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Abstract

Patent classification is a fundamental step in
the patent examination process, directly im-
pacting the efficiency and quality of substan-
tive review. Existing methods mostly focus
on general texts like titles and abstracts, thus
ignoring the key technical content claims and
the corresponding citation relationships. Mean-
while, these approaches treat labels as indepen-
dent targets, failing to exploit the semantic and
structural information within the label taxon-
omy. To address these problems, we propose
a Claim Structure based Patent Classification
model with Label Awareness (CSPC-LA). The
method first utilizes the citation relationship
of patent claim texts to construct the citation
graph and the co-reference graph. Then struc-
tural graph learning is used on both graphs to
mine the internal logic of patent claims. Fi-
nally, we optimize the tree hierarchy of IPC
labels and employ tree propagation learning to
enhance the patent representation. Extensive
experiments on the latest patent classification
dataset from USPTO demonstrate that the pro-
posed method is more effective than the state-
of-the-art baselines.

1 Introduction

With the rapid advancement of globalization and in-
formatization, innovation has become a key driving
force behind social progress and economic growth.
As emerging technologies continue to flourish and
industrial upgrading accelerates, the number of
patent applications, an important indicator of in-
novation, has been increasing globally. Although
this trend reflects the vitality of technological de-
velopment, it also places significant pressure on
patent examination systems. Among these pro-
cesses, patent classification serves as a critical first
step (United States Patent and Trademark Office,
2022), whose accuracy and efficiency are crucial.
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Figure 1: An overview of patent document

Patent document classification is inherently a
complex multi-label text classification task. Al-
though deep learning has achieved remarkable
progress in this field, existing methods mostly rely
on short texts such as titles and abstracts, ignor-
ing the fine-grained semantic information embed-
ded in the claims section (Suzuki and Takatsuka,
2016). Meanwhile, the structural complexity, cross-
domain nature, and rich technical content in patent
documents pose challenges for patent detection.
As shown in Figure 1, patents have rich metadata
(Lupu et al., 2013), mainly consisting of structured
information (such as application number and inven-
tor) and unstructured text (including title, abstract,
description, and claims). The title and abstract
briefly describe the invention, and the description
provides detailed background and implementation
methods, while the claims clearly define the legal
scope of protection. Claims are essential for de-
termining patent infringement and evaluating nov-
elty. Claims include independent claims and de-
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Section: Physics

Class: COMPUTING;
CALCULATING OR
COUNTING;

Subclass: ELECTRIC
DIGITAL DATA
PROCESSING.

Figure 2: Examples of IPC Layers

pendent claims. Independent claims describe the
complete scope of protection through a preamble
and a feature part, and dependent claims further
refine technical features based on the independent
claims, forming a multi-level protection system.
Furthermore, the large number of classes in patent
taxonomies (WIPO, 2024b), their highly imbal-
anced distribution, and the lack of publicly avail-
able datasets containing claim texts and citation
information further hinder the development of ef-
fective patent classification models.

Current patent classification systems, such as
ECLA, USPC, FI/F-Term, are independently de-
veloped and used for patent examination and clas-
sification within their respective countries. Thus,
we select the international patent classification IPC
system (WIPO, 2024c) as our study object. The in-
ternationally adopted system features a hierarchical
tree structure. It divides all scientific and technical
fields into eight sections based on the basic function
and application of the invention. As shown in Fig-
ure 2, each section is further subdivided into classes
and subclasses, with codes becoming progressively
detailed, providing increasingly fine-grained do-
main information. The large number of categories
poses a challenge to patent classification.

To address these challenges, we first construct a
novel patent classification dataset based on the IPC
system from USPTO’s 2024 patent application data.
Each sample in the dataset not only contains titles
and abstracts, but also includes complete claim
texts and citation information. Then, we propose
a claim structure and label aware patent classifica-
tion model. The method first utilizes the citation
relationship of patent claim texts to construct the
citation graph and the co-reference graph. Then,
patent structural graph learning is used on both
graph structures to mine the internal logic of patent
claims. Finally, we optimize the hierarchical tree
of IPC labels and employ propagation tree learn-
ing to enhance the patent representation. Extensive
experimental results demonstrate the effectiveness
of the proposed method on the novel constructed
patent classification dataset. The work contains
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three contributions:

* We propose a novel method that models the ci-
tation structure among patent claims, enabling
the model to explicitly capture the structural
relationships and better represent the technical
content of patents;

* We construct a hierarchical tree of IPC la-
bels and incorporate structural priors to model
inter-class dependencies, thereby alleviating
the difficulties caused by large-scale and im-
balanced label distributions;

* We build and release a real-world challeng-
ing patent classification dataset based on
USPTO’s 2024 patent application data, which
includes complete claim texts and citation in-
formation, providing a valuable resource for
future research.

