
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 12917–12943
November 4-9, 2025 ©2025 Association for Computational Linguistics

Graph-Reward-SQL: Execution-Free Reinforcement Learning for
Text-to-SQL via Graph Matching and Stepwise Reward

Han Weng1,2*, Puzhen Wu2, Longjie Cui2*, Yi Zhan2*, Boyi Liu2,
Yuanfeng Song2, Dun Zeng2, Yingxiang Yang2, Qianru Zhang2,

Dong Huang2,3†, Xiaoming Yin2, Yang Sun2†, Xing Chen2

1 Beijing University of Posts and Telecommunications, China
2 ByteDance, China

3 Institute of Data Science, National University of Singapore

Abstract

Reinforcement learning (RL) has been widely
adopted to enhance the performance of large
language models (LLMs) on Text-to-SQL
tasks. However, existing methods often rely on
execution-based or LLM-based Bradley–Terry
reward models. The former suffers from high
execution latency caused by repeated database
calls, whereas the latter imposes substantial
GPU memory overhead, both of which signifi-
cantly hinder the efficiency and scalability of
RL pipelines. To this end, we propose a novel
reward model framework for RL-based Text-
to-SQL named Graph-Reward-SQL, which em-
ploys the GMNScore outcome reward model.
We leverage SQL graph representations to pro-
vide accurate reward signals while significantly
reducing time cost and GPU memory usage.
Building on this foundation, we further intro-
duce StepRTM, a stepwise reward model that
provides intermediate supervision over Com-
mon Table Expression (CTE) subqueries. This
encourages both functional correctness and
readability of SQL. Extensive comparative and
ablation experiments on standard benchmarks,
including Spider and BIRD, demonstrate that
our method consistently outperforms existing
reward models.

1 Introduction

Text-to-SQL (Tai et al., 2023; Li et al., 2024b;
Shi et al., 2025) aims to translate natural language
into structured database queries and plays a crucial
role in democratizing data access by enabling non-
technical users to interact with relational databases
more effectively. A significant body of work has fo-
cused on fine-tuning foundational models, with re-
cent studies showing that Reinforcement Learning
(RL) can effectively enhance model performance
(Pourreza et al., 2025b; Berdnyk and Collery, 2025;
Ma et al., 2025). Among these efforts, the careful

*Work was done during the internship at ByteDance.
†Corresponding authors

design of the reward model is a crucial challenge,
as the quality of the reward signal directly influ-
ences policy optimization during fine-tuning.

In RL-based Text-to-SQL approaches, execution
accuracy remains a dominant signal (Nguyen et al.,
2025; Ma et al., 2025; Pourreza et al., 2025b; Berd-
nyk and Collery, 2025), providing intuitive feed-
back based on query correctness. Additionally,
the Bradley–Terry reward model (BTRM) (Chris-
tiano et al., 2017) has been adapted for code gen-
eration by deriving preference pairs from execu-
tion outcomes (Zeng et al., 2025a). Structural re-
wards based on abstract syntax tree (AST) have
also been explored to capture syntactic similar-
ity (Shojaee et al., 2023). However, each approach
has significant limitations in the Text-to-SQL tasks.
Execution-based rewards introduce significant la-
tency due to runtime database access. The LLM-
based BTRM incurs high computational and GPU
memory costs, which limits its scalability. AST
matching-based similarity is prone to false nega-
tives, where syntactically divergent queries that are
semantically equivalent are penalized, leading to
inaccurate reward signals. These limitations point
to a key challenge in RL-based Text-to-SQL: de-
signing an efficient reward model that can replace
execution-based signals without compromising per-
formance.

To address the above limitations, we intro-
duce Graph-Reward-SQL, a novel reward model
framework for RL-based Text-to-SQL. This frame-
work incorporates two complementary reward mod-
els: Graph Matching Network Score (GMNScore)
and Stepwise Relational Operator Tree Match
(StepRTM). GMNScore serves as an outcome re-
ward model, which evaluates the generated SQL
queries using the Graph Matching Network (GMN)
without requiring execution. GMN utilizes learned
graph embeddings to assess functional equivalence,
capturing the deep semantics of SQL queries (Zhan
et al., 2025). In contrast to execution-based re-

12917

wards, GMNScore eliminates the need for costly
database executions, resulting in a significant
speed-up. Furthermore, compared to LLM-based
Bradley-Terry reward models (BTRM), GMNScore
substantially reduces GPU memory consumption
due to the lightweight architecture of GMN. Addi-
tionally, StepRTM provides intermediate feedback
through a stepwise reward mechanism that evalu-
ates the generation of Common Table Expression
(CTE) subqueries, complementing GMNScore.

The above design offers three notable advan-
tages. (i) Superior Training Efficiency: Our method
significantly reduces time cost and GPU memory
usage compared to existing outcome reward mod-
els, leading to enhanced overall training efficiency
for RL. (ii) Intermediate Feedback Integration: Un-
like existing reward models that focus solely on
outcome result, our framework incorporates inter-
mediate evaluation by leveraging the structure of
CTE SQL. This provides richer feedback during
training, improving performance and readability.
(iii) Strong Empirical Performance: Extensive abla-
tion studies and evaluations on the Spider (Yu et al.,
2018) and BIRD (Li et al., 2024b) Text-to-SQL
benchmarks validate the superiority of our reward
models. The results consistently demonstrate that
our approach outperforms multiple strong reward
model baselines, highlighting its effectiveness.

Our contributions are summarized as follows:
• We propose GMNScore, an outcome reward

model that leverages GMN to replace execution-
based rewards, achieving both higher efficiency
and better performance.

• We design a novel stepwise reward model
StepRTM, which utilizes CTE SQL to deliver
stepwise supervision by matching each subquery,
resulting in improved accuracy and readability.

• Extensive experiments show that our reward
models consistently improve performance while
maintaining high inference efficiency and low
GPU memory consumption.

2 Related Work

Text-to-SQL. Text-to-SQL is a key task in Natural
Language Processing (NLP) that involves trans-
forming queries expressed in natural language into
executable SQL queries (Tai et al., 2023; Li et al.,
2024b; Shi et al., 2025). With the increasing de-
ployment of large language models (LLMs), agen-
tic frameworks (Wang et al., 2025; Pourreza et al.,
2025a; Lei et al., 2024) have been introduced to

enhance Text-to-SQL tasks. These frameworks
enable LLMs to interact with databases through
iterative reasoning and external tools. Code Foun-
dation Models such as DeepSeek-Coder (Guo et al.,
2024) and Qwen2.5-Coder (Hui et al., 2024) pro-
vide the backbone for these agentic systems, en-
abling structured reasoning and code generation.
Several approaches aim to improve LLM perfor-
mance in Text-to-SQL tasks, including direct fine-
tuning (Li et al., 2024a; Yang et al., 2024; Pourreza
and Rafiei, 2024), as well as techniques such as
prompt design (Pourreza and Rafiei, 2023; Dong
et al., 2023; Gao et al., 2024a), self-consistency
(Gao et al., 2024a) and schema linking (Guo et al.,
2019; Wang et al., 2020; Lei et al., 2020; Lee et al.,
2025) to further optimize results.
Reinforcement Learning and Reward Model.
RL has become an important paradigm for effec-
tively fine-tuning Code Foundation Models. Pol-
icy optimization methods, such as Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017)
and Group Relative Policy Optimization (GRPO)
(Shao et al., 2024), have been explored. However,
the effectiveness of RL training heavily relies on
the quality of reward signals, making the design
of reward models a critical aspect (Trella et al.,
2023). Several contributions to RL-based code
generation have advanced reward model strategies.
Notable works include CodeRL (Le et al., 2022),
which leverages execution feedback; PPOCoder
(Shojaee et al., 2023), integrating semantic match-
ing of abstract syntax trees; and AceCoder (Zeng
et al., 2025a), applying an LLM-based Bradley-
Terry Reward Model.

The execution-based reward model for Text-to-
SQL was initially used by (Zhong et al., 2017).
Recent advancements have introduced continuous
reward scores based on keyword matching (Nguyen
et al., 2025) and leveraged LLMs to generate re-
ward function candidates and iteratively refine
(Berdnyk and Collery, 2025). Alongside these de-
velopments, reasoning models such as DeepSeek-
R1 (Guo et al., 2025) have advanced RL in rea-
soning tasks, leading to the introduction of more
sophisticated reward model designs. For exam-
ple, SQL-R1 (Ma et al., 2025) incorporates for-
mat and length constraints, while Reasoning-SQL
(Pourreza et al., 2025b) employs more complex
reward structures, such as schema linking feed-
back, n-gram similarity scores, and LLM-based
judgment. Despite these enhancements, execution-
based reward continue to play a central role in the

12918

Reward Model Modeling Basis Granularity Time Cost ↓ GPU Usage↓ Perf. Rank (1=Best)

EX (Pourreza et al., 2025b) Execution Outcome Slow N/A 3
BTRM (Zeng et al., 2025a) LLM Outcome Moderate High 5
AstPM (Shojaee et al., 2023) AST Matching Outcome Fast N/A 6
RelPM (Zhan et al., 2025) ROT Matching Outcome Fast N/A 4

GMNScore (Ours) GMN Outcome Fast Low 2
+ StepRTM (Ours) ROT Matching Stepwise Fast N/A 1

Table 1: Comparison of Reward Models in RL for Text-to-SQL Tasks. Our proposed GMNScore and StepRTM
achieve better performance while significantly reducing time and memory costs.

above-mentioned approaches.
Current methods overlook the computational

overhead of execution-based and LLM-based re-
ward models and fail to fully exploit the deep se-
mantic structure of SQL queries. Additionally,
these approaches focus solely on evaluating the fi-
nal generated SQL, neglecting the potential of lever-
aging intermediate supervision signals throughout
the SQL generation process. To address these is-
sues, we propose an execution-free outcome reward
model and a stepwise reward mechanism. These
methods significantly reduce computational over-
head while providing more effective reward signals
for RL-based Text-to-SQL tasks.

3 Preliminaries

3.1 Problem Formulation
In the standard Text-to-SQL setting, let x denote
a natural language query, q̂ and q⋆ represent the
generated SQL and reference SQL query, respec-
tively. In this work, we mainly use Proximal Policy
Optimization (PPO) (Schulman et al., 2017), which
optimizes the policy model πθ by maximizing:

J (θ) = E(x,q̂)∼D,q̂∼πθ(·|x)[r(q̂, q
⋆)

− βDKL(πθ(· | x) ∥πref(· | x))],
where πref is the reference model, β is a PPO hy-
perparameter and r(q̂, q⋆) is a reward model. Note
that our method can be easily adapted to Group
Relative Policy Optimization (GRPO) (Shao et al.,
2024), as detailed in the Appendix D.

3.2 Summary of Existing Reward Models
Recognizing the great importance of reward mod-
els in RL, we discuss three types of main reward
models. As summarized in Table 1, we compare
these models with our proposed reward models in
terms of time cost and GPU memory usage dur-
ing inference. Additionally, the final performance
of all reward models is evaluated and ranked, as
described in Section 6.1. Detailed information on
these comparisons can be found in the Appendix G.

Execution Accuracy (EX). For the Text-to-SQL
tasks, the execution accuracy serves as the most di-
rect reward signal, providing a discrete score based
on whether the generated SQL query yields the
correct result upon execution. We use a discrete
reward model with finer-grained feedback based
on syntax error (Pourreza et al., 2025b) and run-
time diagnostics following (Shojaee et al., 2023).
Given a generated SQL q̂ and reference SQL q⋆,
the formulation is listed as:

rEX(q̂, q
⋆) = Rexec +Rsyntax +Rruntime

However, the EX has notable limitations. When
the database contains poor quality data (e.g., lim-
ited, missing, or inconsistent entries) or structural
issues (e.g., redundancy or anomalies), different
queries may produce identical results (Zhong et al.,
2020). Test Suite (TS) (Zhong et al., 2020) at-
tempted to address this issue, but as shown in (Zhan
et al., 2025), false positives and false negatives re-
main unavoidable. Additionally, repeatedly exe-
cuting SQL queries introduces significant compu-
tational overhead, increasing training time. More
details about EX are provided in the Appendix F.

