
been incorporated into ADSs (Durante et al., 2024)
using methods like reinforcement learning (Zhang
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et al., 2024b) and active learning (Lu et al., 2024).
Despite notable progress, these methods struggle
with “long-tail” scenarios, where rare but criti-
cal driving situations, such as sudden obstacles,
pose significant challenges to model performance.
Furthermore, their “black-box” nature limits inter-
pretability, making their decisions difficult to trust.

LLM-based single-agent ADSs help overcome
the limitations of data-driven methods (Wang et al.,
2024a). Pre-trained on vast, multi-domain datasets,
LLMs excel in knowledge transfer and generaliza-
tion (Achiam et al., 2023), enabling strong perfor-
mance in traffic scenarios under zero-shot settings,
thus addressing the long-tail issue (Yang et al.,
2023). Moreover, techniques such as Reinforce-
ment Learning from Human Feedback (RLHF) and
Chain-of-Thought (CoT) (Zhao et al., 2023), en-
hance language-based interaction and logical rea-
soning, allowing LLMs to make human-like, real-
time decisions while providing interpretable and
trustworthy feedback across various driving con-
ditions. For instance, Drive-Like-a-Human (Fu
et al., 2024) builds a closed-loop system compris-
ing environment, agent, memory, and expert mod-
ules. The agent interacts with the environment,
reflects on expert feedback, and ultimately accumu-
lates experience. For example, DiLu (Wen et al.,
2024) replaces human experts with a reflection
module and integrates an LLM-based reasoning en-
gine to enable continuous decision-making. Agent-
Driver (Mao et al., 2024) designs a tool library to
collect environmental data and uses LLMs’ cogni-
tive memory and reasoning to improve planning.

However, as shown in Figure 1, researchers have
identified three critical limitations of LLM-based
single-agent ADSs in complex traffic environments:
❶ Limited Perception: LLMs can only respond
to sensor inputs and lack predictive and generaliza-
tion capabilities. As a result, LLM-based single-
agent ADSs cannot complement incomplete sensor
information and thus miss critical information in
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Figure 1: Limitations of LLM-based single-agent ADSs.
At an intersection without traffic lights, an accident has
occurred ahead, causing Veh1 to be stuck. Due to lim-
ited perception, Veh1 is unable to assess the situation
and cannot proceed. Veh2 intends to go straight, and
Veh3 wants to turn left. However, due to insufficient
collaboration, they are also unable to navigate the inter-
section efficiently. Furthermore, due to high computing
demands, the lightweight agent on Veh1 struggles to
handle the complex driving scenario and has to rely on
a more powerful cloud-based agent for assistance.

driving scenarios, such as pedestrians or vehicles
hidden in complex intersection environments (Hu
et al., 2024c). ❷ Insufficient Collaboration: A
single LLM-based agent cannot coordinate with
other vehicles or infrastructure, leading to subopti-
mal performance in scenarios requiring multi-agent
interactions, such as merging of lanes or navigate
roundabouts (Hu et al., 2021). ❸ High Compu-
tational Demands: With billions of parameters
in LLMs, these methods require substantial inde-
pendent computational resources, making real-time
deployment challenging, particularly in resource-
limited in-vehicle systems (Cui et al., 2023).

To address these limitations, LLM-based multi-
agent ADSs enable distinct agents to communi-
cate and collaborate, improving safety and perfor-
mance. First, LLMs enhance contextual aware-
ness by allowing agents to share data, extend their
perceptual range, and enhance the detection of oc-
cluded objects in complex environments (Hu et al.,
2024c). Second, real-time coordination among
LLM-based agents mitigates insufficient collabo-
ration, enabling joint decisions in tasks like lane
merging and roundabout navigation, ultimately
leading to safer and more efficient driving opera-
tions (Hu et al., 2021). Third, LLMs optimize com-
putational efficiency by distributing tasks across
agents, reducing individual load and enabling real-
time processing in resource-limited systems.

As LLM capabilities continue to advance, they
are playing an increasingly significant role in ADS
as intelligent driving assistants. Several reviews

have focused on two primary aspects: i) the integra-
tion of LLMs in data-driven methods (Yang et al.,
2023; Li et al., 2023) and ii) the applications of
specific LLM types, such as vision-based (Zhou
et al., 2024b) and multimodal-based (Fourati et al.,
2024; Cui et al., 2024c) models in ADS. However,
no comprehensive survey has systematically exam-
ined the emerging field of LLM-based multi-agent
ADSs. This gap motivates us to provide a com-
prehensive review that consolidates existing knowl-
edge and offers insights to guide future research
and the development of advanced ADSs.

In this study, we present a comprehensive survey
of LLM-based multi-agent systems. Specifically,
Section 2 introduces the core concepts, includ-
ing agent environments and profiles, inter-agent
interaction mechanisms, and agent-human interac-
tions. Section 3 provides a structured review of
existing studies: multi-vehicle interaction, vehicle-
infrastructure interaction, and vehicle-assistant in-
teraction. As agent capabilities continue to grow,
human-vehicle co-driving is emerging as the dom-
inant autonomous driving paradigm, with human
playing an increasingly vital role. Humans collab-
orate with agents by providing guidance or super-
vising their behavior. Therefore, we consider hu-
mans as special virtual agents and examine human-
agent interactions in Section 4. Section 5 explores
various applications, while Section 6 compiles a
comprehensive collection of public datasets and
open-source resources. Section 7 discusses existing
challenges and future research directions. Finally,
Section 8 concludes the study.

2 LLM-based Agents for ADS

2.1 LLM-based Single-Agent ADS

Achieving human-level driving is an ultimate goal
of ADS. As shown in Figure 2(a), the LLM-based
single agent retrieves past driving experiences from
the memory, integrates them with real-time envi-
ronmental information for reasoning, and makes
driving decisions. Additionally, the driving agent
reflects on its decision and updates its memory
accordingly, ensuring safe and efficient driving ac-
tions. However, the complex and dynamic nature
of real-world driving scenarios, where interactions
with other vehicles significantly impact decision-
making, suggests that neglecting these interactions
can lead to suboptimal or unsafe driving outcomes.
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Figure 2: Overview of LLM-based (a) single- and (b) multi-agent ADSs, with key terms and differences highlighted.

2.2 LLM-based Multi-Agent ADS

With interactions among multiple agents, LLM-
based multi-agent ADS leverages collective intelli-
gence and specialized skills, with each agent play-
ing a distinct role, communicating and collaborat-
ing within the system. This enhances the efficiency
and safety of autonomous driving. Below, we intro-
duce the LLM-based multi-agent ADS, as shown
in Figure 2(b), and provide a detailed analysis of
its three key modules: Agent Environment and
Profile, LLM-based Multi-Agent Interaction, and
LLM-based Agent-Human Interaction.

2.2.1 Agent Environment and Profile

Similar to the single-agent architecture in Fig-
ure 2(a), multi-agent systems first obtain rele-
vant information from their environments, enabling
them to make informed decisions and take appropri-
ate actions. The environmental conditions define
the settings and necessary context for agents in
LLM-based multi-agent ADS to operate effectively.
Generally, there are two environment types, i.e.,
physical environment and simulation environment.

Physical environment represents the real-world
setting where driver agents gather information us-
ing various sensors, such as cameras and LiDAR,
and interact with other traffic participants. How-
ever, due to the high cost of vehicles and strict reg-
ulations on public roads, collecting large amounts
of data in real world is impractical. As a viable
alternative, the Simulation environment provides
a simulated setting constructed by humans. It can
accurately model specific conditions without in-

Table 1: Comparison of Agent Profiling Methods.

Method Advantage Limitation

Pre-defined Rely on prior knowledge to
reduce the difficulty of
scenario modeling and
embed strict safety rules and
regulatory constraints.

Labor-intensive to create and
maintain, and lacks
adaptability to novel or
dynamic autonomous driving
scenarios.

Model-generated Synthesize new agent roles
on-the-fly, letting simulators or
fleets adapt to unseen driving
contexts.

Generated profiles may
violate traffic laws and have
limited understanding of
safety-critical environments.

Data-derived Can learn complex,
real-world driving behaviors
and patterns from large
datasets, potentially improving
naturalistic interactions.

Coverage remains limited by
the availability of vast,
high-quality autonomous
driving data, and privacy or
commercial constraints may
restrict data sharing.

curring the high costs and complexities associated
with real-world data collection, allowing agents to
freely test actions and strategies across a variety of
scenarios (Dosovitskiy et al., 2017).

In LLM-based multi-agent systems, each agent
is assigned distinct roles with specific functions
through profiles, enabling them to collaborate on
complex driving tasks or simulate intricate traffic
scenarios. These profiles are crucial in defining
the functionality of the agent, its interaction with
the environment, and its collaboration with other
agents. Existing work (Li et al., 2024) generates
agent profiles using three types of methods: Pre-
defined, Model-generated, and Data-derived.