2 Related Work

Patent Classification. Existing patent classifica-
tion approaches can be broadly categorized into tra-
ditional methods and deep learning-based methods.
Early traditional methods treat patents as plain text
and apply rule-based or classical machine learning
techniques using handcrafted features such as key-
word frequency and bag-of-words models (Larkey,
1999; Fall et al., 2003). With the advent of deep
learning, researchers began using convolutional
neural networks (CNN) and pre-trained language
models to enhance patent text representations and
classification performance (Li et al., 2018; Lee
and Hsiang, 2019; Srebrovic and Yonamine, 2020;
Yang et al., 2019; Haghighian Roudsari et al., 2022).
Several approaches aim to overcome the limitations
of standard attention mechanisms, especially the
computational and memory overhead in capturing
long-range dependencies, which is consistent with
the problems encountered in patent classification
(Zaheer et al., 2020).

To better capture the structural characteristics of
patent documents, some methods focus on the use
of patent text and labels. Risch proposed Patent-
Match(Risch et al., 2020a), containing claim pairs
in patent applications, laying the foundation for
studying patent classification. Risch Pujari first
proposed TMM (Pujari et al., 2021), combining
Transformer and hierarchical algorithms for patent
classification. Recent studies have explored in-
corporating both intra-patent texts and inter-patent
relationships (Shalaby et al., 2018). Some works



utilize citation networks, metadata, and multiview
graph structures to model cross-patent relationships
(Li et al., 2007; Zhu et al., 2015; Fang et al., 2021;
Hamid Bekamiri and Jurowetzki, 2024). Others
combine label hierarchies with contrastive learn-
ing to learn fine-grained instance-label associations
(Risch et al., 2020b; Li et al., 2022; Liu et al., 2024,
Pujari et al., 2022).

Although these methods have advanced the mod-
eling of structural and relational information in
patent classification, limited attention has been
paid to the internal citation relations among patent
claims, which are crucial for capturing the logical
and semantic dependencies within patents.
Hierarchical Multi-label Text Classification.
Considering the hierarchical nature of patent tax-
onomies, patent classification can also be formu-
lated as a hierarchical multi-label text classification
(HMTC) problem. Based on how label hierarchies
are handled, HMTC methods can be classified into
local, global, and hybrid approaches.

Local approaches include Local Classifier per
Node (LCN), Local Classifier per Parent Node
(LCPN), and Local Classifier per Level (LCL).
LCN assigns a binary classifier to each node, lead-
ing to high parameter complexity. LCPN constructs
classifiers for each parent node, capturing hierar-
chical dependencies. LCL trains a classifier per
level to achieve better granularity. However, local
methods often suffer from error propagation.

Global approaches treat hierarchical classifica-
tion as a flat multi-label task, modeling all cate-
gories in a unified framework. Some adopt hier-
archical label encoders to capture inter-label de-
pendencies (Zhou et al., 2020; Risch et al., 2020b).
Others enhance textual representations with syntac-
tic cues derived from the label hierarchy (Zhu et al.,
2023).

Hybrid approaches combine the fine-grained
modeling of local methods with the comprehen-
sive view of global ones. Peng(Peng et al., 2018)
proposed a deep learning model based on a graph
CNN, which uses graph convolution operations to
convolve the word graphs. Representative tech-
niques include hierarchical attention-based RNNs
coupled with global classifiers (Huang et al., 2019),
multi-granularity document representations (Jiang
et al., 2019), and joint modeling of global-local
hierarchical features (Zhang et al., 2022).

Despite these efforts, few studies have jointly
modeled the structural taxonomy of patent labels
with intra-claim citation relationships, limiting the

model’s ability to capture both semantic and hierar-
chical dependencies in patent classification.