Bradley-Terry Reward Model (BTRM). Given
a natural language input x and a candidate SQL
query y, we define the reward model as rψ(x, y) =
hr
(
Mθ(x, y)

)
, with a pretrained language model

Mθ and a reward head hr. The training process
uses preference pairs based on execution correct-
ness: D = {(xi, y+i , y−i)}Ni=1, where y+i executes
correctly and y−i fails or returns an incorrect re-
sult (Zeng et al., 2025b). The objective is to min-
imize the Bradley-Terry log-likelihood (Bradley
and Terry, 1952) as follows:

−
N∑

i=1

log
exp
(
rψ(xi, y

+
i)
)

exp
(
rψ(xi, y

+
i)
)
+ exp

(
rψ(xi, y

−
i)
)

This model learns to assign higher scores to correct
queries, providing a dense proxy reward model for

12919

name country age

Taylor Swift American 35

Jielun Zhou China 45

Shen Zhou China 32

Prompt: " What singers are 34 years old or older?
Please write SQL based on the table schema to answer question.”

SELECT age FROM singer

WHERE age >= 34;

Reference SQL

Generated SQL

SELECT age FROM singer

WHERE age > 34; Executes
Taylor Swift

Jielun Zhou

Taylor Swift

Jielun Zhou

Executes

False
Positive

ROT Representation

Stepwise Reward: StepRTM

age 34

Generated

Step Score: 0.3, 0.6, 0.95

seed nodes

Matching

Final Score: 0.5

OutCome Reward: GMNScore
Execution Result

Reward
Model

Policy
Model

Value
Model

Backpropagation

Backpropagation

Values

Generate

Action

>=

34

Reference

age

>

Graph Representation

Figure 1: Graph-Reward-SQL employs PPO, where rewards drive policy updates. An example illustrates a limitation
of EX: the generated SQL ’WHERE age > 34’ and the reference SQL ’WHERE age >= 34’ produce identical results
despite their semantic difference. In contrast, our proposed GMNScore leverages graph representation to capture
deep semantic similarity. Additionally, a stepwise reward model, StepRTM, that is tailored for CTE SQL addresses
the lack of intermediate rewards. A mock stepwise score is provided for illustration; see Figure 2 for more details.

RL (Christiano et al., 2017). In contrast to EX,
BTRM enables more efficient policy training by
eliminating the need to query databases. However,
the large parameter size of LLM-based BTRM sig-
nificantly increases GPU memory usage.

Matching-based Reward. In (Nguyen et al.,
2025), rule-based keyword matching is used for
scoring SQL queries, while n-gram similarity is
used in Reasoning-SQL (Pourreza et al., 2025b) to
capture overlapping token sequences. Matching-
based methods are fast and model-free, but may
assign negative rewards to semantically equivalent
SQL queries that differ in syntax, which should
ideally be considered correct. In broader code gen-
eration tasks, the PPOCoder (Shojaee et al., 2023)
uses semantic matching of abstract syntax trees
and data flow graphs. However, it still focuses on
surface-level structure and does not fully capture
the deep semantic information.

4 Methodology

We introduce Graph-Reward-SQL, a novel reward
model framework designed to enhance SQL gen-
eration through two key innovations. First, we
propose GMNScore, which replaces EX, reducing
time costs while maintaining the accuracy of re-
ward signals without requiring database execution.
Second, we introduce StepRTM, a stepwise reward
model based on the Relational Operator Tree (ROT)
representation of CTE SQL, which provides sup-

plementary intermediate feedback.

4.1 Relational Operator Tree (ROT)

Accurately modeling SQL structure and semantics
is crucial for query analysis and comparison. SQL
queries can be converted into Abstract Syntax Trees
(ASTs) to capture their syntactic structure. How-
ever, unlike general programming languages, SQL
lacks key representations like Control Flow Graphs
(CFGs) (Cota et al., 1994) and Data Flow Graphs
(DFGs) (Orailoglu and Gajski, 1986), which are
essential for reflecting logic and data dependencies.

To bridge this gap, we leverage the Relational
Operator Tree (ROT) to represent SQL queries as
trees of relational algebra operators. Each node in
the tree corresponds to a specific logical operation
(e.g., Join, Project, Filter), while the tree struc-
ture itself reflects the dependencies and execution
order of the query. In practice, we use Apache Cal-
cite (Begoli et al., 2018) to generate ROTs, which
compiles SQL into a canonical intermediate rep-
resentation called RelNode. This format includes
various optimizations, such as operator reordering
and clause simplification, resulting in normalized
logical plans that are more resilient to surface-level
differences. Similar to CFGs and DFGs, the RelN-
ode format can also integrate control dependencies
and data flow as edges (Zhan et al., 2025). This
enables the creation of more comprehensive graph
representations that include richer SQL semantics,
facilitating query understanding and evaluation.

12920

4.2 FuncEvalGMN
After obtaining the SQL graph representations G1

and G2, we employ a Graph Matching Network
(GMN) (Li et al., 2019) trained in SQL pairs (Zhan
et al., 2025) to assess functional equivalence. It
is trained using contrastive learning for pretrain-
ing and supervised learning to capture deep se-
mantic similarity of SQL queries. The similarity
between two queries is computed as the negative
Euclidean distance between their final graph-level
embeddings: s(hG1 , hG2) =

∥∥hG1−hG2

∥∥
2
, where

hG1 and hG2 are computed by the GMN, consid-
ering the joint representations of G1 and G2. This
approach, first introduced in FuncEvalGMN (Zhan
et al., 2025), is described in further detail in Ap-
pendix O, and the details of our further optimiza-
tion are provided in Appendix E.

4.3 ROT/RelNode Partial Matching (RelPM)
Similar to AST, RelNode can also be used to evalu-
ate SQL similarity through graph matching. RelPM
(Zhan et al., 2025) is a rule-based matching algo-
rithm that assesses the similarity of SQLs based on
their RelNode representations, denoted Gq̂ and Gq⋆ ,
respectively. A comparable approach, applied to
AST structures, is known as AstPM (Zhan et al.,
2025). Both algorithms adopt a hierarchical partial
matching strategy and derive a global similarity
score based on the Precision and Recall of node-
level matching results. At the node level, matches
are determined by comparing each generated node
n′ ∈ Gq̂ with all the candidate nodes n ∈ Gq⋆ in
the reference tree. A match is established when
two nodes have the same operator type and value.
Additionally, a matching score is computed by com-
paring their subgraphs, and the candidate node with
the highest matching score is selected as the final
match. Further details are provided in Appendix N.

4.4 Reward Function Design
Figure 1 illustrates our reward design, comprising
the outcome reward model GMNScore and the step-
wise model StepRTM. Given the generated SQL q̂
and the reference SQL q⋆, the reward at time-step t
for a sequence of length T is computed as follows:

Rt(q̂, q
∗) = 1(condeos) · [RGMNScore(q̂, q

∗)− βRkl(q̂<t)]

+ 1(condsub) ·
[
RStepRTM(q̂≤t, q∗)− βRkl(q̂<t)

]

+ 1(¬condeos) · 1(¬condsub) · [−βRkl(q̂<t)] ,

where condeos indicates the end of generation, at
which point the outcome reward model RGMNScore
is applied. condsub signifies the completion of a

subquery, triggering the stepwise reward model
RStepRTM to compare the current subquery with the
corresponding substructure in the reference query.
The symbol ¬ denotes logical negation. Rkl(q̂<t)
represents a KL-divergence penalty that measures
the deviation between the learned policy and the
pretrained language model, applied at each time
step to regularize policy updates. The scalar β is a
hyperparameter that balances rewards with policy
regularization.

4.5 Outcome Reward: GMNScore
As described in Section 4.2, the functional correct-
ness of generated SQL can be evaluated using the
FuncEvalGMN metric MGMN, which aligns well
with the objective of reward model in RL. We de-
sign an outcome reward model as follows:

RGMNScore(q̂, q
⋆) =





−1, if syntax error
−0.6, if ROT error
max(0,MGMN + 1)

The GMNScore formulation introduces graded
penalties for SQL queries that trigger syntax er-
rors or ROT parsing errors1. For all other cases,
we rescale the similarity metric MGMN (which lies
in the range (−∞, 0]) to the interval [0, 1) by first
applying an affine shift and then rectifying any neg-
ative values to zero.

4.6 Stepwise Reward: StepRTM
Current ETL (Extract, Transform, Load) pipelines
rarely execute their logic in a single step. Instead,
analysts break the workflow into a detailed plan
of subqueries, where each subquery progressively
transforms the data until the query is complete.
This logic is typically expressed using CTEs, as
demonstrated by the simplified example below:
WITH step1 AS (/* subquery1 */),

step2 AS (/* subquery2 */)
SELECT ... FROM step2;

In most cases, CTEs enhance the readability of
complex SQL by providing clear representations of
intermediate steps in an ETL pipeline. These steps
not only facilitate data transformation but also offer
a natural way to evaluate the process stepwise.

Inspired by subgraph matching techniques (Lou
et al., 2020; Roy et al., 2022), we propose Stepwise
Relational Operator Tree Matching (StepRTM),

1Refers to failures in converting SQL into a ROT using
Apache Calcite. For example, the query WITH sub1 AS
(SELECT id, name FROM users) SELECT age FROM sub1;
leads to an error “Column ‘age‘ not found in any table”.

12921

Figure 2: Overview of the StepRTM Stepwise Reward Calculation. (a) The generated SQL q̂cte is segmented into a
sequence of subqueries, with the end index of each subquery recorded. (b) Both the reference SQL query q∗ and
each subquery are parsed into ROTs (c) A stepwise matching process is performed between the ROTs. At each step,
newly matched nodes are identified and used to compute incremental rewards.

which incorporates stepwise reward scores to pro-
vide intermediate feedback. The overall proce-
dure of StepRTM is illustrated in Figure 2. Let
q∗ denote the reference SQL, and represent the
generated SQL as a sequence of subqueries q̂cte =
[q̂1, q̂2, . . . , q̂n]. Let Gq∗ and Gq̂i denote the node
sets of the ROT representations for the reference
query and the i-th generated subquery. The step-
wise scores are then computed as follows:

R(i)
StepRTM(q̂cte, q

∗) =

∣∣(Mi ∪ Gi
)
∩ Gq∗

∣∣
|Gq∗ |

,

where Mi =
⋃i−1
j=1 Gj represents all the matched

subgraphs parsed from the first i subqueries, Gj
denotes the maximal matched subgraph in the ref-
erence query that aligns with the i-th subquery q̂i.
This formulation prevents repeated rewards for the
same reference node and ensures that the overall
signal reflects the incremental semantic coverage
of the target reference query. Stepwise supervision
improves training performance by providing richer
intermediate feedback, facilitating the generation
of correct SQL queries.

5 Experimental Setup

Datasets. Our experiments are primarily con-
ducted on the Spider and BIRD benchmarks. The

Spider dataset (Yu et al., 2018) contains 10,181
natural language questions paired with 5,693 com-
plex SQL queries across 138 domains. The BIRD
dataset (Li et al., 2024b) consists of 12,751 ques-
tions spanning more than 37 professional fields.
We used the training split of the Spider dataset for
training and the development splits of Spider and
BIRD for evaluation. Additionally, we used a sub-
set of the 200k-Text2SQL dataset2 in a warm-up
phase prior to RL training. Further details about
the datasets are provided in Appendix A.