Table 1 summarizes the advantages and limita-
tions of different agent profiling methods in ADSs.
Specifically, within Pre-defined methods, system
designers explicitly define agent profiles based on
prior knowledge and the analysis of complex sce-
narios (Chen et al., 2024a). Each agent has unique
attributes and behavior patterns that can be adjusted
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based on the scenario. In driving environments, the
objectives of ADS require the collaboration of ve-
hicle agents, infrastructure agents, and drivers. In
particular, ❶ Vehicle agents denote various types of
autonomous vehicles, traveling according to preset
routes and traffic rules, while communicating and
collaborating with other vehicles and driver agents.
❷ Infrastructure agents, e.g., traffic lights, road con-
dition monitors, and parking facilities, provide real-
time traffic information and instructions, influenc-
ing the behavior of driver and vehicle agents. How-
ever, manually crafting such roles is labor-intensive
and often brittle when scenarios shift, which has
stimulated interest in automatic profile construc-
tion, either generated by LLMs or extracted from
large-scale datasets. Model-generated methods
create agent profiles using advanced LLMs based
on the interaction context and the goals that need
to be accomplished (Zhou et al., 2024c) and Data-
derived Profile design agent profiles based on pre-
existing datasets (Guo et al., 2024).

2.2.2 LLM-based Multi-Agent Interaction
In LLM-based multi-agent ADS, effective commu-
nication and coordination among agents are crucial
to improve collective intelligence and solve com-
plex traffic scenarios. Agent interactions depend
on both the interaction mode and the underlying
interaction structure, as summarized in Table 3.

The interaction mode can be classified as: co-
operative, competitive, and debate mode. ❶ In
cooperative mode, agents work together to achieve
shared objectives by exchanging information (Chen
et al., 2024d; Jin et al., 2024). ❷ In competitive
mode, agents strive to accomplish their individual
goals and compete with others (Yao et al., 2024).
❸ The Debate mode enables agents to debate with
each other, propose their own solutions, criticize
the solutions of other agents, and collaboratively
identify optimal strategies (Liang et al., 2024).

The interaction structure delineates the archi-
tecture of communication networks within LLM-
based multi-agent ADS, including centralized, de-
centralized, hierarchical, and shared message pool
structures, as shown in Figure 3. Specifically, ❶ the
centralized interaction structures defines a central
agent or a group of central agents to manage interac-
tions among all agents (Zhou et al., 2024c). ❷ The
decentralized interaction structure allows for direct
communication between agents, with all agents
being equal to each other (Hu et al., 2024b). ❸ Hi-
erarchical structures focus on interactions within a

Decentralized

Shared Message PoolHierarchical

Message
pool

LLM-based
Manage  Agent

Centralized
Interaction mode

Cooperative

Competitive

Debate

Figure 3: Different interaction modes and structures.

layer or with adjacent layers (Ohmer et al., 2022).
❹ The shared memory interaction structure main-
tains a shared message pool, allowing agents to
send and extract the necessary information (Jiang
et al., 2024a). We provide a more detailed intro-
duction to LLM-based multi-agent ADSs based on
their interaction structures and modes in Section 3.

2.2.3 LLM-based Agent-Human Interaction
Recent studies show that human-machine co-
driving systems use LLMs to improve agent-human
interactions, enabling vehicles to communicate
and collaborate seamlessly with human drivers
through natural language (Feng et al., 2024; Zou
et al., 2025a,b). This allows vehicles to better
understand and respond to human intent, provide
context-aware responses, enhance driving safety
and comfort, and offer personalized recommenda-
tions based on driver preferences. Humans also
play a crucial role in guiding and supervising agent
behavior, enhancing the agents’ capabilities while
ensuring safety. We examine the role of humans
as special virtual agents and explore agent-human
interaction dynamics in Section 4.

3 LLM-based Multi-Agent Interaction

Mutual interaction is central to multi-agent ADSs,
enabling systems to solve complex problems be-
yond the capabilities of a single agent. Through
information exchange and coordinated decision-
making, multiple agents effectively complete
shared tasks and achieve overarching objectives (Li
et al., 2024). This section reviews recent stud-
ies on multi-agent ADSs, emphasizing interactions
among vehicles, infrastructures, and assisted agents
in driving scenarios. As shown in Figure 4, we cate-
gorize existing methods into three interaction types:
multi-vehicle interaction, vehicle-infrastructure in-
teraction, and vehicle-assistant interaction.
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Figure 4: A taxonomy of LLM-based Multi-Agent Autonomous Driving Systems.

3.1 Multi-Vehicle Interaction

Multi-vehicle interactions involve multiple au-
tonomous vehicles powered by LLMs exchanging
real-time information, such as locations, speeds,
sensor data, and intended trajectories. By sharing
partial observations of the environment or negoti-
ating maneuvers, multiple vehicles overcome the
inherent limitations of single-agent ADS, such as
restricted perception and lack of collaboration.

Typically, these interactions operate in a co-
operative mode with varying architectures. Lan-
guageMPC (Sha et al., 2023) employs a centralized
structure, where a central agent acts as the fleet’s
"brain," providing optimized coordination and con-
trol commands to each vehicle agent. In contrast,
other decentralized methods (Fang et al., 2024;
Dona et al., 2024) treat all agents as peers, allow-
ing direct vehicle-to-vehicle communication with-
out central bottlenecks. For instance, AgentsCo-
Driver (Hu et al., 2024a) designs an adaptive com-
munication module that generates context-aware
messages for inter-agent communication when the
agent deems it necessary. AgentsCoMerge (Hu
et al., 2024b) and CoDrivingLLM (Fang et al.,
2024) incorporate agent communication directly
into the reasoning process, facilitating real-time
intention sharing and proactive negotiation before
decision-making. Additionally, KoMA (Jiang et al.,
2024a) and CoMAL (Yao et al., 2024) build a dis-
tributed shared memory pool, allowing agents to
send and retrieve the necessary information to fa-
cilitate scalable interaction between agents.

3.2 Vehicle-Infrastructure Interaction

The interaction between vehicles and external
agents, such as traffic lights, roadside sensors, and
LLM-powered control centers, not only helps au-
tonomous vehicles make more intelligent decisions
but also alleviates on-board computing require-
ments. This enables LLM-based multi-agent ADSs
to operate effectively in real-world environments.
EC-Drive (Chen et al., 2024a) proposes an Edge-
Cloud collaboration framework with a hierarchical
interaction structure. The edge agent processes real-
time sensor data and makes preliminary decisions
under normal conditions. When anomalies are de-
tected or the edge agent generates a low-confidence
prediction, the system flags these instances and up-
loads them to the cloud agent equipped with LLMs.
The cloud agent then performs detailed reasoning
to generate optimized decisions and combines them
with the output of the edge agent to update the driv-
ing plan. Following a similar architecture, Tang
et al. (2024) uses agents deployed on remote clouds
or network edges to assist connected driving agents
in handling complex driving decisions.

3.3 Vehicle-Assistant Interaction

Beyond the interactions between the primary
agents in driving scenarios, additional interactions
among assisted agents play a crucial role in LLM-
based multiagent ADSs. Both ChatSim (Wei et al.,
2024) and ALGPT (Zhou et al., 2024c) employ a
manager (PM) agent to interpret user instructions
and coordinate tasks among other agents. Chat-
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Sim (Wei et al., 2024) adopts a centralized struc-
ture in which the PM agent decouples an overall
demand into specific subtasks and dispatches in-
structions to other team agents. Similarly, the PM
agent in ALGPT (Zhou et al., 2024c) formulates
a work plan upon receiving user commands and
assembles an agent team with the plan. Specifi-
cally, agents no longer communicate point-to-point
with each other but instead communicate through a
shared message pool, greatly improving efficiency.

Additionally, hierarchical agent architectures fur-
ther enhance the performance and effectiveness
of LLM-based multi-agent ADSs. AD-H (Zhang
et al., 2024c) assigns high-level reasoning tasks to
the multimodal LLM-based planner agent while
delegating low-level control signal generation to
a lightweight controller agent. These agents inter-
act through mid-level commands generated by the
multimodal LLMs. In LDPD (Liu et al., 2024a),
the teacher agent leverages the LLM for complex
cooperative decision reasoning and trains smaller
student agents via its own decision demonstrations
to achieve cooperative decision-making. Surre-
alDriver (Jin et al., 2024) introduces a CoachAgent
to evaluate DriverAgent’s driving behavior and pro-
vide guidelines for continuous improvement.

Different from the conventional collaborative
interaction mode, V-HOI (Zhang et al., 2024a) pro-
poses a hybrid interaction mode that blends collab-
oration with debate. It establishes various agents
across different LLMs to evaluate reasoning logic
from different aspects, enabling cross-agent rea-
soning. This process culminates in a debate-style
integration of responses from various LLMs, im-
proving predictions for enhanced decision-making.

4 LLM-based Agent-Human Interaction

Depending on the roles of human assume when in-
teracting with agents, we classify current methods
as: instructor paradigm and partnership paradigm.

4.1 Instructor Paradigm

In Figure 5, the instructor paradigm involves agents
interacting with humans in a conversational manner,
where humans act as “tutors” to offer quantitative
and qualitative feedback to improve agent decision-
making (Li et al., 2017). Quantitative feedback typ-
ically includes binary evaluations or ratings, while
qualitative feedback consists of language sugges-
tions for refinement. Agents incorporate this feed-
back to adapt and perform better in complex driving

Partnership paradigmInstructor paradigm
I’m approaching a busy 
intersection. 
I’ll proceed at normal speed to pass 
before the light switches.