3 Method

3.1 Problem Definition

Patent classification Task could be formulated as
a hierarchical multi-label text classification task,
which focuses on the classification results of the
subclass labels. For the i-th patent S;, its text D;
consists of three parts: the title 7}, abstract A;, and
the set of claims C; = {c;}}_;, which are used for
further processing like constructing citation graphs.
The label hierarchy is defined as T' = (Y, E, H),
where Y = {Y'!, Y2 Y3} denotes nodes at differ-
ent label levels, with Y'!, Y2 and Y3 denote the
section labels, the class labels and the subclass la-
bels, repectively; E indicates edges among labels,
and H contains textual representations of each la-
bel node. Given the patent text [J; and the label
hierarchy 7', the goal of our model is to predict a
set of subclass labels Y; = {y; | y; € Y3}, with
|Y;| > 1. The model aims to learn a classifier f
that maps the patent text D; and label hierarchy T°
to the corresponding label set, f(D;, T) — Y;.

The goal of this work is to leverage information
from the claim structure and the label hierarchy to
support patent classification. The overall frame-
work is shown in Figure 3. The method contains
two modules: structural text representation and la-
bel aware representation learning. The structural
text representation module explores internal tex-
tual information by mining structural relationships
through claims’ citations, and the label aware rep-
resentation learning module leverages the hierar-
chical and semantic structure of labels to enrich
patent representations.

3.2 Structural Text Representation

Claim Selection. In the drafting of patents, ap-
plicants often elaborate on independent claims
through multiple dependent claims to broaden the
scope of protection. While this strategy enhances
legal defensibility, it also results in an excessive
number of claims. Some claims are short and have
low information density, often containing a lot of
templated or general language, which can intro-
duce irrelevant patterns into the text representa-
tion model, increase representation noise and thus
introduce redundancy and pose challenges for di-
rect modeling. What’s more, during application,
they often need to modify claims, like deleting or
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Figure 3: The overall framework of CSPC-LA. The module contains structural text representation and label aware

representation learning.

changing, which results in invalid information in
the claims. At the same time, patent titles and ab-
stracts are typically written by professionals and
offer high information density and summarization
quality. To improve claims quality, we propose
a claim selection method guided by the title and
abstract. Specifically, we concatenate the title and
abstract into a joint query, encode both the query
and each claim by using BERT-for-patents, and
compute cosine similarity to select the top K most
relevant claims. This selection process helps retain
the most topic-relevant content, providing more
focused input for subsequent structural modeling.

Claim Citation Reconstruction. During the
previous stage, a representative subset of claims
was selected, significantly reducing the overall
length of the claim list. However, this selection
may result in the disconnection of certain citation
links between claims. Consequently, some claims
become isolated during the subsequent graph con-
struction process, limiting their contribution to the
overall semantic representation of the patent. To
address this, we reconstruct the missing citation
links using both the original claim citation graph
and the selected claim subset. Consider the new
claims list is C’. Specifically, for each claim c, we
locate its referenced claim c; in the original citation
graph. If ¢; is not included in C’, we recursively
trace upward to find the next-level citation f(cy),
and so on, until either a referenced claim within
the list is found or the root node is reached. The
citation target of c is then updated accordingly.

c1, ifc € C
f(c) =< f(c1), ifcy ¢ C and c; # Root (1)
Root, otherwise

After reconstructing the citation relationships,
a set of claims that cite the same parent claim is
referred to as a co-reference dependency group.
These claims elaborate on the same subject from
different perspectives, thereby complementing its
various features. Based on the reconstructed cita-
tion structure, co-reference dependencies are estab-
lished by connecting all child claims that share the
same parent. Formally, for any pair of claims ¢ and
J, if they both cite the same parent claim, an edge is
added between them in the adjacency matrix. That
is, if B;; = 1, then claim 7 and j both reference the
same parent claim.

Consequently, two types of adjacency matrices
are obtained through this relation reconstruction:
P for the citation graph, and B for the co-reference
graph.