Baselines. We benchmark against representa-
tive state-of-the-art (SOTA) Text-to-SQL pipelines
spanning in-context learning, self-correction, post-
training, and multi-agent paradigms (Pourreza and
Rafiei, 2023; Gao et al., 2024a; Pourreza and
Rafiei, 2024; Gao et al., 2024b; Pourreza et al.,
2025a,b; Zhang et al., 2025). We further compare
three widely adopted reward model designs in RL
training to validate the effectiveness of the pro-
posed reward models: (i) the execution-based re-
ward EX, widely used in recent studies (Nguyen
et al., 2025; Berdnyk and Collery, 2025; Ma et al.,
2025; Pourreza et al., 2025b); (ii) an LLM-based
Bradley–Terry reward model (BTRM) (Christiano

2https://huggingface.co/datasets/philikai/
200k-Text2SQL

12922

https://huggingface.co/datasets/philikai/200k-Text2SQL
https://huggingface.co/datasets/philikai/200k-Text2SQL

et al., 2017; Zeng et al., 2025b), trained using the
DeepSeek-Coder-1.3B-Ins as the backbone, as de-
tailed in Appendix M, to evaluate the efficacy of
model-based reward mechanisms; and (iii) AstPM
and RelPM (Zhan et al., 2025), which, motivated
by recent works (Shojaee et al., 2023; Nguyen et al.,
2025; Pourreza et al., 2025b), are incorporated as
matching-based reward model baselines.

Evaluation Metrics. Consistent with prior work
(Pourreza et al., 2025a,b; Zhang et al., 2025), we
adopt Execution Accuracy (EX) as the primary met-
ric for comparisons with state-of-the-art systems.
In addition, we report Test-Suite Accuracy (TS),
which evaluates predicted queries against suites of
distilled or fuzzed database variants under varied
conditions (Zhong et al., 2020). Since TS miti-
gates the false positives that may arise from insuffi-
ciently discriminative databases, it provides a more
robust estimate of semantic correctness (Gao et al.,
2024a; Li et al., 2024a; Yang et al., 2024). We
therefore use TS to more accurately quantify the
gains achieved by our reward model.

Implementation Details. All experiments are
conducted on several edge servers. We extend
the verl3 and DeepSpeed-Chat4 (Yao et al., 2023)
framework to support a comparison of multiple
reward models, including execution-based, LLM-
based, and matching-based rewards.

Prior to RL training, we performed SFT using
two cold-start datasets. First, we sampled a sub-
set from the 200k-Text2SQL dataset, matching the
size of the Spider training set, and trained the base
model for two epochs. To promote the generation
of CTE SQL queries in the stepwise reward PPO
experiments, we converted BIRD data into CTE
format to prepare a warm-up dataset referred to
as CTE-SFT. During supervised fine-tuning (SFT),
we employ the AdamW optimizer (initial learning
rate 5e-6, batch size 4) and use a polynomial sched-
uler to decay the learning rate throughout training.
Additional details about hyperparameter of SFT
and RL are provided in Appendix C.

6 Results

We benchmark our method against recent SOTA
Text-to-SQL systems, including in-context learning
and multi-agent approaches. As shown in Table 2,
Graph-Reward-SQL reaches 81.62% EX on Spider

3https://github.com/volcengine/verl
4https://github.com/deepspeedai/DeepSpeed

and 63.04% on BIRD trained with GRPO on the
Qwen2.5-Coder-7B-Ins model. Our reward model
framework delivers performance competitive with
the Reasoning-SQL, even as the latter employs a
multi-agent system and five reward models that
incorporate both EX and LLM-based judgment.

6.1 Reward Performance Comparison
GMNScore can replace the EX, thereby elim-
inating dependence on SQL execution and
database environments. As demonstrated in Ta-
ble 3, GMNScore achieves the highest average
TS for the 1.3B and 6.7B models, highlighting
the importance of well-designed reward signals
in RL. Another notable observation is that RelPM
outperforms AstPM, with improvements of 2.53%
and 1.71% for the two model sizes, respectively.
The better performance of the former can be at-
tributed to the use of normalized logical plans for
SQL parsing in ROT, which are less susceptible
to surface-level syntactic differences. ROT also
provides an effective representation way for our
proposed GMNScore and StepRTM reward mod-
els. GMNScore learns deep semantic information
via graph-level embeddings, bypassing the need
for execution-result comparisons and thus mitigat-
ing false-positive noise. Additionally, GMNScore
eliminates the necessity of constructing and main-
taining databases, offering a lightweight solution
for large-scale RL-based Text-to-SQL. Case studies
are provided in Appendix S.

The integration of StepRTM as a stepwise re-
ward further enhances performance. As shown
in Table 4, combining CTE-SFT with StepRTM
consistently results in metric improvements across
various outcome reward models. Notably, our
framework, which integrates GMNScore alongside
StepRTM, achieves the highest result. Specifically,
we observe a 5.87% improvement on the BIRD
dataset and a 0.97% increase on the Spider dataset.
These observations suggest that the BIRD dataset,
which is inherently more challenging due to its di-
verse database and query complexity, benefits more
significantly from our proposed stepwise reward.

6.2 Effectiveness of GMNScore with GRPO
GMNScore performs robustly across both PPO
and GRPO protocols. As shown in Figure 3, the
results consistently demonstrate that GMNScore
outperforms EX in these two RL protocols, under-
scoring its robustness and effectiveness. We report
the average performance across two benchmarks,

12923

https://github.com/volcengine/verl
https://github.com/deepspeedai/DeepSpeed

Method Method Detail Base Model Spider EX BIRD EX Avg.

DIN-SQL (Pourreza and Rafiei, 2023) In-context learning GPT-4 82.88 50.72 66.80
DAIL-SQL (Gao et al., 2024a) In-context learning GPT-4 74.47 54.76 64.62
DTS-SQL (Pourreza and Rafiei, 2024) Schema-linking, SFT DeepSeek-7B - 55.80 -
XiYan-SQL (Gao et al., 2024b) Multi-Agent QwenCoder-32B - 67.01 -
CHASE-SQL (Pourreza et al., 2025a) Multi-Agent Gemini-1.5-pro - 74.46 -

Reasoning-SQL (Pourreza et al., 2025b) Multi-Agent, GRPO Qwen2.5-Coder-7B 78.72 64.01 71.37
Reward-SQL (Zhang et al., 2025) GRPO Qwen2.5-Coder-7B 77.08 59.70 68.39
Graph-Reward-SQL (Ours) GRPO Qwen2.5-Coder-7B 81.62 63.04 72.33

Table 2: Performance comparison of Graph-Reward-SQL and baseline models on the Spider and BIRD dataset.
Baseline results are reported from their original publications.

Method Spider BIRD Avg.

DeepSeek-Coder-1.3B-Ins 39.56 11.34 25.45
+ SFT 57.74 13.30 35.52
+ PPO w/ AstPM 59.96 12.52 36.24
+ PPO w/ RelPM 62.86 14.67 38.77
+ PPO w/ BTRM 61.41 14.21 37.81
+ PPO w/ EX 65.28 17.21 41.25
+ PPO w/ GMNScore (Ours) 67.70 16.10 41.90

DeepSeek-Coder-6.7B-Ins 44.97 18.38 31.68
+ SFT 69.05 21.71 45.38
+ PPO w/ AstPM 70.31 22.88 46.60
+ PPO w/ RelPM 70.60 26.01 48.31
+ PPO w/ BTRM 67.99 22.23 45.11
+ PPO w/ EX 71.66 26.66 49.16
+ PPO w/ GMNScore (Ours) 72.44 26.14 49.29

Table 3: TS Performance of Deepseek-Coder-1.3B-Ins
and Deepseek-Coder-6.7B-Ins models under multiple
baselines and proposed GMNScore outcome reward.

Method Spider BIRD Avg.

DeepSeek-Coder-1.3B-Ins + PPO 39.56 11.34 25.45
RelPM w/ SFT 62.86 14.67 38.77
RelPM w/ CTE-SFT 62.57 19.36 40.97
RelPM & StepRTM w/ CTE-SFT 64.31 19.43 41.87

EX w/ SFT 65.28 17.21 41.25
EX w/ CTE-SFT 65.09 18.97 42.03
EX & StepRTM w/ CTE-SFT 67.89 19.75 43.82

GMNScore w/ SFT 67.70 16.10 41.90
GMNScore w/ CTE-SFT 68.57 20.40 44.49
GMNScore & StepRTM w/ CTE-SFT 68.67 21.97 45.32

Table 4: TS performance of the DeepSeek-Coder-1.3B-
Ins model trained with StepRTM integration. Both SFT
and CTE-SFT refer to different warm-up datasets.

with detailed results provided in Appendix K.

6.3 Cost of GMNScore
We compare the cost of different reward models by
running one PPO epoch and measuring the average
reward-scoring latency per sample. As shown in
Table 5, GMNScore is the most efficient. In con-
trast, EX is the slowest due to repeated database
calls. From a model-size perspective, GMNScore is

Figure 3: TS Performance of Qwen2.5-Coder-7B/14B-
Ins models directly trained by PPO/GRPO.

Reward Time↓ Params↓ GPU Memory↓
EX 1.088s – –
BTRM 0.095s 1.35B 9304MB
GMNScore 0.023s 3.99M 83MB

Table 5: Average per-sample cost of reward scoring.

highly compact, with 3.99M parameters, whereas
the widely used BTRM is substantially larger at
1.35B parameters. GMNScore is trained once of-
fline and can be reused across multiple RL experi-
ments, which significantly reduces overall compu-
tational overhead. Additional details on the mea-
surement setup are provided in Appendix G.

6.4 Intrinsic Evaluation of Reward Models

Area Under the Curve (AUC) is used as a statisti-
cally principled measure of similarity-evaluation
accuracy (Zhan et al., 2025); its alignment with
RL reward-model objectives makes it a rigorous
criterion for validating reward-model performance.
As shown in Table 7, GMNScore achieves 97.62%
AUC on Spider-dev-pair and 94.14% on BIRD-
dev-pair. Equivalence labels in the these two dev-
pair sets were manually verified to minimize false
positives, improving the reliability of these AUC
estimates. Collectively, the results indicate that
GMNScore provides accurate and consistent pref-
erence judgments, laying a solid foundation for
subsequent RL training. Details on training and

12924

Reference SQL Failed SQL% CTE SQL ✓
Question: What is the average score of Stephen Turner’s posts?

SELECT AVG(T2.Score)
FROM users AS T1
INNER JOIN posts AS T2 ON T1.Id =
T2.OwnerUserId
WHERE T1.DisplayName = ’Stephen Turner’

SELECT AVG(T1.Score)
FROM comments AS T1
INNER JOIN users AS T2 ON T1.UserID =
T2.ID
WHERE T2.DisplayName = ’Stephen Turner’

WITH UserInfo AS (SELECT id FROM users
WHERE displayname = ’Stephen Turner’),
PostInfo AS (SELECT score FROM posts
WHERE owneruserid IN (SELECT id FROM UserInfo))
SELECT AVG(score) FROM PostInfo

Question: List down at least five superpowers of male superheroes.