Pedestrians may appear 
unexpectedly. Could we adjust your 
approach? (Qualitative feedback)

I’ll reduce acceleration and 
continuously monitor the crosswalk 
and sidewalks for pedestrians.

Good. After crossing, let’s reflect.
The improved decision is scored 
9/10. (Quantitative feedback)

Please drive to the 
Miami. I need to apply 
for a passport.

Okay, I will drive to 
the Miami and take 
the seaside route 
base users interests.

The weather is so nice 
today!

It really is a beautiful 
day, and I've found the 
perfect music to match 
it.

Figure 5: Two modes of agent-human interaction.

scenarios. For instance, Wang et al. (2023) propose
“Expert-Oriented Black-box Tuning”, where do-
main experts provide feedback to optimize model
performance. Similarly, Ma et al. (2024) present
a human-guided learning pipeline that integrates
driver feedback to refine agent decision-making.

4.2 Partnership Paradigm

As shown in Figure 5, the partnership paradigm
emphasizes collaboration, where agents and hu-
mans interact as equals to accomplish complex
driving tasks. In this paradigm, agents assist in
decision-making by adapting to individual driver
preferences and real-time traffic conditions. For
instance, Talk2Drive (Cui et al., 2023), DaYS (Cui
et al., 2024a) and Receive (Cui et al., 2024b) utilize
memory modules to store human-vehicle interac-
tions, enabling a more personalized driving experi-
ence based on individual driver preferences, such as
overtaking speed and following distance. Addition-
ally, infrastructure agents in AccidentGPT (Wang
et al., 2024b) and ConnectGPT (Tong and Solmaz,
2024) connect vehicles to monitor traffic condi-
tions, identify potential hazards, and provide proac-
tive safety warnings, blind spot alerts, and driving
suggestions through agent-human interaction.

5 Applications

5.1 Collaborative Perception

Despite significant advancements in the perception
modules of ADS, LLM-based single-agent ADS
continues to face substantial challenges, including
constrained sensing ranges and persistent occlusion
issues (Han et al., 2023). These two key limitations
hinder their comprehensive understanding of the
driving environment and can lead to suboptimal
decision-making, especially in complex and dy-
namic traffic scenarios (Hu et al., 2024c).
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Dona et al. (2024) propose a multi-agent coop-
erative framework that enhances the ego vehicle’s
field-of-view (FOV) by integrating complementary
visual perspectives through inter-vehicle dialogues
mediated by onboard LLMs, significantly expand-
ing the ego vehicle’s environmental comprehen-
sion. However, in complex road scenarios, reliance
on a single LLM can lead to erroneous interpreta-
tions and hallucinatory predictions when process-
ing complex traffic situations. To address this lim-
itation, V-HOI MLCR (Zhang et al., 2024a) in-
troduces a collaborative debate framework among
different LLMs for video-based Human-Object In-
teraction (HOI) detection tasks. This framework
first implements a Cross-Agent Reasoning scheme,
assigning distinct roles to various agents within an
LLM to conduct reasoning from multiple perspec-
tives. Subsequently, a cyclic debate mechanism is
employed to evaluate and aggregate responses from
multiple agents, culminating in the final outcome.

5.2 Collaborative Decision-Making
After obtaining environmental information, the
ADS performs three core functions: route planning,
trajectory optimization, and real-time decision-
making. In complex traffic scenarios such as round-
about navigation and lane merging, LLM-based
multi-agent systems enable coordinated motion
planning through three key mechanisms: ❶ real-
time intention sharing between agents, ❷ adaptive
communication protocols, and ❸ dynamic negoti-
ation frameworks. This collaborative architecture
allows ADS to precisely coordinate their trajecto-
ries, maneuver strategies, and environmental inter-
actions while maintaining operational safety.

LanguageMPC (Sha et al., 2023) uses LLMs
to perform scenario analysis and decision-making.
Additionally, it introduces a multi-vehicle control
method where distributed LLMs govern individ-
ual vehicle operations, while a central LLM facil-
itates multi-vehicle communication and coordina-
tion. AgentsCoDriver (Hu et al., 2024a) presents
a comprehensive LLM-based multi-vehicle collab-
orative decision-making framework with life-long
learning capabilities, moving the field towards prac-
tical applications. This framework consists of five
parts, as follows: the observation module, cogni-
tive memory module, and reasoning engine sup-
port the high-level decision-making process for
AD; the communication module enables negotia-
tion and collaboration among vehicles; and the rein-
forcement reflection module reflects the output and

decision-making process. Similarly, AgentsCoM-
erge (Hu et al., 2024b) combines vision-based and
text-based scene understanding to gather essential
environmental information and incorporates a hier-
archical planning module to allow agents to make
informed decisions and effectively plan trajecto-
ries. Instead of directly interacting with each other,
agents in KoMA (Jiang et al., 2024a) analyze and
infer the intentions of surrounding vehicles via an
interaction module to enhance decision-making. It
also introduces a shared memory module to store
successful driving experiences and a ranking-based
reflection module to review them.

5.3 Collaborative Cloud-Edge Deployment

Although many innovative studies have explored
the application of LLM-based multi-agent ADS,
significant technical challenges remain in deploy-
ing LLMs locally on autonomous vehicles due
to their huge computational resource require-
ments (Sun et al., 2024a). To address these issues,
Tang et al. (2024) apply remote LLMs to provide as-
sistance for connected autonomous vehicles, which
communicate between themselves and with LLMs
via vehicle-to-everything technologies. Moreover,
this study evaluates LLMs’ comprehension of driv-
ing theory and skills in a manner akin to human
driver tests. However, remote LLM deployment
can introduce inference latency, posing risks in
emergency scenarios. To further improve system
efficiency, Chen et al. (2024a) introduce a novel
edge-cloud collaborative ADS with drift detection
capabilities, using small LLMs on edge devices
and GPT-4 on cloud to process motion planning
data and complex inference tasks, respectively.

5.4 Collaborative Assistance-Tools

The long-term data accumulation in both industry
and academia has enabled great success in highway
driving and automatic parking (Liu et al., 2024b).
However, collecting real-world data remains costly,
especially for multi-agents or customized scenar-
ios. Additionally, the uncontrollable nature of real
scenarios makes it challenging to capture certain
corner cases. To address these issues, many LLM-
based studies focus on simulating multi-agent ADS,
offering a cost-effective alternative to real-world
data collection. For example, ChatSim (Wei et al.,
2024) provides editable photo-realistic 3D driv-
ing scenario simulations via natural language com-
mands and external digital assets. The system
leverages multiple LLM agents with specialized
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Table 2: Single-agent and multi-agent autonomous driving datasets.

Datasets Dataset Type Sensor Type Tasks
KITTI (Geiger et al., 2012) Single-agent Camera, LiDAR 2D/3D detection, tracking, depth estimation
nuScenes (Geiger et al., 2020) Single-agent Cameras, LiDAR, Radars 3D detection, tracking, trajectory forecasting
BDD100K (Yu et al., 2020) Single-agent Camera Object detection, lane detection, segmentation
Waymo (Sun et al., 2020) Single-agent Camera, LiDAR, Radars 2D/3D detection, tracking, domain adaptation
BDD-X (Kim et al., 2018) Single-agent BDD Object detection, driving scenario captioning
nuScenes-QA (Qian et al., 2024) Single-agent nuScenes 3D detection, tracking, visual QA
DriveLM (Sima et al., 2025) Single-agent nuScenes, Waymo Multi-modal planning, question answering
DAIR-V2X (Yu et al., 2022) Multi-agent Camera, LiDAR (multi-vehicle) Cooperative perception, tracking
TUMTraf-V2X (Zimmer et al., 2024) Multi-agent Multi-vehicle camera, LiDAR Cooperative perception, multi-agent tracking
V2V4Real (Xu et al., 2023) Multi-agent Multi-vehicle camera, LiDAR Cooperative detection, tracking
V2XSet (Xu et al., 2022) Multi-agent Multi-vehicle camera, LiDAR Multi-agent detection, tracking

roles to decompose complex commands into spe-
cific editing tasks, introducing novel McNeRF and
Mclight methods that generate customized high-
quality output. HumanSim (Zhou et al., 2024a)
integrates LLMs to simulate human-like driving
behaviors in multi-agent systems via pre-defined
driver characters. By employing navigation strate-
gies, HumanSim facilitates behavior-level control
of vehicle movements, making it easier to gener-
ate corner cases in multi-agent environments. In
addition, ALGPT (Zhou et al., 2024c) uses a multi-
agent cooperative framework for open-vocabulary,
multimodal auto-annotation in autonomous driving.
It introduces a Standard Operating Procedure to de-
fine agent roles and share documentation, enhanc-
ing interaction effectiveness. ALGPT also builds
specialized knowledge bases for each agent using
CoT and In-Context Learning (Brown et al., 2020).