Structural Graph Learning. With the cita-
tion structure reconstructed, we obtain a complete
set of interconnected claims, enabling structural
modeling based on claim relationships. To effec-
tively capture the internal structure of the claims
section, we construct a graph that incorporates
both hierarchical and parallel semantic relation-
ships. Specifically, citation relations represent the
semantic progression from parent to child claims,
reflecting the hierarchical refinement of patent pro-
tection. In contrast, co-reference relations (claims
sharing the same cited parent) capture semantic
diversity across parallel claims that elaborate on
different aspects of a common theme. Based on
these insights, we construct two separate graphs:
a citation graph and a co-reference graph. Each
is modeled independently using a dedicated Graph
Attention Network (GAT). The citation graph em-
ploys a bottom-up attention aggregation mecha-
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nism to propagate semantic refinements, while the
co-reference graph emphasizes lateral information
fusion and contrastive semantic modeling among
sibling claims.

To ensure that isolated nodes can retain their
own features during representation learning, we
add self-loops to the adjacency matrix as follows:

A=A~+1 )

Each graph structure (i.e.citation or co-reference)
is processed by L stacked GAT layers to capture
multi-hop structural dependencies:

h) = GATLayer(h~" A), h® =X (3)

Then, we incorporate residual connections and
layer normalization to enhance model stability:

h) = LayerNorm(h® + h(=1) 4)

Finally, the final representation is obtained by
average pooling over all nodes:

1 o=, ()
h=—>S n! &
AW |

Information Fusion. The mentioned structured
representations of patents focuses on modeling fine-
grained claims text structures, while the granular-
ity of information covered by different patent text
components varies: titles and abstracts cover more
general information, which is conducive to classi-
fication at a higher level; The claims specify the
object of the patent and its feature set, which helps
to focus on the fine-grained features of the patent.
In order to enable the model to adaptively focus
on different parts of information in classification
tasks, an adaptive information fusion module is
used to fuse the representations of various parts of
the patent, defined as:

h= Concat(hl, hs, hs, h4) (6)

where h1 and hg represent the text information of
patents, such as title and abstract; moreover, hj
and hy4 represent the structure information from
claims citations, as the citation relationship and the
co-reference relationship. Then, the enhanced rep-
resentation is obtained by fusing the above different
information:

4
i=1
w; =Softmax(W;h; + b;) 8)

where W and b; are the learnable weight and bias
parameters, respectively.

3.3 Label Aware Representation Learning

Label Hierarchy Learning. Starting from the ex-
isting IPC structure, its hierarchical system poses
certain limitations for model learning. First, the
sample distribution is highly imbalanced, with
some classes having abundant samples while many
tail classes contain only a few, which adversely af-
fects the model’s generalization ability. Second, the
label structure itself exhibits imbalance characteris-
tics: some parent classes aggregate a large number
of child classes, forming dense paths, whereas oth-
ers are relatively sparse. This structural disparity
leads to two main issues: (1) tail classes suffer from
sparse paths, making them easily obscured within
the hierarchy; (2) head paths are overly reinforced,
causing structural bias that restricts the model’s
ability to capture fine-grained semantic relations
among labels. Therefore, it is necessary to recon-
struct and optimize the IPC hierarchy to alleviate
the negative effects caused by distribution imbal-
ance. Inspired by previous work (Zhu et al., 2023),
we employ structural entropy (Cheng et al., 2018)
to measure the redundancy of the hierarchy and
compress the IPC structure into a tree of specified
height, defined as:

vol(«)

H(G) = - Ia ©)

- vol(Q) Ogvol(a‘)
where « represents for a non-root node, o~ rep-
resents the parent node of non-root node «, g,
represents for the node’s degree, and vol(G) rep-
resents for the total degree of the node. vol(a))and
vol(a™) represent the subset total degrees of node
« and node . Structural entropy measures the
balance of a graph by considering the difference
in degree between different nodes. The larger its
value, the greater the difference between its subsets,
which indicates a more imbalanced structure.

The algorithm takes the original IPC structure
T = (Vp, Ep, Hr) and the target height H as in-
puts, and mainly involves three steps: tree con-
struction, tree compression, and cross-level link
correction. First, all nodes are placed on the same
level, and an initial binary tree is built by itera-
tively merging node pairs that yield the greatest
reduction in structural entropy. Second, the tree is
compressed to height H by removing nodes with
minimal structural entropy. Third, cross-level links
are corrected. Ultimately, a coding tree with height
H is obtained. More details of this algorithm could
be found in Appendix A.
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Propagation Tree Learning. Based on the pre-
viously constructed encoding tree, we design a
propagation mechanism that interacts the patent
representation with the hierarchical label structure.
During propagation at each layer, a node not only
transmits its own features but also fuses with the
patent representation h to enhance context aware-
ness.