SELECT T3.power_name
FROM superhero AS T1
INNER JOIN hero_power AS T2 ON T1.id =
T2.hero_id
INNER JOIN superpower AS T3 ON T3.id =
T2.power_id
INNER JOIN gender AS T4 ON T4.id =
T1.gender_id
WHERE T4.gender = ’Male’
LIMIT 5

SELECT T1.power_name
FROM superpower AS T1
INNER JOIN hero_power AS T2 ON T1.id =
T2.power_id
INNER JOIN superhero AS T3 ON T3.id =
T2.hero_id
WHERE T3.gender_id = 1
GROUP BY T1.power_name
LIMIT 5

WITH MaleSuperheroes AS (SELECT id
FROM superhero
WHERE gender_id IN (
SELECT id FROM gender
WHERE gender = ’Male’),
SuperpowersOfMaleSuperheroes AS (SELECT DISTINCT T1.power_name
FROM superpower AS T1
INNER JOIN hero_power AS T2 ON T1.id = T2.power_id
INNER JOIN MaleSuperheroes AS T3 ON T3.id = T2.hero_id)
SELECT power_name FROM SuperpowersOfMaleSuperheroes LIMIT 5

Table 6: Comparisons among Reference SQL, Failed SQL, and CTE SQL demonstrate the effectiveness of StepRTM.

Reward Model Spider-pair dev BIRD-pair dev

AstPM 82.81% 80.38%
RelPM 84.42% 83.57%
BTRM 89.24% 84.77%
EX 96.37% 92.67%
GMNScore 97.62% 94.14%

Table 7: Area Under the Curve (AUC) of reward models
on Spider-dev-pair and BIRD-dev-pair.

evaluation datasets are provided in Appendix E.

6.5 Case Study: CTE SQL with StepRTM

Table 6 presents two cases that demonstrate how the
stepwise reward model enhances both correctness
and readability. Each case compares the reference
SQL, a failed SQL query generated by a model
trained solely with an outcome reward model, and
a CTE SQL query generated by a model trained
with StepRTM. In the first case, the failed SQL in-
correctly retrieves data from the ‘comments’ table
instead of the intended ‘posts’ table. The CTE
SQL resolves this by decomposing the task into
clear subqueries: first locating the target user, then
aggregating the scores of that user’s posts. In the
second case, the failed SQL hard-codes the gen-
der identifier as ’1’, leading to errors in filtering.
In contrast, the CTE SQL uses two dedicated sub-
queries to correctly filter male superheroes, extract
their superpowers, finally combine the results.

7 Discussion

The GMNScore introduced in this paper offers an
alternative to EX while remaining fully compati-
ble with other reward models. As detailed in Ap-
pendix I, we extend our investigation beyond the
StepRTM integration (Section 6.1) by applying hy-
brid outcome reward models, which further im-
prove performance. This finding is consistent with

previous work using multiple outcome rewards
(Pourreza et al., 2025b; Ma et al., 2025).

8 Conclusion

We propose Graph-Reward-SQL, a reward model
framework for RL-based Text-to-SQL that replaces
execution-based rewards with the GMNScore out-
come reward model and the StepRTM stepwise
reward model. By eliminating the dependency on
execution during training, it significantly improves
training efficiency. Extensive experiments demon-
strate that our proposed reward models achieve
superior performance. The Graph-Reward-SQL
framework establishes a new direction toward scal-
able and efficient RL-based Text-to-SQL tasks.

9 Limitations

While our proposed reward models demonstrate
strong performance in text-to-SQL tasks and show
much better performance than the execution-based
reward model, its SQL-specific architectural de-
sign currently restricts its applicability to broader
code generation domains. Generalizing our re-
ward model framework to support programming
languages such as Python and Java would require
some modifications to the language representation
mechanisms, particularly to address the challenge
of assessing functional equivalence across diverse
programming paradigms.

However, this limitation opens promising di-
rections for future work. We aim to explore the
applicability of the execution-free reward model
in broader code generation tasks in future work,
thereby offering viable alternatives to the com-
mon RL practice of relying solely on execution
outcomes. This extension may contribute to more
general, efficient, and flexible reinforcement learn-
ing training for code generation tasks.

12925

References
Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde,

Michael J Mior, and Daniel Lemire. 2018. Apache
calcite: A foundational framework for optimized
query processing over heterogeneous data sources.
In Proceedings of the 2018 International Conference
on Management of Data, pages 221–230.

Mariia Berdnyk and Marine Collery. 2025. Llm-based
sql generation with reinforcement learning. In The
First Workshop on Neural Reasoning and Mathemat-
ical Discovery at AAAI’2025. Workshop Paper.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–
345.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan
Martic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Proceedings of the 31st International Conference
on Neural Information Processing Systems, page
4302–4310, Red Hook, NY, USA. Curran Associates
Inc.

Bruce A Cota, Douglas G Fritz, and Robert G Sargent.
1994. Control flow graphs as a representation lan-
guage. In Proceedings of Winter Simulation Confer-
ence, pages 555–559. IEEE.

Richard Cyganiak. 2005. A relational algebra for
SPARQL. Digital Media Systems Laboratory HP
Laboratories Bristol. HPL-2005-170, 35(9).

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024a.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong,
Zhiling Luo, et al. 2024b. Xiyan-sql: A multi-
generator ensemble framework for text-to-sql. arXiv
preprint arXiv:2411.08599.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. ArXiv, abs/2401.14196.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-SQL in cross-domain database
with intermediate representation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4524–4535, Florence,
Italy. Association for Computational Linguistics.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang,
Shanghaoran Quan, Xingzhang Ren, Xuancheng Ren,
Jingren Zhou, and Junyang Lin. 2024. Qwen2.5-
coder technical report. ArXiv, abs/2409.12186.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained models
and deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:21314–21328.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and
Heesoo Park. 2025. MCS-SQL: Leveraging mul-
tiple prompts and multiple-choice selection for text-
to-SQL generation. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 337–353, Abu Dhabi, UAE. Association for
Computational Linguistics.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng
Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al.
2024. Spider 2.0: Evaluating language models on
real-world enterprise text-to-sql workflows. arXiv
preprint arXiv:2411.07763.

Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan,
Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020.
Re-examining the role of schema linking in text-to-
SQL. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6943–6954, Online. Association for
Computational Linguistics.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024a. Codes: Towards
building open-source language models for text-to-sql.
Proceedings of the ACM on Management of Data,
2(3):1–28.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024b. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals,
and Pushmeet Kohli. 2019. Graph matching net-
works for learning the similarity of graph structured
objects. In International conference on machine
learning, pages 3835–3845. PMLR.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. 2015. Gated graph sequence neu-
ral networks. arXiv preprint arXiv:1511.05493.

12926

https://openreview.net/forum?id=84M0Jaiapl
https://openreview.net/forum?id=84M0Jaiapl
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://api.semanticscholar.org/CorpusID:272707390
https://api.semanticscholar.org/CorpusID:272707390
https://aclanthology.org/2025.coling-main.24/
https://aclanthology.org/2025.coling-main.24/
https://aclanthology.org/2025.coling-main.24/
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564

Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes
Canedo, Jure Leskovec, et al. 2020. Neural subgraph
matching. arXiv preprint arXiv:2007.03092.

Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang,
Ran Chen, and Jian Guo. 2025. Sql-r1: Training natu-
ral language to sql reasoning model by reinforcement
learning. arXiv preprint arXiv:2504.08600.

Xuan-Bang Nguyen, Xuan-Hieu Phan, and Massimo
Piccardi. 2025. Fine-tuning text-to-sql models with
reinforcement-learning training objectives. Natural
Language Processing Journal, 10:100135.

Alex Orailoglu and Daniel D Gajski. 1986. Flow
graph representation. In Proceedings of the 23rd
ACM/IEEE Design Automation Conference, pages
503–509.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O Arik. 2025a. CHASE-SQL: Multi-path
reasoning and preference optimized candidate selec-
tion in text-to-SQL. In The Thirteenth International
Conference on Learning Representations.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36:36339–36348.

Mohammadreza Pourreza and Davood Rafiei. 2024.
DTS-SQL: Decomposed text-to-SQL with small
large language models. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 8212–8220, Miami, Florida, USA. Association
for Computational Linguistics.

Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun,
Xingchen Wan, Hailong Li, Azalia Mirhoseini, Amin
Saberi, Sercan Arik, et al. 2025b. Reasoning-sql: Re-
inforcement learning with sql tailored partial rewards
for reasoning-enhanced text-to-sql. arXiv preprint
arXiv:2503.23157.

Indradyumna Roy, Venkata Sai Baba Reddy Velugoti,
Soumen Chakrabarti, and Abir De. 2022. Inter-
pretable neural subgraph matching for graph retrieval.
Proceedings of the AAAI Conference on Artificial In-
telligence, 36(7):8115–8123.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Jie Shi, Bo Xu, Jiaqing Liang, Yanghua Xiao, Jia Chen,
Chenhao Xie, Peng Wang, and Wei Wang. 2025.

Gen-SQL: Efficient text-to-SQL by bridging nat-
ural language question and database schema with
pseudo-schema. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 3794–3807, Abu Dhabi, UAE. Association for
Computational Linguistics.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and
Chandan K. Reddy. 2023. Execution-based code
generation using deep reinforcement learning. Trans-
actions on Machine Learning Research.

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,
and Huan Sun. 2023. Exploring chain of thought
style prompting for text-to-SQL. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5376–5393, Singa-
pore. Association for Computational Linguistics.

Anna L Trella, Kelly W Zhang, Inbal Nahum-Shani,
Vivek Shetty, Finale Doshi-Velez, and Susan A Mur-
phy. 2023. Reward design for an online reinforce-
ment learning algorithm supporting oral self-care. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 15724–15730.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2025. MAC-
SQL: A multi-agent collaborative framework for text-
to-SQL. In Proceedings of the 31st International
Conference on Computational Linguistics, pages 540–
557, Abu Dhabi, UAE. Association for Computa-
tional Linguistics.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024. Synthesizing text-to-
SQL data from weak and strong LLMs. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7864–7875, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Zhewei Yao, Reza Yazdani Aminabadi, Olatunji
Ruwase, Samyam Rajbhandari, Xiaoxia Wu, Am-
mar Ahmad Awan, Jeff Rasley, Minjia Zhang,
Conglong Li, Connor Holmes, Zhongzhu Zhou,
Michael Wyatt, Molly Smith, Lev Kurilenko, Heyang
Qin, Masahiro Tanaka, Shuai Che, Shuaiwen Leon
Song, and Yuxiong He. 2023. DeepSpeed-Chat:
Easy, Fast and Affordable RLHF Training of
ChatGPT-like Models at All Scales. arXiv preprint
arXiv:2308.01320.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir

12927

https://doi.org/https://doi.org/10.1016/j.nlp.2025.100135
https://doi.org/https://doi.org/10.1016/j.nlp.2025.100135
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=CvGqMD5OtX
https://doi.org/10.18653/v1/2024.findings-emnlp.481
https://doi.org/10.18653/v1/2024.findings-emnlp.481
https://doi.org/10.1609/aaai.v36i7.20784
https://doi.org/10.1609/aaai.v36i7.20784
https://aclanthology.org/2025.coling-main.256/
https://aclanthology.org/2025.coling-main.256/
https://aclanthology.org/2025.coling-main.256/
https://openreview.net/forum?id=0XBuaxqEcG
https://openreview.net/forum?id=0XBuaxqEcG
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://aclanthology.org/2025.coling-main.36/
https://aclanthology.org/2025.coling-main.36/
https://aclanthology.org/2025.coling-main.36/
https://doi.org/10.18653/v1/2024.acl-long.425
https://doi.org/10.18653/v1/2024.acl-long.425

Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie,
Xiaotong Chen, and Wenhu Chen. 2025a. Acecoder:
Acing coder rl via automated test-case synthesis.
ArXiv, 2502.01718.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie,
Xiaotong Chen, and Wenhu Chen. 2025b. Acecoder:
Acing coder rl via automated test-case synthesis.