6 Datasets and Benchmark

We organize recent open-source work to foster
research on advanced ADSs. Mainstream ADS
datasets are summarized in Table 2.
Single-Agent Autonomous Driving Data. Single-
agent datasets are obtained from a single refer-
ence agent, which can be the ego vehicle or road-
side infrastructure, using various sensors. Main-
stream singel-agent autonomous driving datasets
like KITTI (Geiger et al., 2012), nuScenes (Geiger
et al., 2020), and Waymo (Sun et al., 2020) provide
comprehensive multimodal sensor data, enabling
researchers to develop and benchmark algorithms
for multiple tasks such as object detection, object
tracking, and object segmentation. In addition to
these foundational datasets, newer ones like BDD-
X (Kim et al., 2018), DriveLM (Sima et al., 2025),
and nuScenes-QA (Qian et al., 2024) introduce
action descriptions, detailed captions, and question-
answer pairs that can be used to interact with LLMs.
Combining language information with visual data

can enrich semantic and contextual understanding,
promote a deeper understanding of driving scenar-
ios, and improve the safety and interaction capabil-
ities of autonomous vehicles.

Multi-agent Autonomous Driving Dataset. Be-
yond single-vehicle view datasets, integrating more
viewpoints of traffic elements, such as drivers, vehi-
cles and infrastructures into the data also brings ad-
vantages to AD systems. Multi-agent autonomous
driving datasets, such as DAIR-V2X (Yu et al.,
2022), V2XSet (Xu et al., 2022), V2V4Real (Xu
et al., 2023), and TUMTraf-V2X (Zimmer et al.,
2024) typically include data from multiple vehi-
cles or infrastructure sensors, capturing the inter-
actions and dependencies between different agents
and additional knowledge regarding the environ-
ments. These datasets are essential for researching
and developing cooperative perception, prediction,
and planning strategies that enable vehicles to over-
come the limitations of single agent datasets such
as limited field of view (FOV) and occlusion.

Benchmarks. Several benchmarks are particularly
well-suited for evaluating collaborative decision-
making in autonomous driving. The INTERAC-
TION dataset (Zhan et al., 2019) includes a variety
of real-world interactive scenarios, such as round-
abouts and lane merging. It provides vehicle tra-
jectories that enable an assessment of cooperative
maneuvering and negotiation behaviors. Another
important benchmark is the Waymo Open Motion
Dataset (Ettinger et al., 2021), which is explicitly
designed for interactive multi-agent motion predic-
tion and planning. It features challenging scenarios,
including merges and unprotected left turns, along
with detailed annotations of interactive agents. In
addition, the SMARTS benchmark (Zhou et al.,
2021) offers standardized scenarios for multi-agent
autonomous driving research, particularly focusing
on ramp merging and navigating unsignalized inter-
sections. This work allows for direct comparisons
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of algorithms in cooperative traffic management
tasks. These benchmarks provide comprehensive
test bases for evaluating the coordination, safety,
and adaptability of LLM-based multi-agent ADSs.

7 Challenges and Future Directions

This section explores key open challenges and po-
tential opportunities for future research.
❶ Hallucination, Safety & Trustworthiness. Hal-
lucination refers to LLMs generating outputs that
are factually incorrect or non-sensical (Huang et al.,
2023). In complex driving scenarios, a single driv-
ing agent’s hallucinations in an LLM-based multi-
agent ADS can be accepted and further propagated
by other agents in the network via the inter-agent
communication, potentially leading to serious ac-
cidents. Detecting agent-level hallucinations and
managing inter-agent information flow are key to
improving system safety and trust (Fan et al., 2024).
Recent advances in spatiotemporal traffic analy-
sis (Zhang et al., 2024d; Jiang et al., 2024b) further
support real-time condition assessment, improving
vehicle-road interaction and overall safety of ADS.
❷ Legal, Security & Privacy. As agents au-
tonomously exchange and process information
within multi-agent ADS, the distribution of legal li-
ability between individual users and manufacturers
becomes ambiguous, particularly in cases involving
system failures or collisions. In addition, vulnera-
ble communication methods and strict user privacy
requirements place high demands on cryptographic
protocols and data management. These interrelated
concerns collectively represent critical directions
for future research and regulatory initiatives.
❸ Multi-Modality Ability. In current multi-agent
systems, agents primarily use LLMs for scene un-
derstanding and decision-making. Perception out-
puts are converted into text via manual prompts or
interpreters, then processed by LLMs to generate
decisions. This pipeline is limited by perception
performance and may cause information loss (Gao
et al., 2023). Integrating language understanding
with multimodal data fusion offers a promising di-
rection for future multimodal multi-agent ADSs.
❹ Real-World Deployment & Scalability. LLM-
based multi-agent ADS can scale up by adding
more agents to handle increasingly complex driv-
ing scenarios. However, more LLM agents increase
the demand for computing resources, while their
interactions impose strict requirements on commu-
nication efficiency, which is critical for real-time

decision-making (Huang et al., 2024b). Therefore,
under limited computing resources, it is crucial
to develop a system architecture that supports dis-
tributed computing and efficient communication, as
well as agents capable of adapting to various real-
world environments and tasks, to optimize multi-
agent ADS within resource constraints.
❺ Human-Agent Interaction. Current multi-agent
ADS struggle to communicate intentions to hu-
man road users, relying on static signals inade-
quate for complex scenarios. Developing LLM-
powered adaptive interfaces that generate context-
appropriate, human-understandable communica-
tions while maintaining safety and trust presents a
key deployment challenge (Xia et al., 2025).

8 Conclusion

This paper systematically reviews LLM-based
multi-agent ADSs and traces their evolution from
single-agent to multi-agent systems. We detail
their core components, including agent environ-
ments and profiles, inter-agent interaction, and
agent-human communication. Existing studies are
categorized by interaction types and applications.
We further compile public datasets and open-source
implementations, and discuss challenges and future
directions. We hope this review will inspire NLP
community to explore more practical and impactful
applications in LLM-based multi-agent ADS.

Limitations

Despite being a survey, this work still has sev-
eral limitations. ❶ Emerging Research and Lim-
ited Data. As LLM-based multi-agent ADS is an
emerging field, the current body of research is still
growing. While this may limit the breadth of our
classification, we have aimed to provide a repre-
sentative and forward-looking overview based on
the most relevant and recent work. ❷ Some Un-
verified Work. Given the novelty of this topic,
some referenced works are from unreviewed arXiv
preprints. We include them to reflect the latest
progress and ideas, while acknowledging that their
findings may require further validation through
peer review. ❸ Limited Discussion on Real-world
Applications. Although industrial adoption of
LLM-based multi-agent ADS is underway, pub-
lic documentation remains limited. As a result, this
review focuses on academic contributions, and real-
world deployments are left for future investigation.

12764



References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv:2303.08774.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Proc. of NeurIPS, 33:1877–1901.

Jiao Chen, Suyan Dai, Fangfang Chen, Zuohong Lv,
and Jianhua Tang. 2024a. Edge-cloud collaborative
motion planning for autonomous driving with large
language models. arXiv:2408.09972.

Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger,
Andreas Geiger, and Hongyang Li. 2024b. End-to-
end autonomous driving: Challenges and frontiers.
IEEE TPAMI, 46(12):10164–10183.

Long Chen, Oleg Sinavski, Jan Hünermann, Alice Karn-
sund, Andrew James Willmott, Danny Birch, Daniel
Maund, and Jamie Shotton. 2024c. Driving with
llms: Fusing object-level vector modality for explain-
able autonomous driving. In Proc. of ICRA, pages
14093–14100. IEEE.

Pei Chen, Shuai Zhang, and Boran Han. 2024d.
Comm: Collaborative multi-agent, multi-reasoning-
path prompting for complex problem solving. In
Proc. of NAACL-HLT (Findings), pages 1720–1738.
Association for Computational Linguistics.

Hsu-kuang Chiu, Ryo Hachiuma, Chien-Yi Wang,
Stephen F Smith, Yu-Chiang Frank Wang, and Min-
Hung Chen. 2025. V2v-llm: Vehicle-to-vehicle co-
operative autonomous driving with multi-modal large
language models. arXiv preprint arXiv:2502.09980.

C Cui, Z Yang, Y Zhou, Y Ma, J Lu, L Li, Y Chen, J Pan-
chal, and Z Wang. 2023. Personalized autonomous
driving with large language models: Field experi-
ments. arXiv:2312.09397.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, and
Ziran Wang. 2024a. Drive as you speak: Enabling
human-like interaction with large language models
in autonomous vehicles. In Proc. of WACV, pages
902–909.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, and Ziran
Wang. 2024b. Receive, reason, and react: Drive as
you say, with large language models in autonomous
vehicles. IEEE ITS Mag, 16(4):81–94.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang
Zhou, Kaizhao Liang, Jintai Chen, Juanwu Lu, Zi-
chong Yang, Kuei-Da Liao, et al. 2024c. A survey on
multimodal large language models for autonomous
driving. In Proc. of WACV, pages 958–979.