To provide initial semantic grounding for IPC
nodes, we initialize leaf nodes using short label
descriptions embedded by BERT-for-patents. For a
node x at layer [, we concatenate its representation
eg(ﬁl) with the patent representation h and project it
via a linear transformation:

z)) = Concat(elV, h) (10)
&) = wihzl 4 p® (11)

In upper layers, each parent node aggregates
features from its children using a uniform-weighted
sum:

et = N wel), w; = L (12)
et C@)

This process is repeated layer by layer. After

each aggregation, we perform another interaction
with h to avoid loss of fine-grained context, ensur-
ing that representations at all levels are semanti-
cally aligned with the patent.
Multi-level Fusion. This module aggregates multi-
layer hierarchical and semantic features to form
a global representation. For each layer [, node
embeddings hé are averaged to obtain a layer-wise
summary vector:

l 1 = l
i=1

These representations encode information at vari-
ous levels of abstraction and are subsequently used
to generate auxiliary predictions, facilitating grad-
ual and guided learning.

3.4 Classification

Class Prediction. In the prediction stage, the
global representations H' obtained from each layer
are first averaged to ensure consistent dimensional-
ity. These averaged vectors are then passed through
a shared linear layer to produce per-layer classifi-

cation outputs.

L
1
H= lz;ﬁlHlvﬁl =7 (14)
y = sigmoid(W'H + b') (15)

Loss Function. Due to the uneven long tail dis-
tribution of real patent datasets (Lafond and Kim,
2019), Focal Loss (Lin et al., 2017) and Dice Loss
(Milletari et al., 2016) are employed to emphasize
low-frequency samples and enhance the model’s
sensitivity to long-tail classes. Thus, we use Fo-
cal Loss and Dice Loss for each layer prediction,
defined as:

Ly = LrL(9,v) + Lbice(4,y) (16)

The Focal Loss and Dice Loss could be defined as:

c
LeL(9,y) = — Zai(l — 9:)7yilog (i) (17)
i=1
. 25 Giyi
EDice(yy y) =1- ZZ_l Yil

(OIS C
Yo Ui+ D i1 Yi

where C' represents for the whole classes of IPC,
and g represents the real labels. And in Focal Loss,
« and ~y are hyper-parameters, and in our paper, we
use the default settings of o = 0.25 and v = 2.0.

In addition, hierarchical feature aggregation is
used to derive the global representation H' at each
layer, which is then mapped to the classification
space to generate per-layer predictions.The final
global prediction score is a weighted combination
of the per-layer predictions. During training, two
types of supervision are applied: individual super-
vision on each layer to encourage multi-granularity
learning, and a global prediction loss aligned with
the final training objective, defined as:

(18)

L= ﬁlayers + Eglobal (19)
1 L

'Clayers = z Z Ll (20)
=1

where L gj0pq 1s the global prediction loss function.

4 Experiment and Results

4.1 Experimental Settings

Dataset. We construct a patent dataset by extract-
ing patent documents from the USPTO’s 2024 raw
application data, which is called USPTO-2024. Al-
though we use USPTO data, we do not rely on
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USPTO data because our model uses only the title,
abstract and claims, which are the core components
in patent documents globally.The extracted infor-
mation includes full claims and their citation struc-
ture, titles, abstracts, and IPC labels. The dataset
statistics are shown in Table 1, more details could
be find in Appendix B.1.

type train dev test
numbers 234598 29325 29325
title 8.17 8.19 8.18
abstract 113.69 113.52 113.58
claims 1923.48 192797 1923.12
claim number 16.61 16.66 16.55

Table 1: Base Information of Dataset USPTO-2024,
except for numbers, all other entries show the average
number of words or claims.