Yi Zhan, Longjie Cui, Han Weng, Guifeng Wang,
Yu Tian, Boyi Liu, Yingxiang Yang, Xiaoming Yin,
Jiajun Xie, and Yang Sun. 2025. Towards database-
free text-to-SQL evaluation: A graph-based metric
for functional correctness. In Proceedings of the 31st
International Conference on Computational Linguis-
tics, pages 4586–4610, Abu Dhabi, UAE. Associa-
tion for Computational Linguistics.

Yuxin Zhang, Meihao Fan, Ju Fan, Mingyang Yi, Yuyu
Luo, Jian Tan, and Guoliang Li. 2025. Reward-
sql: Boosting text-to-sql via stepwise reasoning and
process-supervised rewards. ArXiv, abs/2505.04671.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-SQL with distilled test suites.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 396–411, Online. Association for Computa-
tional Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
ArXiv, abs/1709.00103.

12928

https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
http://arxiv.org/abs/2502.01718
http://arxiv.org/abs/2502.01718
https://aclanthology.org/2025.coling-main.308/
https://aclanthology.org/2025.coling-main.308/
https://aclanthology.org/2025.coling-main.308/
https://api.semanticscholar.org/CorpusID:278394315
https://api.semanticscholar.org/CorpusID:278394315
https://api.semanticscholar.org/CorpusID:278394315
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://api.semanticscholar.org/CorpusID:25156106
https://api.semanticscholar.org/CorpusID:25156106

A Datasets Details

Spider (Yu et al., 2018) is a large-scale, cross-
domain Text-to-SQL benchmark containing 10,181
questions and 5,693 complex SQL queries. These
queries come from 200 multi-table databases across
138 domains. The dataset is split into three subsets
without any overlap in databases: training (8659),
development (1034) and test datasets. This sep-
aration helps ensure a fair assessment of model
performance.

BIRD (Li et al., 2024b) is another large-scale and
cross-domain Text-to-SQL dataset known for its
complexity. It contains 12,751 question-SQL pairs
drawn from 95 databases across more than 37 pro-
fessional fields, making it a challenging testbed for
evaluating the generalization capability of seman-
tic parsers. A notable characteristic of BIRD is its
“dirty” nature: queries may be inaccurate, column
names are often ambiguous or poorly described,
and databases may contain null values or irregular
encodings. These issues collectively pose unique
challenges for model robustness. The dataset is
split into 9,428 training examples and 1,534 devel-
opment examples, with the remaining reserved for
testing.

200k-Text2SQL comprises 200,000 examples
related to the text-to-SQL task. Each data en-
try also includes a question, a database schema,
and a reference SQL statement. To prepare the
model for generating clean SQL queries during the
PPO phase, we first fine-tune the Deepseek-coder-
1.3b-ins model via Supervised Fine-Tuning (SFT),
which enables the model to follow instructions
and complete Text-to-SQL tasks effectively. The
prompt used is detailed in Q. The dataset is avail-
able at: https://huggingface.co/datasets/
philikai/200k-Text2SQL.

B Evaluation Setting Details

Test-Suite (TS) Performance provides a robust and
reliable assessment of semantic accuracy. For ex-
ample, the original academic.sqlite database is
automatically augmented into 411 variants, result-
ing in a total of 412 test databases. Each predicted-
reference SQL pair is executed on all of them.
This reduces the likelihood of false positives and
strengthens the evaluation’s ability to detect seman-
tic discrepancies.

In our evaluation using the official TS frame-
work, we emphasize strictness in semantic verifica-

tion. Specifically, we enable the –keep_distinct
flag to preserve the use of the DISTINCT key-
word during evaluation. Meanwhile, we disable
–plug_value to avoid injecting ground-truth val-
ues into predicted queries, thus requiring the model
to generate complete SQL outputs, including cor-
rect values. We use the TS code to evaluate Spi-
der on its augmented dev split databases. For
BIRD, since no augmented databases are pro-
vided, we apply the TS code directly on its origi-
nal database. The code and augmented databases
are available at: https://github.com/taoyds/
test-suite-sql-eval.

In our experiments using the TS evaluation met-
ric, all hints (e.g., age = year - birth_year) in BIRD
dataset were deliberately omitted to align with the
setup of the Spider dataset. This methodological
choice results in lower performance metrics com-
pared to studies that incorporated the hints avail-
able in the BIRD dataset.

C Implement Details

C.1 Outcome Reward Experiments

For the outcome reward PPO experiments, we first
conduct a warm-up phase using a different dataset
from the target training corpus—200k-Text2SQL.
We sample an equivalent number of examples as
in the training split of Spider dataset and perform
2 epochs of SFT warm-up using SFT. The sam-
pling process also involves removing irrelevant
samples, such as those with queries in Chinese,
to ensure consistency and relevance in the train-
ing data. This warm-up helps the model adapt to
prompt-following behavior and prevents it from
generating non-SQL text. After SFT warm-up,
PPO training proceeds on the Spider/BIRD dataset
with hyperparameters shown in table 8. These hy-
perparameters, along with those for our reward
model, were either adopted from prior work (Sho-
jaee et al., 2023) or determined through empirical
experiments.

C.2 Stepwise Reward Experiments

For the stepwise reward PPO experiments, we en-
courage the generation of CTE-structured SQLs
by incorporating CTE-rewritten data into the SFT
stage. Since SQL queries in BIRD are generally
more complex than those in Spider, they are partic-
ularly well-suited for decomposition into modular
subqueries using the CTE format. To leverage this,
we rewrite the reference SQLs in the BIRD train-

12929

https://huggingface.co/datasets/philikai/200k-Text2SQL
https://huggingface.co/datasets/philikai/200k-Text2SQL
https://github.com/taoyds/test-suite-sql-eval
https://github.com/taoyds/test-suite-sql-eval

Table 8: PPO hyperparameters.

Hyperparameter Default Value

Optimizer AdamW
Learning Rate 5e-6
Scheduler Constant
Max Length 1024
Batch Size 32
Nmb Number of Mini-batches 8
Gradient Accumulation Steps 8
β (KL Penalty Coefficient) 0.05
γ (Discount Factor) 0.99
λ (for GAE) 0.99
K (PPO Update Iteration) 1
ε (PPO’s Policy Clipping Coefficient) 0.1
Value Function Loss Clipping True
ε̂ (Value Clipping Coefficient) 0.2
Sampling Temperature 1

ing set into CTE format using GPT-4o, following
the prompt strategies outlined in Appendix Q. The
resulting data is then combined with the warm-up
dataset used in the outcome reward model experi-
ments to construct a SFT warm-up set. This setup
encourages the model to generate CTE SQL, en-
abling effective application of stepwise reward sig-
nals during PPO training.

C.3 Qwen2.5-Coder-7B-Ins Experiments

Given the stronger capabilities of the base model,
we directly applied reinforcement learning to the
Qwen2.5-Coder-7B-Ins model using two distinct
RL protocols, GRPO and PPO, without any warm-
up training.

In experiments of Group Relative Policy Opti-
mization (GRPO) with Qwen2.5-Coder-7B-Ins, we
configured the learning rates for the actor and critic
to 5e-6 and 2e-6, respectively, with a warm-up pe-
riod of 10 steps to ensure stable training dynamics
in the early stages. The model was trained with
a batch size of 512, and mini-batches of size 256
were used. A weight decay of 0.1 was applied to
regularize the model and mitigate overfitting. The
group size for GRPO was set to 16, which corre-
sponds to the number of completions generated per
input prompt, thereby facilitating the optimization
of the policy through relative comparisons between
groups. For effective handling of long sequences,
we set the maximum prompt length to 4096 and the
maximum response length to 16,384.

We visualized the reward scores and entropy
values of the training dataset during the training
process, as shown in Figure 4 and Figure 5.

Figure 4: Reward score trends on the training set dur-
ing GRPO training. The green curve corresponds to
the execution-based reward model (EX), while the or-
ange curve shows the results using the proposed re-
ward model GMNScore. Both models are trained with
the Qwen2.5-Coder-7B-Ins backbone under the GRPO
framework. While GMNScore starts from a lower initial
score compared to EX, it demonstrates a larger overall
increase.

Figure 5: Actor entropy of GRPO training. Both models
are based on Qwen2.5-Coder-7B-Ins. The orange curve
corresponds to GMNScore and the green curve to EX.
Entropy consistently decreases as the policy becomes
more deterministic. GMNScore exhibits a faster reduc-
tion in entropy during the early training stages, while
both methods converge to similarly low-entropy levels
by the end of training.

D GRPO

In addition to experiments based on PPO, we also
evaluate our methods under the Group Relative
Policy Optimization (GRPO) RL framework (Shao
et al., 2024), in order to further assess the ef-
fectiveness of our proposed GMNScore outcome

12930

reward model. In the standard text-to-SQL set-
ting, let x denotes a natural language query, and
G = {q̂1, . . . , q̂G} denotes a group of G candi-
date SQL queries sampled from the current policy
πθ(·|x). To better leverage relative preferences
among candidates, GRPO optimizes the policy by
maximizing the following objective:

J(θ) =Ex∼D,G∼πθ(·|x)G
[
1

G

G∑

i=1

min

(
πθ(q̂i|x)
πθold(q̂i|x)

Ai,

clip

(
πθ(q̂i|x)
πθold(q̂i|x)

, 1− ϵ, 1 + ϵ

)
Ai

)

− β DKL (πθ(· | x) ∥πref(· | x))
]
,

where πθ and πθold denote the current and previous
policies, respectively, and πref is a fixed reference
policy used for KL regularization. The term Ai
represents the advantage of candidate q̂i within the
sampled group, reflecting its relative quality com-
pared to other completions. The ratio πθ(q̂i|x)

πθold (q̂i|x)
captures the likelihood shift under the current pol-
icy, while ϵ and β are hyperparameters that control
the clipping threshold and the strength of the KL
penalty, respectively.

By generating multiple candidates per input,
GRPO naturally accommodates the inherent ambi-
guities and challenges of mapping natural language
to SQL queries, ensuring that feedback is both ro-
bust and informative.

E Training of GMN of GMNscore

The Graph Matching Network (GMN) proposed
serves as a foundation for assessing SQL query
equivalence (Zhan et al., 2025), it was not origi-
nally designed for RL-based training. In our prelim-
inary evaluation, reward model GMNScore built on
the provided GMN model of FuncEvalGMN (Zhan
et al., 2025) lagged behind that of the baseline EX
under PPO experiments. We conducted a failure
case analysis focusing on example where scores
of GMNScore reward model disagreed with execu-
tion results. After manually checking, we identified
several types of potential error situations.

To develop a GMN better suited for RL-based
Text-to-SQL tasks, we retrain the model using an
augmented version of the Spider-train-pair dataset
introduced in (Zhan et al., 2025). The original
Spider-train-pair dataset consists of 17,664 SQL

query pairs annotated with binary equivalence la-
bels. Two corresponding sets for evaluation, Spider-
dev-pair and BIRD-dev-pair, contain 1,644 and
2,977 examples, respectively.

Seven augmentation strategies were crafted from
the identified failure cases, adding 3,397 training
pairs. The strategies are summarized in Table 9. Af-
ter augmentation, the training set exceeded 20,000
SQL pairs.

F Details of Execution Accuracy (EX)

Execution Accuracy (EX) is a commonly used re-
ward signal in text-to-SQL tasks, offering super-
vision based on the correctness of query execu-
tion. However, we do not adopt the naive binary
EX metric that only distinguishes between success
and failure. Instead, we adopt a stronger variant
of execution-based reward that integrates syntax
check signals and runtime diagnostics, resulting in
a more fine-grained supervision signal. Motivated
by prior work (Pourreza et al., 2025b; Shojaee et al.,
2023), this reward formulation extends traditional
binary execution accuracy with syntax awareness
and serves as a strong execution-based baseline for
comparison.