Malsha Ashani Mahawatta Dona, Beatriz Cabrero-
Daniel, Yinan Yu, and Christian Berger. 2024. Tap-
ping in a remote vehicle’s onboard llm to complement
the ego vehicle’s field-of-view. arXiv:2408.10794.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, An-
tonio Lopez, and Vladlen Koltun. 2017. Carla: An
open urban driving simulator. In Proc. of CoRL,
pages 1–16. PMLR.

Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong,
Jae Sung Park, Bidipta Sarkar, Rohan Taori, Yusuke
Noda, Demetri Terzopoulos, Yejin Choi, et al. 2024.
Agent ai: Surveying the horizons of multimodal in-
teraction. arXiv:2401.03568.

Scott Ettinger, Shuyang Cheng, Benjamin Caine,
Chenxi Liu, Hang Zhao, Sabeek Pradhan, Yuning
Chai, Ben Sapp, Charles R Qi, Yin Zhou, et al. 2021.
Large scale interactive motion forecasting for au-
tonomous driving: The waymo open motion dataset.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 9710–9719.

Jiaqi Fan, Jianhua Wu, Hongqing Chu, Quanbo
Ge, and Bingzhao Gao. 2024. Hallucination
elimination and semantic enhancement framework
for vision-language models in traffic scenarios.
arXiv:2412.07518.

Shiyu Fang, Jiaqi Liu, Mingyu Ding, Yiming Cui, Chen
Lv, Peng Hang, and Jian Sun. 2024. Towards interac-
tive and learnable cooperative driving automation: a
large language model-driven decision-making frame-
work. arXiv:2409.12812.

Shiyu Fang, Jiaqi Liu, Chengkai Xu, Chen Lv, Peng
Hang, and Jian Sun. 2025. Interact, instruct to im-
prove: A llm-driven parallel actor-reasoner frame-
work for enhancing autonomous vehicle interactions.
arXiv preprint arXiv:2503.00502.

Xueyang Feng, Zhiyuan Chen, Yujia Qin, Yankai Lin,
Xu Chen, Zhiyuan Liu, and Ji-Rong Wen. 2024.
Large language model-based human-agent collab-
oration for complex task solving. In Proc. of EMNLP
(Findings), pages 1336–1357. Association for Com-
putational Linguistics.

Sonda Fourati, Wael Jaafar, Noura Baccar, and Safwan
Alfattani. 2024. Xlm for autonomous driving sys-
tems: A comprehensive review. arXiv:2409.10484.

Daocheng Fu, Xin Li, Licheng Wen, Min Dou, Pinlong
Cai, Botian Shi, and Yu Qiao. 2024. Drive like a
human: Rethinking autonomous driving with large
language models. In Proc. of WACVW, pages 910–
919.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shi-
jie Geng, Aojun Zhou, Wei Zhang, Pan Lu, Con-
ghui He, Xiangyu Yue, et al. 2023. Llama-adapter
v2: Parameter-efficient visual instruction model.
arXiv:2304.15010.

12765



Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2020.
nuscenes: A multimodal dataset for autonomous driv-
ing. In Proc. of CVPR, pages 11621–11631.

Andreas Geiger, Philip Lenz, et al. 2012. Are we ready
for autonomous driving? the kitti vision benchmark
suite. In Proc. of CVPR, pages 3354–3361.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,
Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xi-
angliang Zhang. 2024. Large language model based
multi-agents: A survey of progress and challenges.
In Proc. of IJCAI, pages 8048–8057. ijcai.org.

Yushan Han, Hui Zhang, Huifang Li, Yi Jin, Congyan
Lang, and Yidong Li. 2023. Collaborative percep-
tion in autonomous driving: Methods, datasets, and
challenges. IEEE ITS Mag, 15(6):131–151.

Xinmeng Hou, Wuqi Wang, Long Yang, Hao Lin,
Jinglun Feng, Haigen Min, and Xiangmo Zhao. 2025.
Driveagent: Multi-agent structured reasoning with
llm and multimodal sensor fusion for autonomous
driving. arXiv preprint arXiv:2505.02123.

Senkang Hu, Zhengru Fang, Yiqin Deng, Xianhao Chen,
and Yuguang Fang. 2021. Collaborative autonomous
driving—a survey of solution approaches and future
challenges. Sensors, 21(11):3783.

Senkang Hu, Zhengru Fang, Zihan Fang, Yiqin
Deng, Xianhao Chen, and Yuguang Fang. 2024a.
Agentscodriver: Large language model empow-
ered collaborative driving with lifelong learning.
arXiv:2404.06345.

Senkang Hu, Zhengru Fang, Zihan Fang, Yiqin Deng,
Xianhao Chen, Yuguang Fang, and Sam Kwong.
2024b. Agentscomerge: Large language model em-
powered collaborative decision making for ramp
merging. arXiv:2408.03624.

Senkang Hu, Zhengru Fang, et al. 2024c. Collabora-
tive perception for connected and autonomous driv-
ing: Challenges, possible solutions and opportunities.
arXiv:2401.01544.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
arXiv:2311.05232.

Yidong Huang, Jacob Sansom, Ziqiao Ma, Felix Gervits,
and Joyce Chai. 2024a. Drivlme: Enhancing llm-
based autonomous driving agents with embodied and
social experiences. In Proc. of IROS, pages 3153–
3160. IEEE.

Yizhou Huang, Yihua Cheng, and Kezhi Wang. 2024b.
Efficient driving behavior narration and reason-
ing on edge device using large language models.
arXiv:2409.20364.

Kemou Jiang, Xuan Cai, Zhiyong Cui, Aoyong Li, Yi-
long Ren, Haiyang Yu, Hao Yang, Daocheng Fu,
Licheng Wen, and Pinlong Cai. 2024a. Koma:
Knowledge-driven multi-agent framework for au-
tonomous driving with large language models. IEEE
TIV, pages 1–15.

Yushan Jiang, Zijie Pan, Xikun Zhang, Sahil Garg, An-
derson Schneider, Yuriy Nevmyvaka, and Dongjin
Song. 2024b. Empowering time series analysis with
large language models: A survey. arXiv preprint
arXiv:2402.03182.

Ye Jin, Ruoxuan Yang, Zhijie Yi, Xiaoxi Shen, Huiling
Peng, Xiaoan Liu, Jingli Qin, Jiayang Li, Jintao Xie,
Peizhong Gao, et al. 2024. Surrealdriver: Design-
ing llm-powered generative driver agent framework
based on human drivers’ driving-thinking data. In
Proc. of IROS, pages 966–971. IEEE.

Jinkyu Kim, Anna Rohrbach, Trevor Darrell, John
Canny, and Zeynep Akata. 2018. Textual explana-
tions for self-driving vehicles. In Proc. of ECCV,
pages 563–578.

Jiwei Li, Alexander H Miller, Sumit Chopra,
Marc’Aurelio Ranzato, and Jason Weston. 2017. Di-
alogue learning with human-in-the-loop. In Proc. of
ICLR.

Xin Li, Yeqi Bai, Pinlong Cai, Licheng Wen, Daocheng
Fu, Bo Zhang, Xuemeng Yang, Xinyu Cai, Tao Ma,
Jianfei Guo, et al. 2023. Towards knowledge-driven
autonomous driving. arXiv:2312.04316.

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang.
2024. A survey on llm-based multi-agent sys-
tems: workflow, infrastructure, and challenges. Vici-
nagearth, 1(1):9.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. 2024. Encouraging divergent thinking
in large language models through multi-agent debate.
In Proc. of EMNLP, pages 17889–17904. Association
for Computational Linguistics.

Jiaqi Liu, Chengkai Xu, Peng Hang, Jian Sun, Mingyu
Ding, Wei Zhan, and Masayoshi Tomizuka. 2024a.
Language-driven policy distillation for coopera-
tive driving in multi-agent reinforcement learning.
arXiv:2410.24152.

Mingyu Liu, Ekim Yurtsever, Jonathan Fossaert,
Xingcheng Zhou, Walter Zimmer, Yuning Cui,
Bare Luka Zagar, and Alois C Knoll. 2024b. A
survey on autonomous driving datasets: Statistics,
annotation quality, and a future outlook. IEEE TIV,
pages 1–29.

Han Lu, Xiaosong Jia, Yichen Xie, Wenlong Liao,
Xiaokang Yang, and Junchi Yan. 2024. Activead:
Planning-oriented active learning for end-to-end au-
tonomous driving. arXiv:2403.02877.

12766



Yunsheng Ma, Xu Cao, Wenqian Ye, Can Cui, Kai Mei,
and Ziran Wang. 2024. Learning autonomous driv-
ing tasks via human feedbacks with large language
models. In Proc. of EMNLP (Findings), pages 4985–
4995.

Vagul Mahadevan, Shangtong Zhang, and Rohan Chan-
dra. 2025. Gamechat: Multi-llm dialogue for
safe, agile, and socially optimal multi-agent navi-
gation in constrained environments. arXiv preprint
arXiv:2503.12333.

Jiageng Mao, Yuxi Qian, Junjie Ye, Hang Zhao, and
Yue Wang. 2023. Gpt-driver: Learning to drive with
gpt. arXiv:2310.01415.