Implementation Details. We conduct all experi-
ments on a NVIDIA 4090 GPU and train all com-
pared models on our dataset, following the origi-
nal paper settings for each baseline, except for the
batch size. In our model, we set the batch size to
8 and train for 1 epoch. The learning rate is set to
le—3 for the classification head and 1e—5 for the
other modules. To address data imbalance, we em-
ployed a simple mixed sampling strategy that helps
stabilize training. Due to memory constraints, we
select K = 15 claims per patent, with a maximum
length of 256 tokens per claim. The GAT module
is configured with H = 3 layers and 4 attention
heads. For label hierarchy processing, we set the
encoding tree height to 3 and adopt average pooling
and hierarchical supervision for aggregation.
Baselines. We compare our model against tradi-
tional text classification approaches such as TF-
IDF+LR and BiLSTM, as well as patent-specific
models including DeepPatent (Li et al., 2018),
BERT-for-patents (Srebrovic and Yonamine, 2020),
and PatentSBERTa (Hamid Bekamiri and Jurowet-
zki, 2024). Furthermore, we compare with typi-
cal hierarchical multi-label classification baselines,
such as HARNN (Huang et al., 2019) and HiTIN
(Zhu et al., 2023). To demonstrate the robustness of
our method, we include comparisons with Qwen1.5
(Bai et al., 2023), an open-source LLM, which
poses a significant challenge in patent classifica-
tion. More experimental setting details could be
shown in Appendix B.2.

Evaluate Metrics. To comprehensively evaluate
the model’s capability, especially its attention to
long-tailed categories, we adopt macro-level met-

rics. Specifically, we report TOP@1 and TOP@5
precision, recall and F1-score as evaluation criteria.

4.2 Main Results

As the results shown in Table 2, through compre-
hensive comparison, we observe that CSPC-LA
achieves state-of-the-art performance on real-world
patent datasets. Unlike previous research, our pro-
posed method—based on claim-to-claim citation
relationships—Ieverages more fine-grained repre-
sentations of patent claims. Specifically, CSPC-
LA selects more valuable claims and incorporates
structural information from the patent content. Ad-
ditionally, it emphasizes the interaction between
label structure and textual content. These strate-
gies enable CSPC-LA to effectively capture fine-
grained features, thereby improving performance
on low-frequency (long-tailed) categories.
Traditional text classification models, such as
TF-IDF with logistic regression and BiLSTM
achieve decent macro precision but suffer from low
recall. This is largely due to their bias toward learn-
ing prominent features from the majority classes
while overlooking rare class signals. Among patent-
specific classification models, BERT-for-patents,
pre-trained on patent corpora, captures contextual
semantics effectively, leading to improved recall
and F1 scores. In contrast, PatentSBERTa enhances
rare class predictions through semantic neighbor
retrieval but struggles with fine-grained represen-
tations and sparse neighbor availability. In hier-
archical multi-label classification, HARNN lacks
explicit modeling of label hierarchy and struggles
with long patent texts, resulting in weak macro-
level performance. HiTIN improves rare class de-
tection via hierarchical modeling and distribution
priors, but its precision is limited by majority-class
dominance and underutilized fine-grained features.

4.3 Ablation Study

To analyze the contribution of each component in
CSPC-LA, several model variants were constructed
by replacing or removing specific modules. The
effectiveness of each module was evaluated by ob-
serving the precision, recall, and F1 scores of these
variants on the dataset.

Firstly, under the setting of not selecting claims
but sequentially truncating a fixed number of
claims (w/o Method), the performance of the model
decreases, indicating that there is content with low
information density or even invalidity in the orig-
inal claims, which may introduce learning noise
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Table 2: Performance comparison on USPTO-2024.Bold indicates the best performance; underline indicates the

second best.

Models TOP@1 TOP@5
Precision Recall F1 Precision Recall F1

TF-IDF+LR 36.52 794  12.10 36.38 10.07 14.55
BiLSTM 41.40 12.61 18.21 39.38 17.11  22.59
DeepPatent 37.37 8.58 13.03 35.56 11.82 16.71
Bert-for-patents 32.03 11.46 14.66 31.64 18.64 19.88
PatentSBerta 15.62 5.07 6.45 10.03 1593 1042
HARNN 8.68 2.06 2.80 8.45 3.17 3.83
HiTIN 39.12 17.63 22.55 37.11 25.71 28.44
Qwenl.5 4591 19.81 24.89 41.14 27.53  30.69
CSPC-LA 46.85 18.34 24.44 46.39 29.09 32.59

Table 3: Ablation study results on USPTO-2024.