Given a generated SQL query q̂ and the reference
SQL q⋆, we compute the EX reward as:

rEX(q̂, q
⋆) =





1, correct execution
−0.3, incorrect execution
−0.6, runtime error
−1, syntax error

A runtime error refers to a situation where the
SQL query is syntactically correct but fails during
execution. This can occur, for example, when a
non-existent table or column is referenced in the
query. This reward formulation provides more in-
formative feedback to the policy model, especially
during early training stages when most queries fail
due to syntax or runtime errors, avoiding undiffer-
entiated negative signals.

For the false positive problem of execution-
based rewards, Test Suite (TS) (Zhong et al., 2020)
attempted to improve robustness by using a set of
test cases to simulate query behavior under differ-
ent data distributions. Nevertheless, as shown in
(Zhan et al., 2025), both false positives (semanti-
cally incorrect queries that return the right result)
and false negatives (semantically correct queries
that fail under test data) persist, due to the reliance
on incomplete or ambiguous database contents.

12931

Number Augmentation Type Original SQL Augmented Result

Enhancement of equivalent cases

137 IN Clause Replacement Original: SELECT Name FROM (SELECT Name, Age
FROM technician) AS t
WHERE Age IN (36, 37)

Aug: SELECT Name FROM (SELECT Name, Age FROM
technician) AS t
WHERE Age = 36 OR Age = 37

Enhancement of non-equivalent cases

422 Column Name Perturbation
(Select Clause)

Original: SELECT actid FROM activity Aug: SELECT acti FROM activity
Aug: SELECT ctid FROM activity

566 Keyword Replacement
(AND/OR)

Original: SELECT * FROM Products
WHERE Price >= 60 AND Price <= 120

Aug: SELECT * FROM Products
WHERE Price >= 60 OR Price <= 120

1094 Symbol Replacement
(Comparison Operator)

Original: SELECT * FROM (SELECT dept_name,
building FROM department) AS t
WHERE building > (SELECT AVG(building) FROM
department)

Aug: SELECT * FROM (SELECT dept_name, building
FROM department) AS t
WHERE building >= (SELECT AVG(building) FROM
department)

276 Table Source Replacement Original: SELECT * FROM (SELECT name, email
FROM user_profiles) AS t
WHERE name LIKE ’%Swift%’

Aug: SELECT * FROM (SELECT name, email FROM
user) AS t
WHERE name LIKE ’%Swift%’

64 Column Name Replacement Original: SELECT candidate_id FROM candidate
ORDER BY candidate_id DESC LIMIT 3

Aug: SELECT people_id FROM candidate
ORDER BY people_id DESC LIMIT 3

838 Column Removal Original: SELECT circuitid, location FROM
(SELECT circuitid, location, country FROM
circuits) AS t
WHERE country = ’fraNce’ OR country = ’belGium’

Aug: SELECT circuitid FROM (SELECT circuitid,
country FROM circuits) AS t
WHERE country = ’fraNce’ OR country = ’belGium’

Table 9: Examples of SQL augmentation strategies used for generating non-equivalent/equivalent SQL pairs. Each
example introduces specific perturbations (e.g., column name change or logical operator replacement) that alter the
semantics of the original SQL.

Furthermore, frequent SQL execution signifi-
cantly increases computational overhead, becom-
ing the major bottleneck during RL training, where
query evaluation must occur at each rollout step.

G Cost Analysis of Reward Models

To evaluate the computational efficiency of differ-
ent reward models, we conduct experiments on
an edge server equipped with an Intel Xeon Plat-
inum 8336C CPU (128 cores) and a total memory
capacity of 2.0 TiB. Our comparison focuses ex-
clusively on model-based reward functions. Rule-
based reward methods (AstPM/RelPM outcome
reward model and our proposed stepwise reward
model StepRTM) are excluded from this analysis
as they incur negligible memory overhead.

Reward Type Time↓ Params↓ GPU Memory↓
EX 1.088s N/A N/A
BTRM 0.095s 1.35B 9304MB
GMNScore 0.023s 3.99M 83MB

Table 10: Cost comparison across reward models.

Time Cost. We use the training split of the Spi-
der dataset and perform one epoch of PPO train-
ing, during which we measure the total time con-
sumed by the reward score computation. We then
record the average reward calculation time per sam-
ple, providing insights into the computational ef-

ficiency of different reward models. Both BTRM
and GMNScore are implemented using bfloat16
precision for acceleration. Execution-based reward
(EX) incurs the highest computational cost due to
repeated database calls. While EX can leverage
high concurrency when executed on the CPU to
accelerate performance, it still remains slower in
practice due to its reliance on database calls. In
real-world scenarios, different GPU rollouts of sam-
ples are processed concurrently through the reward
model, which can improve processing speed. How-
ever, both BTRM and GMNScore can also easily
achieve parallelization by loading the same model
onto each GPU. Therefore, the speed reflected in
the table is representative of the actual performance
in training.

Model Size. We also compare the model sizes
based on the total number of parameters using:
p.numel () for p in model.parameters ()

We train Bradley-Terry Reward Model (BTRM)
using DeepSeek-Coder-1.3B-Ins as the base model,
with a total of 1,346,471,936 parameters. In
contrast, GMNScore adopts a lightweight Graph
Matching Network with only 3,994,944 parame-
ters.

Memory Cost. To evaluate GPU memory con-
sumption during inference, we apply:
torch.cuda.reset_peak_memory_stats ()

12932

0 20 40 60 80 100
Training Epoch

0.75

0.80

0.85

0.90

0.95

1.00

G
M

N
 A

U
C

Sc
or

e
0.976 0.984 0.986 0.984 0.987 0.989

GMN
BTRM 0.76

0.78

0.80

0.82

0.84

BT
RM

 A
U

C
Sc

or
e

0.818

0.785 0.789

0.776 0.779
0.785

Figure 6: There is a high Area Under the Curve (AUC)
score between the GMNScore and execution results,
consistently exceeding 97.6% during training.

here is model inference code
torch.cuda.max_memory_allocated ()

On average, BTRM consumes approximately
9304 MB of GPU memory, while GMNScore re-
quires only 83 MB.

H Analysis of GMNScore Accuracy

Experimental results demonstrate the effectiveness
of GMNScore as a reward model in PPO, signifi-
cantly outperforming BTRM. We analyze the cor-
relation5 between these two reward signals and ac-
tual execution outcomes during PPO training. As
shown in Figure 6, GMNScore consistently main-
tains a high correlation with the execution results.
This indicates that GMNScore provides a more sta-
ble and precise reward signal than BTRM during
training, contributing to its superior performance.

I Hybrid Outcome Reward Designs

Method Spider BIRD Avg.

DeepSeek-Coder-1.3B-Ins 39.56 11.34 25.45
+ PPO w/ RelPM 62.86 14.67 38.77
+ PPO w/ EX 65.28 17.21 41.25
+ PPO w/ GMNScore 67.70 16.10 41.90

+ PPO w/ EX & AstPM 62.38 16.43 39.41
+ PPO w/ GMNScore & AstPM 65.28 16.17 40.73
+ PPO w/ GMNScore & RelPM 66.34 16.69 41.52
+ PPO w/ EX & GMNScore 67.02 17.73 42.38
+ PPO w/ EX & RelPM 68.28 18.77 43.53

Table 11: TS Performance of DeepSeek-Coder-1.3B-Ins
models under different combinations of outcome reward
strategies.

We investigate whether combining multiple out-
come reward models can further improve perfor-
mance. Inspired by recent work that integrates

5AUC is used as a metric to assess the accuracy of sim-
ilarity evaluation (Zhan et al., 2025). In our experiments, a
score of 100% does not indicate optimal performance, as false
negatives are present in the execution outcomes.

multiple reward signals (Pourreza et al., 2025b;
Ma et al., 2025), we explore various combinations
among EX, GMNScore, RelPM, and AstPM. As
shown in Table 11, combining EX with RelPM
achieves the best overall performance, increasing
the average accuracy from 41.90% (GMNScore
alone) to 43.53%. The second-best result comes
from EX combined with GMNScore, reaching
42.38%.

We attribute the relatively lower performance of
EX & GMNScore compared to EX & RelPM to the
fact that both EX and GMNScore emphasize global
correctness. This may lead to redundant or even
conflicting feedback, limiting the effectiveness of
their combination. In contrast, the integration of
RelPM provides localized partial matching signals,
which offer complementary supervision and im-
prove the performance.

Moreover, combining AstPM with either GMN-
Score or EX does not outperform using GMNScore
or EX alone. We suspect this is due to AstPM’s fo-
cus on surface-level syntax. It may penalize syntac-
tically different yet semantically equivalent SQLs,
introducing false negatives that degrade training
quality. As a result, this syntactic noise may under-
mine the semantic robustness provided by GMN-
Score or EX.

While GMNScore & RelPM performs better
than RelPM alone, it still falls short of GMN-
Score alone. We believe this is because RelPM,
although based on ROT to capture richer structural
semantics, still relies on partial matching algorithm,
which struggles to fully capture deep semantic
equivalence. By contrast, GMNScore directly lever-
ages graph matching to assess functional equiva-
lence, demonstrating strong robustness and stabil-
ity.

It is worth noting, however, that the effective-
ness of combining multiple outcome rewards is
significantly lower than that of our proposed Step-
wise Reward model, StepRTM. The highest value
achieved by the outcome rewards combination is
43.53%, whereas StepRTM achieves a higher value
of 45.32%, representing an improvement of 1.79%.
This highlights the effectiveness of our designed
stepwise reward model StepRTM. More impor-
tantly, StepRTM introduces no additional costs in
terms of database execution time or GPU memory
consumption.

12933

Method Spider BIRD Avg.

DeepSeek-Coder-1.3B-Ins 39.56 11.34 25.45
+ PPO w/ AstPM 51.26 11.47 31.37
+ PPO w/ RelPM 51.45 14.73 33.09
+ PPO w/ BTRM 51.35 15.45 33.40
+ PPO w/ EX 52.71 15.84 34.28
+ PPO w/ GMNScore (Our) 53.87 15.58 34.73

Table 12: TS Performance of DeepSeek-Coder-1.3B-Ins
models under different outcome rewards with BIRD-
Train.

J Generalization of GMNScore Reward

Although the GMN of GMNScore reward model
is trained solely on SQL equivalence data derived
from the Spider dataset, it exhibits strong cross-
database generalization without requiring any addi-
tional fine-tuning. As shown in Table 12, when RL
is conducted on the training split of BIRD, GMN-
Score continues to outperform execution-guided
(EX) reward in average TS performance, consistent
with the results on training split of Spider.

More broadly, we observe that across both train-
ing configurations of Spider and BIRD, our GMN-
Score consistently achieves higher average vali-
dation performance than EX. However, a finer-
grained comparison reveals a nuanced trend: on
both DeepSeek-Coder-1.3B and 6.7B with PPO,
GMNScore consistently outperforms EX on the
Spider evaluation dataset but shows a slight perfor-
mance drop on the BIRD evaluation dataset.

We attribute this discrepancy to the inherent lim-
itations of the GMN model itself. Although we
enhanced GMN through data augmentation based
on the Spider-train-pair dataset (Zhan et al., 2025),
the augmented data is still constructed from Spider-
style SQL, which biases the model toward better
alignment with the structural and stylistic patterns
of Spider. In contrast, the BIRD dataset is signifi-
cantly more challenging, containing more complex
SQL constructs such as deeply nested subqueries.
As a result, GMN may struggle to judge equiva-
lence in BIRD-style queries as accurately as its per-
formance in Spider. For example, GMN is likely to
score generated SQL in Spider-like styles more ac-
curately, leading to more consistent reinforcement
signals, while its scoring fidelity for BIRD-like
styles is relatively weaker.