Jiageng Mao, Junjie Ye, Yuxi Qian, Marco Pavone, and
Yue Wang. 2024. A language agent for autonomous
driving. In Proc. of COLM.

Xenia Ohmer, Marko Duda, and Elia Bruni. 2022. Emer-
gence of hierarchical reference systems in multi-
agent communication. In Proc. of COLING, pages
5689–5706. International Committee on Computa-
tional Linguistics.

Mingxing Peng, Xusen Guo, Xianda Chen, Meixin Zhu,
Kehua Chen, Xuesong Wang, Yinhai Wang, et al.
2024. Lc-llm: Explainable lane-change intention and
trajectory predictions with large language models.
arXiv:2403.18344.

Tianwen Qian, Jingjing Chen, Linhai Zhuo, Yang Jiao,
and Yu-Gang Jiang. 2024. Nuscenes-qa: A multi-
modal visual question answering benchmark for au-
tonomous driving scenario. In Proc. of AAAI, pages
4542–4550.

Axel Sauer, Nikolay Savinov, and Andreas Geiger. 2018.
Conditional affordance learning for driving in urban
environments. In Proc. of CoRL, pages 237–252.
PMLR.

Hao Sha, Yao Mu, Yuxuan Jiang, Li Chen, Chenfeng Xu,
Ping Luo, Shengbo Eben Li, Masayoshi Tomizuka,
Wei Zhan, and Mingyu Ding. 2023. Languagempc:
Large language models as decision makers for au-
tonomous driving. arXiv:2310.03026.

Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele.
2022. Motion transformer with global intention lo-
calization and local movement refinement. In Proc.
of NeurIPS, 35:6531–6543.

Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen,
Hanxue Zhang, Chengen Xie, Jens Beißwenger, Ping
Luo, Andreas Geiger, and Hongyang Li. 2025. Driv-
elm: Driving with graph visual question answering.
In Proc. of ECCV, pages 256–274.

Hao Sun, Jiayi Wu, Hengyi Cai, Xiaochi Wei, Yue Feng,
Bo Wang, Shuaiqiang Wang, Yan Zhang, and Dawei
Yin. 2024a. Adaswitch: Adaptive switching between
small and large agents for effective cloud-local col-
laborative learning. In Proc. of EMNLP, pages 8052–
8062. Association for Computational Linguistics.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Au-
relien Chouard, Vijaysai Patnaik, Paul Tsui, James
Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al.
2020. Scalability in perception for autonomous driv-
ing: Waymo open dataset. In Proc. of CVPR, pages
2446–2454.

Yuan Sun, Navid Salami Pargoo, Peter Jin, and Jorge
Ortiz. 2024b. Optimizing autonomous driving for
safety: A human-centric approach with llm-enhanced
rlhf. In Companion of the 2024 on ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous
Computing, pages 76–80.

Zuoyin Tang, Jianhua He, Dashuai Pe, Kezhong Liu,
Tao Gao, and Jiawei Zheng. 2024. Test large lan-
guage models on driving theory knowledge and skills
for connected autonomous vehicles. In Proc. of Mo-
biArch, pages 1–6.

Kailin Tong and Selim Solmaz. 2024. Connectgpt: Con-
nect large language models with connected and auto-
mated vehicles. In Proc. of IEEE IV, pages 581–588.

Wenwen Tong, Chonghao Sima, Tai Wang, Li Chen,
Silei Wu, Hanming Deng, Yi Gu, Lewei Lu, Ping
Luo, Dahua Lin, et al. 2023. Scene as occupancy. In
Proc. of ICCV, pages 8406–8415.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024a. A survey on large
language model based autonomous agents. FCS,
18(6):186345.

Lening Wang, Yilong Ren, Han Jiang, Pinlong Cai,
Daocheng Fu, Tianqi Wang, Zhiyong Cui, Haiyang
Yu, Xuesong Wang, Hanchu Zhou, et al. 2024b. Ac-
cidentgpt: A v2x environmental perception multi-
modal large model for accident analysis and preven-
tion. In Proc. of IEEE IV, pages 472–477. IEEE.

Shiyi Wang, Yuxuan Zhu, Zhiheng Li, Yutong Wang,
Li Li, and Zhengbing He. 2023. Chatgpt as your
vehicle co-pilot: An initial attempt. IEEE TIV,
8(12):4706–4721.

Yue Wang, Vitor Campagnolo Guizilini, Tianyuan
Zhang, Yilun Wang, Hang Zhao, and Justin Solomon.
2021. DETR3d: 3d object detection from multi-view
images via 3d-to-2d queries. In Proc. of CoRL.

Yuxi Wei, Zi Wang, Yifan Lu, Chenxin Xu, Changx-
ing Liu, Hao Zhao, Siheng Chen, and Yanfeng Wang.
2024. Editable scene simulation for autonomous driv-
ing via collaborative llm-agents. In Proc. of CVPR,
pages 15077–15087.

Licheng Wen, Daocheng Fu, Xin Li, Xinyu Cai, Tao
MA, Pinlong Cai, Min Dou, Botian Shi, Liang He,
and Yu Qiao. 2024. Dilu: A knowledge-driven ap-
proach to autonomous driving with large language
models. In Proc. of ICLR.

12767



Ding Xia, Xinyue Gui, Fan Gao, Dongyuan Li, Mark
Colley, and Takeo Igarashi. 2025. Automating ehmi
action design with llms for automated vehicle com-
munication. arXiv preprint arXiv:2505.20711.

Chengkai Xu, Jiaqi Liu, Shiyu Fang, Yiming Cui, Dong
Chen, Peng Hang, and Jian Sun. 2025. Tell-drive:
Enhancing autonomous driving with teacher llm-
guided deep reinforcement learning. arXiv preprint
arXiv:2502.01387.

Runsheng Xu, Xin Xia, Jinlong Li, Hanzhao Li,
Shuo Zhang, Zhengzhong Tu, Zonglin Meng, et al.
2023. V2v4real: A real-world large-scale dataset for
vehicle-to-vehicle cooperative perception. In Proc.
of CVPR, pages 13712–13722.

Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia,
Ming-Hsuan Yang, and Jiaqi Ma. 2022. V2x-vit:
Vehicle-to-everything cooperative perception with
vision transformer. In Proc. of ECCV, pages 107–
124.

Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong
Guo, Kwan-Yee K Wong, Zhenguo Li, and Heng-
shuang Zhao. 2024. Drivegpt4: Interpretable end-to-
end autonomous driving via large language model.
IEEE RA-L.

Zijiang Yan, Hao Zhou, Hina Tabassum, and Xue Liu.
2025. Hybrid llm-ddqn based joint optimization of
v2i communication and autonomous driving. IEEE
Wireless Communications Letters.

Zhenjie Yang, Xiaosong Jia, Hongyang Li, and Junchi
Yan. 2023. Llm4drive: A survey of large language
models for autonomous driving. In NeurIPS 2024
Workshop on Open-World Agents.

Huaiyuan Yao, Longchao Da, Vishnu Nandam, Justin
Turnau, Zhiwei Liu, Linsey Pang, and Hua
Wei. 2024. Comal: Collaborative multi-agent
large language models for mixed-autonomy traffic.
arXiv:2410.14368.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai
Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao
Gong, Yang Shen, et al. 2023. A comprehensive
capability analysis of gpt-3 and gpt-3.5 series models.
arXiv:2303.10420.

Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian,
Yingying Chen, Fangchen Liu, Vashisht Madhavan,
and Trevor Darrell. 2020. Bdd100k: A diverse driv-
ing dataset for heterogeneous multitask learning. In
Proc. of CVPR, pages 2636–2645.

Haibao Yu, Yizhen Luo, Mao Shu, Yiyi Huo, Zebang
Yang, Yifeng Shi, Zhenglong Guo, Hanyu Li, Xing
Hu, Jirui Yuan, et al. 2022. Dair-v2x: A large-
scale dataset for vehicle-infrastructure cooperative
3d object detection. In Proc. of CVPR, pages 21361–
21370.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo,
and Kazuya Takeda. 2020. A survey of autonomous
driving: Common practices and emerging technolo-
gies. IEEE access, pages 58443–58469.

Wei Zhan, Liting Sun, Di Wang, Haojie Shi, Aubrey
Clausse, Maximilian Naumann, Julius Kummerle,
Hendrik Konigshof, Christoph Stiller, Arnaud
de La Fortelle, et al. 2019. Interaction dataset: An
international, adversarial and cooperative motion
dataset in interactive driving scenarios with semantic
maps. arXiv preprint arXiv:1910.03088.

Hang Zhang, Wenxiao Zhang, Haoxuan Qu, and Jun
Liu. 2024a. Enhancing human-centered dynamic
scene understanding via multiple llms collaborated
reasoning. arXiv:2403.10107.

Miao Zhang, Zhenlong Fang, Tianyi Wang, Shuai Lu,
Xueqian Wang, and Tianyu Shi. 2025. Ccma: A
framework for cascading cooperative multi-agent in
autonomous driving merging using large language
models. Expert Systems with Applications, page
127717.

