@inproceedings{kang-etal-2025-swiftprune,
title = "{S}wift{P}rune: Hessian-Free Weight Pruning for Large Language Models",
author = "Kang, Yuhan and
Shi, Yang and
Wen, Mei and
He, Jun and
Yang, Jianchao and
Xue, Zeyu and
Feng, Jing and
Liu, Xinwang",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.690/",
pages = "12868--12879",
ISBN = "979-8-89176-335-7",
abstract = "Post-training pruning, as one of the key techniques for compressing large language models (LLMs), plays a vital role in lightweight model deployment and model sparsity. However, current mainstream pruning methods dependent on the Hessian matrix face significant limitations in both pruning speed and practical effectiveness due to the computationally intensive nature of second-order derivative calculations. This paper presents SwiftPrune, a novel Hessian-free weight pruning method that achieves hardware-efficient model compression through two key innovations: 1) SwiftPrune eliminates the need for computationally intensive Hessian matrix calculations by introducing a contribution-based weight metric, which evaluates the importance of weights without relying on second-order derivatives. 2) we employ the Exponentially Weighted Moving Average (EWMA) technique to bypass weight sorting, enabling the selection of weights that contribute most to LLM accuracy and further reducing time complexity. Our approach is extended to support structured sparsity pruning, facilitating efficient execution on modern hardware accelerators. We validate the SwiftPrune on three LLMs (namely LLaMA2, LLaMA3, and Pythia), demonstrating that it significantly enhances compression performance. The experimental findings reveal that SwiftPrune completes the pruning process within seconds, achieving an average speedup of 12.29x (up to 56.02x) over existing SOTA approaches."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kang-etal-2025-swiftprune">
<titleInfo>
<title>SwiftPrune: Hessian-Free Weight Pruning for Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuhan</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mei</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianchao</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeyu</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinwang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Post-training pruning, as one of the key techniques for compressing large language models (LLMs), plays a vital role in lightweight model deployment and model sparsity. However, current mainstream pruning methods dependent on the Hessian matrix face significant limitations in both pruning speed and practical effectiveness due to the computationally intensive nature of second-order derivative calculations. This paper presents SwiftPrune, a novel Hessian-free weight pruning method that achieves hardware-efficient model compression through two key innovations: 1) SwiftPrune eliminates the need for computationally intensive Hessian matrix calculations by introducing a contribution-based weight metric, which evaluates the importance of weights without relying on second-order derivatives. 2) we employ the Exponentially Weighted Moving Average (EWMA) technique to bypass weight sorting, enabling the selection of weights that contribute most to LLM accuracy and further reducing time complexity. Our approach is extended to support structured sparsity pruning, facilitating efficient execution on modern hardware accelerators. We validate the SwiftPrune on three LLMs (namely LLaMA2, LLaMA3, and Pythia), demonstrating that it significantly enhances compression performance. The experimental findings reveal that SwiftPrune completes the pruning process within seconds, achieving an average speedup of 12.29x (up to 56.02x) over existing SOTA approaches.</abstract>
<identifier type="citekey">kang-etal-2025-swiftprune</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.690/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>12868</start>
<end>12879</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SwiftPrune: Hessian-Free Weight Pruning for Large Language Models
%A Kang, Yuhan
%A Shi, Yang
%A Wen, Mei
%A He, Jun
%A Yang, Jianchao
%A Xue, Zeyu
%A Feng, Jing
%A Liu, Xinwang
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F kang-etal-2025-swiftprune
%X Post-training pruning, as one of the key techniques for compressing large language models (LLMs), plays a vital role in lightweight model deployment and model sparsity. However, current mainstream pruning methods dependent on the Hessian matrix face significant limitations in both pruning speed and practical effectiveness due to the computationally intensive nature of second-order derivative calculations. This paper presents SwiftPrune, a novel Hessian-free weight pruning method that achieves hardware-efficient model compression through two key innovations: 1) SwiftPrune eliminates the need for computationally intensive Hessian matrix calculations by introducing a contribution-based weight metric, which evaluates the importance of weights without relying on second-order derivatives. 2) we employ the Exponentially Weighted Moving Average (EWMA) technique to bypass weight sorting, enabling the selection of weights that contribute most to LLM accuracy and further reducing time complexity. Our approach is extended to support structured sparsity pruning, facilitating efficient execution on modern hardware accelerators. We validate the SwiftPrune on three LLMs (namely LLaMA2, LLaMA3, and Pythia), demonstrating that it significantly enhances compression performance. The experimental findings reveal that SwiftPrune completes the pruning process within seconds, achieving an average speedup of 12.29x (up to 56.02x) over existing SOTA approaches.
%U https://aclanthology.org/2025.findings-emnlp.690/
%P 12868-12879
Markdown (Informal)
[SwiftPrune: Hessian-Free Weight Pruning for Large Language Models](https://aclanthology.org/2025.findings-emnlp.690/) (Kang et al., Findings 2025)
ACL
- Yuhan Kang, Yang Shi, Mei Wen, Jun He, Jianchao Yang, Zeyu Xue, Jing Feng, and Xinwang Liu. 2025. SwiftPrune: Hessian-Free Weight Pruning for Large Language Models. In Findings of the Association for Computational Linguistics: EMNLP 2025, pages 12868–12879, Suzhou, China. Association for Computational Linguistics.