In contrast, the EX reward is purely execution-
based and thus remains more robust to variations
in dataset complexity and style. However, EX also
suffers from false positives. Despite this slight drop

in the BIRD dataset, GMNScore offers substan-
tially larger improvements on Spider and achieves
the best overall average performance. We further
hypothesize that stronger base models can compen-
sate for the small drop in reward signal quality in
the BIRD dataset.

As discussed previously, GMNScore exhibits
slightly reduced BIRD performance compared
to EX when using Deepseek-Coder-1.3b/6.7b-Ins
models, likely due to GMN’s limited generalization
on BIBD-style SQL. However, this performance
gap decreases with stronger base models. As shown
in Table 13, when using Qwen-Coder-7B and 14B
as the policy backbone, GMNScore not only consis-
tently outperforms EX on Spider, but also achieves
superior results on BIRD. This further supports the
effectiveness and scalability of our reward model
framework across different model capacities.

K Detailed Effectiveness of GMNScore
Across GRPO

Method Spider BIRD Avg.

Qwen2.5-Coder-7B-Ins 62.67 22.69 42.68
+ PPO w/ EX 75.24 29.01 52.13
+ PPO w/ GMNScore (Ours) 76.89↑1.65 29.60↑0.59 53.25↑1.12

+ GRPO w/ EX 76.40 28.49 52.45
+ GRPO w/ GMNScore (Ours) 78.53↑2.13 29.92↑1.43 54.23↑1.78

Qwen2.5-Coder-14B-Ins 71.08 29.29 50.19
+ PPO w/ EX 74.66 32.98 53.82
+ PPO w/ GMNScore (Ours) 77.37↑2.71 33.70↑0.72 55.54↑1.72

+ GRPO w/ EX 77.56 33.90 55.73
+ GRPO w/ GMNScore (Ours) 78.34↑0.78 34.35↑0.45 56.35↑0.62

Table 13: TS Performance of Qwen2.5-Coder-7B/14B-
Ins models directly trained by PPO/GRPO under EX
and GMNScore outcome rewards.

As shown in Table 13, our proposed GMN-
Score consistently outperforms the EX across both
PPO and GRPO training paradigms, and for both
Qwen2.5-Coder-7B-Ins and 14B-Ins models. On
the 7B model, GMNScore improves the average
score from 52.13% to 53.25% under PPO train-
ing (+1.12%), and from 52.45% to 54.23% un-
der GRPO training (+1.78%). Similarly, on the
14B model, GMNScore boosts the average score
by +1.72% under PPO and +0.62% under GRPO.
These consistent improvements demonstrate that
GMNScore provides a stable reward signal than
EX. Overall, these results confirm the superiority
of GMNScore in guiding RL-based Text-to-SQL
tasks more effectively than execution-based EX
reward model.

12934

table

join

filter

First
Match

StepRTM Reward Calculation

Second
Match

root

B. ROT Presentation for each SQL/subquery C. Stepwise Reward Calculation

SELECT COUNT(T1.id) FROM superhero AS T1

INNER JOIN hero_power AS T2 ON T1.id = T2.hero_id

INNER JOIN superpower AS T3 ON T2.power_id = T3.id

INNER JOIN colour AS T4 ON T1.eye_colour_id = T4.id

WHERE T3.power_name = 'Agility' AND T4.colour = 'Blue'

Reference SQL

WITH BlueEyesSuperheroes AS (

SELECT T1.id FROM superhero AS T1

INNER JOIN colour AS T2 ON T1.eye_colour_id = T2.id

WHERE T2.colour = 'Blue'),

Generated CTE-SQL Subquery1: Select all superheroes with blue eyes

AgilityPowers AS (

 SELECT T3.hero_id FROM hero_power AS T3

 INNER JOIN superpower AS T4 ON T3.power_id = T4.id

 WHERE T4.power_name = 'Agility')

Subquery2: Select all superheroes with the Agility power

SELECT COUNT(*) FROM BlueEyesSuperheroes

INNER JOIN AgilityPowers

ON BlueEyesSuperheroes.id = AgilityPowers.hero_id

Subquery3: Join the above two results on hero_id then count the number

End Char Index: 150

End Char Index: 303

A. Subquery Extraction of CTE

End Char Index: 320

superhero

Third
Match

colour

id

eye_colour_id

color

=‘Blue’

superpower

id

power_id

p…name

=‘Agility’

hero_power

t1 t2 t3 t4 c1 c3 c5

c6c2 c4

c6 c7

s1 s2

t1 t2 c1

c2

c6

s1

c3

c4

t3 t4

t1 t2 t3 t4 id

c6

c5

hero_id

c7

s2

t1 t2 t3 t4 c1 c3 c5

c2 c4

c7

s1 s2c6

c6

Nodes of Reference SQL RelNode

Nodes of Generated SQL RelNode

Matched Nodes

t1 t2 t3 t4 c1 c3 c5

c2 c4

c7

s1 s2c6

c6

t1 t2 t3 t4 c1 c3 c5

c2 c4

c7

s1 s2c6

c6

Matching

Figure 7: Detailed Overview of the StepRTM Stepwise Reward Calculation.

L StepRTM Calculation

In Figure 2 in Methodology part, we presented
an extremely simplified example. As shown in
Figure 7, we offer a figure with more information
to help better understand the StepRTM calculation
process.

M Training Details of Neural Reward
Model with Language odeling

Preference Data Construction We construct
preference data using the Spider-Train Pair from
GMN’s training set. Preference pairs are formed
through label-driven selection, where chosen re-
sponses strictly correspond to label = 1, mapped
from the new_labels column, while rejected re-
sponses (negative samples) come from the same
prompt cluster. Within each group, all possible
pairs between chosen (label = 1) and rejected
(label ̸= 1) responses are generated.

Reward Model Training To train the reward
model in the above preference pairs, we fine-
tune the pretrained model DeepSeek-Coder-1.3B-
Instruct with a reward head. Training is carried out
using an effective batch size of 16 with gradient
accumulation 2. We use the AdamW optimizer, a
learning rate of 1.41× 10−5, and a linear warm-up
schedule. The model is trained for five epochs with
a sequence length of 2048 tokens.

Prompt Engineering Strategy The reward
model should effectively evaluates the generated

SQL based on both syntactic clarity and execution-
level correctness. To reinforce schema understand-
ing and functional equivalence, the data was struc-
tured as follows:

Dataset

[Table Schema]
[Question]
[Reference SQL]
Please give a SQL that is functionally
identical to the SQL above:
[Chosen SQL/Rejected SQL]

N RelNode-based Partial Matching

To enable semantic-level comparison of SQL
queries, each query is converted into a Relational
Operator Tree (ROT)—a representation of the
query’s logical execution plan. Each ROT is con-
structed by parsing the SQL into relational alge-
bra expressions that capture the sequence and de-
pendency of logical operations (Cyganiak, 2005).
In practice, this conversion is performed using
Apache Calcite (Begoli et al., 2018), which yields
a canonical ROT structure referred to as a RelN-
ode. 6 The RelNode abstraction refines the logical
plan via operator reordering and redundant clause
elimination, making it robust to syntactic variations
while preserving execution semantics.

Based on RelNode representations, a partial
matching strategy is employed to measure the sim-

6https://github.com/apache/calcite.

12935

https://github.com/apache/calcite

ilarity between the relational operator trees of the
reference SQL R(q⋆) and the generated SQL R(q̂).
Let Nq⋆ and Nq̂ denote the sets of nodes in the
RelNodes of the reference and generated queries,
respectively. A node pair (n, n′) is considered a
match, denoted as match(n, n′), if the two nodes
share the same relational operator type and their
associated attributes are semantically equivalent.

To determine the best match for a node n′ ∈
Nq̂, we score it against all candidate nodes from
Nq⋆ , selecting the highest-scoring candidate. Each
candidate score mj is computed recursively as a
weighted sum of node-level similarity and the aver-
age similarity of their child nodes:

mj = α ·mj
self + (1− α) · 1

N

N∑

i=1

mj

child(i)

where α ∈ (0, 1), and a smaller value of α empha-
sizes structural alignment by favoring subtree sim-
ilarity, while a larger value prioritizes node-level
matching accuracy.

Based on the above definition, the precision and
recall of the matching results are computed as:

Precision =
|{n ∈ Nq̂ | ∃n′ ∈ Nq⋆ , match(n, n′)}|

|Nq̂|

Recall =
|{n ∈ Nq⋆ | ∃n′ ∈ Nq̂, match(n, n′)}|

|Nq⋆ |

Here, match(n, n′) denotes a binary function
that returns 1 if nodes n and n′ are matched, and
0 otherwise. In the context of SQL generation,
capturing the semantics of the reference SQL is
prioritized. The final reward rRelPM is calculated
using a relatively large β to emphasize recall as
follows:

rRelPM =
(1 + β2) · Precision · Recall
β2 · Precision + Recall

(1)

O FuncEvalGMN

RelNode presentations are firstly convert into
graphs. Nodes in the graphs represent relational
operators or expressions, while edges capture both
logical execution dependencies and data flow re-
lations. Nodes represent relational operators or
expressions, and edges capture execution depen-
dencies and data flows. A GMN (Li et al., 2019)
encodes these graphs through three stages: inner-
graph message passing, cross-graph semantic align-
ment, and gated aggregation.

In the inner-graph message passing stage, node
embeddings are iteratively updated by aggregating
information from their local neighborhoods:

m
(t+1)
v =

∑
u ∈ N(v)finner(h

(t)
v , h

(t)
u , euv),

(2)
where h

(t)
v and h

(t)
u denote the hidden representa-

tions of nodes v and u at step t, and euv is the edge
embedding derived from a learned layer.

Next, the cross-graph message passing stage
aligns structurally similar components between Gq̂
and Gq∗ using cross-attention:

r(t)v = MLP(h(t)v ⊕ p(t)v),

µ(t+1)
v =

∑

u∈G2(v)

au→v(r
(t)
v − r(t)u), (3)

where p
(t)
v is the positional encoding and au→v is

the attention weight defined by:

au→v =
exp(s(r

(t)
v , r

(t)
u))

∑
u′∈G2(v)

exp(s(r
(t)
v , r

(t)
u′))

, (4)

where s(rv, ru) =
rv ·ru√
d

and d is the dimension-
ality of node embeddings. This cross-graph atten-
tion mechanism enables fine-grained alignment be-
tween substructures in different SQL queries. After
T propagation steps, the graph-level representation
is computed via a gated aggregation mechanism (Li
et al., 2015), which selectively emphasizes salient
node features:

hG = MLPG

(∑

v∈V
σ
(
MLPgate(h

(T)
v)

)
⊙MLP(h(T)v)

)
, (5)

where σ(·) is the sigmoid function and ⊙ de-
notes element-wise multiplication. To quantify se-
mantic similarity between q̂ and q⋆, we compute
the negative Euclidean distance between their final
graph embeddings:

rsimilarity = −
∥∥∥hGq̂

− hGq∗

∥∥∥
2

(6)

12936

P Prompt Strategy of CTE

We incorporate CTE-style data into the supervised fine-tuning (SFT) phase to encourage the generation
of Common Table Expressions (CTEs). Specifically, we augment the training set by rewriting examples
from the BIRD-train dataset. Each example is first passed through two prompting stages using GPT-4o:
(1) determining whether the original SQL query is complex enough to benefit from CTE rewriting, and
(2) if so, performing the actual CTE transformation. We then evaluate the functional equivalence of
the rewritten and original SQL queries using Test Suite Accuracy to ensure correctness. This pipeline
yields 3,252 rewritten examples (BIRD-train-CTE) and 3,810 unmodified examples that were deemed
unnecessary to rewrite. The prompts and an example transformation are shown below.