Ruiqi Zhang, Jing Hou, Florian Walter, Shangding Gu,
Jiayi Guan, Florian Röhrbein, Yali Du, Panpan Cai,
Guang Chen, and Alois Knoll. 2024b. Multi-agent
reinforcement learning for autonomous driving: A
survey. arXiv:2408.09675.

Zaibin Zhang, Shiyu Tang, Yuanhang Zhang, Talas Fu,
Yifan Wang, Yang Liu, Dong Wang, Jing Shao, Lijun
Wang, and Huchuan Lu. 2024c. Ad-h: Autonomous
driving with hierarchical agents. arXiv:2406.03474.

Zijian Zhang, Yujie Sun, Zepu Wang, Yuqi Nie, Xi-
aobo Ma, Peng Sun, and Ruolin Li. 2024d. Large
language models for mobility in transportation sys-
tems: A survey on forecasting tasks. arXiv preprint
arXiv:2405.02357.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv:2303.18223.

Lingfeng Zhou, Mohan Jiang, and Dequan Wang. 2024a.
Humansim: Human-like multi-agent novel driving
simulation for corner case generation. In ECCV 2024
Workshop on MPCC-AD.

Ming Zhou, Jun Luo, Julian Villella, Yaodong Yang,
David Rusu, Jiayu Miao, Weinan Zhang, Mont-
gomery Alban, Iman Fadakar, Zheng Chen, et al.
2021. Smarts: An open-source scalable multi-agent
rl training school for autonomous driving. In Confer-
ence on robot learning, pages 264–285. PMLR.

Xingcheng Zhou, Mingyu Liu, Ekim Yurtsever,
Bare Luka Zagar, Walter Zimmer, Hu Cao, and
Alois C Knoll. 2024b. Vision language models in
autonomous driving: A survey and outlook. IEEE
TIV, pages 1–20.

12768



Yijie Zhou, Xianhui Cheng, Qiming Zhang, Lei Wang,
Wenchao Ding, Xiangyang Xue, Chunbo Luo, and
Jian Pu. 2024c. Algpt: Multi-agent cooperative
framework for open-vocabulary multi-modal auto-
annotating in autonomous driving. IEEE TIV, pages
1–15.

Walter Zimmer, Gerhard Arya Wardana, Suren Sritha-
ran, Xingcheng Zhou, Rui Song, and Alois C Knoll.
2024. Tumtraf v2x cooperative perception dataset.
In Proc. of CVPR, pages 22668–22677.

Henry Peng Zou, Wei-Chieh Huang, Yaozu Wu, Yankai
Chen, Chunyu Miao, Hoang Nguyen, Yue Zhou,
Weizhi Zhang, Liancheng Fang, Langzhou He,
Yangning Li, Dongyuan Li, Renhe Jiang, Xue Liu,
and Philip S. Yu. 2025a. Llm-based human-agent
collaboration and interaction systems: A survey.
Preprint, arXiv:2505.00753.

Henry Peng Zou, Wei-Chieh Huang, Yaozu Wu, Chunyu
Miao, Dongyuan Li, Aiwei Liu, Yue Zhou, Yankai
Chen, Weizhi Zhang, Yangning Li, et al. 2025b. A
call for collaborative intelligence: Why human-agent
systems should precede ai autonomy. arXiv preprint
arXiv:2506.09420.

A Data-driven Autonomous Driving
System

Traditional ADS rely on data-driven approaches,
which are categorized into modular and end-to-end
frameworks (Chen et al., 2024b). Modular-based
systems break the entire autonomous driving pro-
cess into separate components, such as perception
module, prediction module, and planning module.
Perception modules are responsible for obtaining
information about the vehicle’s surrounding envi-
ronment, aiming to identify and locate important
traffic elements such as obstacles, pedestrians, and
vehicles near the autonomous vehicle, usually in-
cluding tasks such as object detection (Wang et al.,
2021) and object occupancy prediction (Tong et al.,
2023). Prediction modules estimate the future mo-
tions of surrounding traffic participants based on
the information provided by the perception module,
usually including tasks such as trajectory predic-
tion and motion prediction (Shi et al., 2022). Plan-
ning module aims to derive safe and comfortable
driving routes and decisions through the results
of perception and prediction (Sauer et al., 2018).
Each module is individually developed and inte-
grated into onboard vehicles to achieve safe and
efficient autonomous driving functions. Although
modular methods have achieved remarkable results
in many driving scenarios, the stacking design of
multiple modules can lead to the loss of key infor-
mation during transmission and introduce redun-
dant calculations. Furthermore, due to the inconsis-
tency in the optimization objectives of each module,
the modular-based system may accumulate errors,
which can negatively impact the vehicle’s overall
decision-making performance. End-to-end-based
systems integrate the entire driving process into a
single neural network, and then directly optimize
the entire driving pipeline from sensor inputs to pro-
duce driving actions (Chen et al., 2024b). However,
this method introduces the “black box” problem,
meaning a lack of transparency in the decision-
making process, complicating interpretation.

B LLMs in Autonomous Driving System

As shown in Figure 6 and Figure 7, LLMs, with
their powerful open-world cognitive and reason-
ing capabilities, have shown significant potential
in ADSs (Yang et al., 2023; Li et al., 2023). LC-
LLM (Peng et al., 2024) is an explainable lane
change prediction model that leverages LLMs to
process driving scenario information as natural
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language prompts. By incorporating CoT reason-
ing and supervised finetuning, it not only predicts
lane change intentions and trajectories but also
provides transparent and reliable explanations for
its predictions. GPT-Driver (Mao et al., 2023)
regards the motion planning task as a language
modeling problem, using a fine-tuned GPT-3.5
model (Ye et al., 2023) to generate driving trajec-
tories. DriveGPT4 (Xu et al., 2024) introduces an
interpretable end-to-end autonomous driving sys-
tem that uses multimodal LLMs to process multi-
frame video inputs and textual queries, enabling
vehicle action interpretation and low-level control
prediction. By employing a visual instruction tun-
ing dataset and mixfinetuning strategy, it provides
a novel approach to directly map sensory inputs
to actions, achieving superior performance in au-
tonomous driving tasks. Driving with LLM (Chen
et al., 2024c) integrates vectorized numeric data
with pre-trained LLMs to improve context under-
standing in driving scenarios and enhances the in-
terpretability of driving decisions.

C LLM-enhanced Multi-Agent ADSs

To highlight the application of LLMs and other
NLP technologies in multi-agent ADSs, we have
specially prepared Table 4. This table systemati-
cally sorts out existing research from the two di-
mensions of “environment & subject characteris-
tics” and “interaction mode”, and marks the LLMs
used in each solution one by one. Our goal is to
help readers quickly grasp the landscape of this
cross-domain research and better understand how
LLM capabilities are being adapted to complex
ADS scenarios.

D Real-World Multi-Agent LLM Systems
in Autonomous Driving

NVIDIA DriveOS LLM Integration NVIDIA has
released the DriveOS LLM SDK, which allows
multiple AI agents (for perception, planning, user
interaction) to run on edge computing, with the
ability to infer LLMs. For example, a car can have
a local LLM-based agent for real-time driving de-
cisions or V2X message interpretation, offloading
heavy computational tasks to optimized hardware.
This lightweight onboard agent works in tandem
with powerful cloud-based AI. In this conceptual

https://developer.nvidia.com/blog/streamline-llm-
deployment-for-autonomous-vehicle-applications-with-
nvidia-driveos-llm-sdk/

multi-agent setup, the onboard LLM can handle
immediate tasks and natural language commands
while querying the cloud-based LLM for complex
planning or traffic knowledge.
LLM in the Cabin and Beyond Mercedes-Benz
is collaborating with NVIDIA to develop multi-
modal LLMs that can interpret sensor data and
driver preferences to assist in driving decisions.
LLM-based intelligent agents can act as “digital co-
pilots”, monitoring the surrounding environment
and providing maneuvering recommendations.

https://www.theverge.com/2023/6/16/23763208/mercedes-
benz-chatgpt-voice-assistant-beta-test
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Reasoning OutputScenario Description
You are driving on a highway road 
with 8 lanes, and you are currently 
driving in the rightmost. 
Your current speed is 25.0 m/s,
acceleration is 0.0 m/s^2, and lane 
position is 360 m.

There are other vehicles around :
Veh1 is driving on the lane to your 
left and is ahead of you. The speed 
of it is 21.2 m/s, acceleration is 0.2 
m/s^2, and lane position is 372 m.

Veh2 is driving on the same lane as 
you and is ahead of you. The speed 
of it is 25.0 m/s, acceleration is -0.1 
m/s^2, and lane position is 400 m.

You are a driving agent with 
proficient driving skills. The 
autonomous vehicle you drive runs 
very smoothly without sudden 
braking or acceleration. Your task is 
to transport various passengers to 
the required location and provide as 
a safety comfortable riding 
experience as much as possible.

LLMs as the reason 
module of agents

Agent Profile

I should first check if I can accelerate, 
then maintain current speed, finally 
decelerate. I can also try to change 
lanes but with caution. 
At First, I need to observe the veh1. 
The distance between me and veh1 is 
400 - 360 = 40 m, and the difference in 
speed is 25.00 - 25.00 = 0.00 m/s. 
Veh1 is traveling 40 m ahead of me 
and the speed is same. This distance is 
safe but my speed is already at the 
desired level, so I should not 
accelerate. 
Since I cannot accelerate, I want to 
know if I can maintain my current 
speed. I should observe car veh1.

Final Answer: maintain current speed

Figure 6: An example of an LLM-based single-agent ADS (Wen et al., 2024).

Agent Profile & Scenario Description

Veh1’s message: Veh2, I am turning right, 
my speed is 2.03 m/s, and we should keep a 
safe distance to avoid collision.

Veh2’s reasoning process and decision:

Veh2’s message: Veh1, since you are turning 
right and in the intersection area, I will decelerate 
speed to keep a safe distance with you.

My position and speed: I am 30 m away from the center of 
the intersection and my current speed is 6.34 m/s.

Message from the other vehicle: Veh1 said that it is turning 
right, its speed is 3.06 m/s, and I should keep a safe distance.

Intersection condition: Veh1 is in the intersection area and 
the intersection area is not clear.

I am going to approach the intersection, Veh1 is in the 
interaction area and turning right, and I should decelerate to 
keep a safe distance with it.

Final Answer: Decelerate 

Veh1’s reason process and decision

communication

Agent Profile
You are an intelligent driving agent with 
skilled driving skills that can provide a 
safe and comfortable driving experience.

Scenario Description
You are driving through a congested 
intersection at a speed of 25m/s and an 
acceleration of 0.0 m/s^2. Veh2 is also 
driving through the intersection at a speed 
of 10m/s and an acceleration of 0.5 m/s^2.

Figure 7: The communication among multiple agents in an LLM-based multi-agent system (Hu et al., 2024a).
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Table 3: Comparison of Interaction Modes and System Structures in LLM-Based Multi-Agent ADSs.

Dimension Advantage Limitation

Mode

Co-operative Enhances traffic flow efficiency and reduces
collision risk by sharing agent intents and
aligning actions.

Unexpected selfish behavior from uncooperative
agents can propagate unsafe plans to the entire
fleet.

Competitive Can lead to more assertive and individually
optimized behaviors in contested scenarios,
such as securing a lane change in dense traffic.

Risks escalating conflicts and reducing overall
traffic system stability if not properly regulated,
potentially leading to gridlock or unsafe
maneuvers.

Debate LLM-based driving agents critique each
other’s plans, surfacing hazards and
converging on safer, more optimal strategies
before execution.

Can lead to significant communication overhead
and decision delay, which is a problem for
real-time driving decisions.

Structure

Centralised Enables strong global coordination and
optimized system-wide decisions for traffic
management due to a comprehensive
overview.

Single-point failure and uplink delays can
endanger all participating vehicles.

Decentralised Offers high robustness and scalability as
individual agent failures have limited systemic
impact, allowing for agile responses to local
traffic conditions.

Lacks a global picture; local optima (e.g., platoon
break-ups) can degrade overall traffic efficiency
and safety.

Hierarchical Layered clusters (vehicle → platoon → cloud)
scale to city-wide fleets while containing
message volume within each tier.

Can introduce communication delays between
layers and may suffer from inflexibility if the
hierarchy is too rigid to adapt to highly dynamic
situations.

Shared Message Pool Allows flexible, asynchronous information
sharing, reducing direct communication
burdens and enabling opportunistic
coordination.

Contention and information overload risk stale or
conflicting data, demanding strict access control.
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Table 4: Comparative Summary of LLM-Based Multi-Agent ADS Research.

Paper Date Environment Profile-Method Profile-Setting Structure Mode Human-Feedback LLM Model

LanguageMPC
(Sha et al., 2023)

2023/10 Simulation Pre-defined Vehicle agents,
Human

Centralized Cooperative Instructor Paradigm GPT-3.5

AgentsCoDriver
(Hu et al., 2024a)

2024/04 Simulation Pre-defined Vehicle agents Decentralized Cooperative - GPT-3.5-turbo

KoMA
(Jiang et al., 2024a)

2024/07 Simulation Pre-defined Vehicle agents Shared Message
pool

Cooperative Instructor Paradigm GPT-4

AgentsCoMerge
(Hu et al., 2024b)

2024/08 Simulation Pre-defined Vehicle agents Decentralized,
Hierarchical

Cooperative Instructor Paradigm GPT/Claude/Gemini
Series

CoDrivingLLM
(Fang et al., 2024)

2024/09 Simulation Pre-defined Vehicle agents Centralized Cooperative Instructor Paradigm GPT-4o

CoMAL
(Yao et al., 2024)

2024/10 Simulation Pre-defined Vehicle agents,
Human

Shared Message
pool

Cooperative Instructor Paradigm GPT-4o-mini,
Qwen-72B,

Qwen-32B, Qwen-7B

Complement-
Vehicle’s-FOV
(Dona et al., 2024)

2024/08 Simulation Pre-defined Vehicle agents,
Infrastructure

agents, Human

Decentralized,
Hierarchical,
Centralized

Cooperative Instructor Paradigm,
Partnership Paradigm

GPT-4V, GPT-4o

CAV-LLM-Driving-
Assistant
(Tang et al., 2024)

2024/11 Simulation Pre-defined Vehicle
agents,Human

Decentralized Cooperative Instructor Paradigm GPT-4V, GPT-4o

EC-Drive
(Chen et al., 2024a)

2024/08 Simulation Pre-defined Vehicle agents,
Infrastructure

agents

Hierarchical Cooperative Instructor Paradigm LLaMA-Adapter
(7B), GPT-4

ChatSim
(Wei et al., 2024)

2024/02 Simulation Pre-defined,
Model-generated

Human,
Assistant agents

Hierarchical,
Centralized

Cooperative Instructor Paradigm GPT-4

ALGPT
(Zhou et al., 2024c)

2024/01 Simulation Pre-defined,
Model-generated

Assistant agents Hierarchical Cooperative - GPT series

AD-H
(Zhang et al., 2024c)

2024/06 Simulation Pre-defined Vehicle agents,
Human

Hierarchical Cooperative Instructor Paradigm LLaVA-7B-V1.5

SurrealDriver
(Jin et al., 2024)

2023/09 Simulation Pre-defined Vehicle agents,
Infrastructure

agents, Human

Hierarchical Cooperative Instructor Paradigm GPT series, Llama,
PaLM

LDPD
(Liu et al., 2024a)

2024/10 Simulation Model-generated Vehicle agents Hierarchical,
Centralized

Cooperative - GPT-4o

V-HOI MLCR
(Zhang et al., 2024a)

2024/03 Simulation Pre-defined Vehicle agents,
Human

Hierarchical Cooperative,
Debate

Instructor Paradigm GPT-4, GPT-3.5

Co-Pilot
(Wang et al., 2023)

2023 Physics Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm GPT-3.5-turbo-0301

PPE
(Ma et al., 2024)

2024 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Partnership Paradigm GPT-4-turbo-preview
and GPT-3.5-turbo

Drive-as-You-Speak
(Cui et al., 2024a)

2023/09 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm,
Partnership Paradigm

GPT-4

Reason-and-React
(Cui et al., 2024b)

2023/10 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm,
Partnership Paradigm

GPT-4

DriVLMe
(Huang et al., 2024a)

2024/06 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm Vicuna-7B + LoRA

AccidentGPT
(Wang et al., 2024b)

2024/06 Physics Pre-defined Vehicle agents,
Infrastructure

agents, Human

Hierarchical,
Centralized,

Decentralized

Cooperative Instructor Paradigm GPT-4

ConnectGPT
(Tong and Solmaz,
2024)

2024/06 Physics Pre-defined Vehicle agents,
Infrastructure

agents, Human

Hierarchical,
Centralized,

Decentralized

Cooperative Instructor Paradigm GPT-4

DriveAgent
(Hou et al., 2025)

2025/05 Physics Pre-defined Assistant agents Decentralized Cooperative - LLaMA-3.2-Vision

CCMA
(Zhang et al., 2025)

2025 Simulation Pre-defined Vehicle agents,
Assistant agents

Hierarchical,
Decentralized

Cooperative - GLM-4v-9B

V2V-LLM
(Chiu et al., 2025)

2025/02 Simulation Pre-defined Vehicle agents Decentralized Cooperative - LLaVA-v1.5-7b

IITI
(Fang et al., 2025)

2025/03 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm Llama3

Tell-drive
(Xu et al., 2025)

2025/02 Simulation Pre-defined Vehicle agents Hierarchical,
Decentralized

Cooperative - GPT-4o-min

Human-RLHF
(Sun et al., 2024b)

2024/06 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm GPT-4o

GameChat
(Mahadevan et al.,
2025)

2025/03 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm GPT-4o-mini

hybrid LLM-DDQN
(Yan et al., 2025)

2024/10 Simulation Pre-defined Vehicle agents,
Infrastructure

agents

Decentralized,
Hierarchical

Cooperative - GPT-3.5,
Llama3.1-8B,
Llama3.1-70B
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