P.1 CTE Rewriting Necessity Judgment

Instruction

You are provided with the following SQL statement:
{Reference_SQL}
Evaluate the complexity of the given SQL query.
Determine if splitting it into Common Table Expressions (CTEs) using WITH x AS clauses
would help with understanding. If the query is complex and CTEs would be beneficial, output
{{"cte_necessary": "True"}}.
If the query is simple and does not require CTEs (for example, a basic single - table SELECT with
simple conditions like SELECT SUM(occurrences) FROM words WHERE LENGTH(word) = 3),
output {{"cte_necessary": "False"}}.

P.2 CTE Rewriting

Instruction

Text-to-SQL is a task of transforming natural language queries into Structured Query Language
(SQL) statements.
Table Schema:
{prompt_schema}
Question:
{query}
You are given the following SQL statement as an response (GroundTruth_SQL):
{Reference_SQL}
Rewrite above SQL query into a Common Table Expression (CTE) format using ‘WITH x AS‘
clauses. Break the query into logical steps and use intermediate CTEs for each step.
The response format should be:
{{"sql": "<CTE-formatted SQL statement>"}}

P.3 CTE Rewriting Example

Type Content

Question What is the shipment ID of the heaviest shipment that Zachery Hicks transported?

Reference SQL SELECT T1.ship_id FROM shipment AS T1 INNER JOIN driver AS T2 ON T1.driver_id =
T2.driver_id WHERE T2.first_name = ’Zachery’ AND T2.last_name = ’Hicks’ ORDER BY
T1.weight DESC LIMIT 1

Reference CTE SQL WITH DriverShipments AS (SELECT T1.ship_id, T1.weight FROM shipment AS T1 INNER
JOIN driver AS T2 ON T1.driver_id = T2.driver_id WHERE T2.first_name = ’Zachery’ AND
T2.last_name = ’Hicks’), HeaviestShipment AS (SELECT ship_id FROM DriverShipments
ORDER BY weight DESC LIMIT 1) SELECT ship_id FROM HeaviestShipment

12937

Q Prompt Strategy of Text-to-SQL Task

Instruction

There are two tables: singer, song.
the structure of table singer is as follows:
column name	column type
————	————
singer_id	number
name	text
birth_year	number
net_worth_millions	number
citizenship	text
singer_id is the primary key.

the structure of table song is as follows:
column name	column type
————	————
song_id	number
title	text
singer_id	number
sales	number
highest_position	number
song_id is the primary key.
The singer_id is the foreign key, reference to singer_id in table singer.

Question: What is the sname of every sing that does not have any song?
The corresponding SQL code is:

Reference SQL (Ground Truth SQL)

SELECT Name FROM singer WHERE Singer_ID NOT IN (SELECT Singer_ID FROM song)

Example Generated SQL

SELECT name FROM singer WHERE NOT singer_id IN (SELECT singer_id FROM song)

12938

R Reasoning Prompt Strategy of Text-to-SQL Task (for Qwen2.5-Coder-7B)

Instruction with Reasoning

You are an experienced database expert. Given the database schema and the user’s question, your
task is to write a single SQL that correctly answers the question.

Database schema:
There are two tables: manufacturers, products.
the structure of table manufacturers is as follows:
column name	column type
————	————
code	number
name	text
......
the structure of table products is as follows:
......
Question: What is the average price across all products?

Respond in the following format:
<think>
Your detailed and step-by-step thinking path toward finding the correct SQL query
</think>
<answer>
“‘sql
Your predicted SQL query
“‘
</answer>
Now is your turn to respond in the above format.

Example Generated Response

<think>
1. **Understand the Task**: The task is to find the total hours of all projects in the database.
2. **Identify Relevant Table**: From the schema, the table that contains the project hours is the
‘projects‘ table.
3. **Identify Relevant Column**: The column in the ‘projects‘ table that contains the hours is
‘hours‘.
4. **Formulate the SQL Query**: To get the total hours, we need to sum up all the values in the
‘hours‘ column of the ‘projects‘ table.
</think>
<answer>
“‘sql
SELECT headquarters
FROM companies
GROUP BY headquarters
HAVING COUNT(*) > 2;
“‘
</answer>

12939

S Case Study: Outcome Reward Comparison

To illustrate the behavioral differences of reward models under the outcome-based reward setting, we
present four case studies comparing responses generated by models trained with SFT, BTRM, EX and
GMN rewards.

Table 14: Sample query, responses from the model trained with Reward model based GMN, BTRM and Execution.
If it is an obvious error, we color the text in the error location red.

Type Content TS

Prompt There are four tables: city, sqlite_sequence, country, countrylanguage. N/A
the structure of table city is as follows:
...
the structure of table sqlite_sequence is as follows:
...

the structure of table country is as follows:
column name	column type
————	————
code	text
name	text
continent	text
region	text
surfacearea	number
indepyear	number
population	number
lifeexpectancy	number
gnp	number
gnpold	number
localname	text
governmentform	text
headofstate	text
capital	number
code2	text
code is the primary key.

the structure of table countrylanguage is as follows:
...

Question: Find the government form name and total population for each govern-
ment form whose average life expectancy is longer than 72.

Groundtruth SELECT sum(Population) , GovernmentForm FROM country GROUP BY
GovernmentForm HAVING avg(LifeExpectancy) > 72

N/A

SFT select governmentform, sum(population) from country where lifeexpectancy >
72 group by governmentform

0

BTRM SELECT governmentform, SUM(population) FROM country WHERE lifeex-
pectancy > 72 GROUP BY governmentform

0

EX SELECT governmentform, SUM(population) FROM country WHERE lifeex-
pectancy > 72 GROUP BY governmentform

0

GMN SELECT governmentform, SUM(population) FROM country GROUP BY gov-
ernmentform HAVING AVG(lifeexpectancy) > 72

1

12940

Table 15: Sample query, responses from the model trained with Reward model based GMN, BTRM and Execution.
If it is an obvious error, we color the text in the error location red.

Type Content TS

Prompt There are six tables: continents, countries, car_makers, model_list, car_names,
cars_data.

N/A

the structure of table continents is as follows:
...

the structure of table countries is as follows:
...

the structure of table car_makers is as follows:
...

the structure of table model_list is as follows:
...

the structure of table car_names is as follows:
column name	column type
————	————
makeid	number
model	text
make	text
makeid is the primary key.
The model is the foreign key, reference to model in table model_list.

the structure of table cars_data is as follows:
column name	column type
————	————
id	number
mpg	text
cylinders	number
edispl	number
horsepower	text
weight	number
accelerate	number
year	number
id is the primary key.
The id is the foreign key, reference to makeid in table car_names.

Question: What is the accelerate of the car make amc hornet sportabout (sw)?

Groundtruth SELECT T1.Accelerate FROM CARS_DATA AS T1 JOIN CAR_NAMES AS
T2 ON T1.Id = T2.MakeId WHERE T2.Make = ’amc hornet sportabout (sw)’;

N/A

SFT select t2.accelerate from car_makers as t1 join cars_data as t2 on t1.id = t2.id
where t1.make = "amc" and t1.model = "hornet sportabout"

0

BTRM SELECT cars_data.accelerate FROM cars_data INNER JOIN car_names ON
cars_data.makeid = car_names.makeid WHERE car_names.model = ’amc hornet
sportabout (sw)’

0

EX SELECT accelerate FROM cars_data WHERE id IN (SELECT makeid FROM
car_names WHERE model = ’sportabout (sw)’)

0

GMN SELECT cars_data.accelerate FROM cars_data INNER JOIN car_names ON
cars_data.id = car_names.makeid WHERE car_names.make = ’amc hornet
sportabout (sw)’

1

12941

Table 16: Sample query, responses from the model trained with Reward model based GMN, BTRM and Execution.
If it is an obvious error, we color the text in the error location red.
GT Explanation: from the CAR_NAMES table and the CARS_DATA table by associating the MakeId with the Id,
sort the rows by mpg descending order and take the first record.

Type Content TS

Prompt There are six tables: continents, countries, car_makers, model_list, car_names,
cars_data.

N/A

...
the structure of table model_list is as follows:
column name	column type
————	————
modelid	number
maker	number
model	text
modelid is the primary key.
The maker is the foreign key, reference to id in table car_makers.

the structure of table car_names is as follows:
column name	column type
————	————
makeid	number
model	text
make	text
makeid is the primary key.
The model is the foreign key, reference to model in table model_list.

the structure of table cars_data is as follows:
column name	column type
————	————
id	number
mpg	text
cylinders	number
edispl	number
horsepower	text
weight	number
accelerate	number
year	number
id is the primary key.
The id is the foreign key, reference to makeid in table car_names.

Question: Which model saves the most gasoline? That is to say, have the
maximum miles per gallon.

Groundtruth SELECT T1.Model FROM CAR_NAMES AS T1 JOIN CARS_DATA AS T2
ON T1.MakeId = T2.Id ORDER BY T2.mpg DESC LIMIT 1;

N/A

SFT select t2.model from cars_data as t1 join model_list as t2 on t1.id = t2.modelid
group by t1.id order by t1.edispl desc limit 1

0

BTRM SELECT model FROM cars_data ORDER BY mpg DESC LIMIT 1 0

EX SELECT model FROM model_list ORDER BY mpg DESC LIMIT 1 0

GMN SELECT car_names.model FROM cars_data INNER JOIN car_names ON
cars_data.id = car_names.makeid ORDER BY cars_data.mpg DESC LIMIT
1

1

12942

Table 17: Sample query, responses from the model trained with Reward model based GMN, BTRM and Execution.
If it is an obvious error, we color the text in the error location red.
Error Explanation of SFT: The id equivalents of tv_channel and cartoon have different meanings and should not be
connected simply by using the id.
Error Explanation of BTRM: Question focused on cartoon is not suitable to use Inner join channel table, no foreign
key connection, should not assume that all channels in the cartoon table in the database have a corresponding id
stored in tv_channel.

Type Content TS

Prompt There are three tables: tv_channel, tv_series, cartoon. N/A
the structure of table tv_channel is as follows:
column name	column type
————	————
id	text
series_name	text
country	text
language	text
content	text
pixel_aspect_ratio_par	text
hight_definition_tv	text
pay_per_view_ppv	text
package_option	text
id is the primary key.

the structure of table tv_series is as follows:
| column name | column type |
...

the structure of table cartoon is as follows:
column name	column type
————	————
id	number
title	text
directed_by	text
written_by	text
original_air_date	text
production_code	number
channel	text
id is the primary key.

Question: find the package option of the tv channel that do not have any cartoon
directed by Ben Jones.

Groundtruth SELECT package_option FROM TV_Channel WHERE id NOT IN (SELECT
channel FROM cartoon WHERE directed_by = ’Ben Jones’)

N/A

SFT select distinct package_option from tv_channel except select t1.package_option
from tv_channel as t1 join cartoon as t2 on t1.id = t2.id where t2.directed_by =
"Ben Jones"

0

BTRM SELECT tv_channel.package_option FROM tv_channel EXCEPT SELECT
tv_channel.package_option FROM tv_channel INNER JOIN cartoon ON
tv_channel.id = cartoon.channel WHERE cartoon.directed_by = "Ben Jones"

0

EX SELECT package_option FROM tv_channel WHERE NOT id IN (SELECT
directed_by FROM cartoon WHERE directed_by = ’Ben Jones’)

0

GMN SELECT package_option FROM tv_channel WHERE NOT id IN (SELECT
channel FROM cartoon WHERE directed_by = ’Ben Jones’)

1

12943