Variant Precision Recall F1
w/o Method 38.30 14.13 18.96
w/o Graph 42.98 1532  20.56
w/o gate 41.01 1525 2042
1/p IPC tree 35.16 12.13  16.35
1/p Cross 38.32 13.55 18.20
Full CSPC-LA 46.85 18.34 24.44

and interfere with model judgment. Secondly, re-
moving the claim structure mapping module (w/o
Graph) also resulted in a decrease in performance,
indicating that this module played a key role in
modeling the referencing and hierarchical depen-
dencies between claims, effectively enhancing the
internal structural expression ability of patents. Fur-
thermore, when we preserve the graph structure but
remove the gating fusion mechanism (w/o gate),
the model cannot dynamically weight based on the
importance of different information sources, and
its performance also decreases, indicating that the
information fusion strategy has a positive effect on
improving the model’s discriminative ability.

In addition, we compared the effectiveness of us-
ing encoding trees with the original IPC hierarchi-
cal structure and found that directly using the origi-
nal IPC structure (r/p IPC tree) would introduce an
imbalance in the label structure, making the model
more inclined to predict labels on high-frequency
paths, thereby affecting overall performance; And
the encoding tree alleviates this bias to some extent
by reconstructing the hierarchical structure. Finally,
when we remove the cross layer interaction mod-
ule (r/p Cross) from the label structure, the model
also shows some degradation, indicating that re-

lying solely on same layer label propagation will
limit the depth of semantic expression and make it
difficult to capture the direct semantic connection
between text and high-level labels.

4.4 Label Tree Height Parameter Effect

For the label tree experiments, we test encoding
tree heights H = {2,3,4}. As for parameter H,
it could be observed in Table 4 that the model per-
forms best when the coding tree layer height H is
set to 3. When H = 2, the label structure is exces-
sively compressed, which may cause child nodes
with low similarity to be clustered under the same
parent node, resulting in poor model performance;
and when H = 4, more parameters are introduced,
which may lead to performance degradation due to
insufficient training.

Table 4: Experiment of H.

H 2 3 4
Precision 30.77 46.85 36.19
TOP@1 Recall 13.56 18.34 14.68
F1 17.43 24.44 19.28
Precision 32.05 46.39 36.45
TOP@5  Recall 20.66 29.09 22.78
F1 22.81 32.59 25.55

4.5 Tail Labels Embeddings

In CSPC-LA, an IPC encoding tree is constructed
to enhance patent representations by integrating
both the structural representation of patents and
the semantic and structural information of labels.
The leaf nodes of the IPC encoding tree are ini-
tialized using a pretrained model and are further
optimized during the hierarchical message-passing
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Figure 4: Tail Class Performance on Bottom 100 classes using TF-IDF+LR, HiTIN, and CSPC-LA.

process. To investigate how label representations
evolve through this process, we extract the label
representations from the model and analyze their
spatial distribution, aiming to determine whether
the model has captured the latent relationships be-
tween labels. To this end, we apply t-SNE for

o
. .

(a) Original label representa-(b) Label representations in
tions (Section D) CSPC-LA (Section D)

Figure 5: Label representation distributions of Section
D after t-SNE dimensionality reduction

dimensionality reduction and visualize the label
representations on a 2D plane. We focus on the tail
class section "D", and for better visualization, all
labels within the section (including section, class,
and subclass levels) are colored identically. The
visualizations are shown in Figure 5.

We could see that after using the proposed
method, labels within the same section become
more tightly clustered, reducing from three major
clusters to two. This indicates that the model gradu-
ally learns the underlying relationships and discrim-
inative features among labels during training. The
representations of non-head labels become more
compact and coherent, which lays a solid founda-
tion for improving classification performance on
long-tail categories.

4.6 Tail Class Study

To further evaluate the proposed model’s perfor-
mance on tail classes, we compare it with two repre-
sentative baselines: TF-IDF, a traditional keyword-
based method, and HiTIN, a hierarchical multi-
label classification model. Specifically, we sort all

labels by their frequency in the test set in descend-
ing order and select the bottom 100 (the rarest)
labels. We then compute the precision, recall, and
F1 scores for these labels under the TOP@1 and
TOP@5 settings, and visualize the results using
box plots to observe the models’ performance on
tail classes.

As shown in Figure 4, the proposed CSPC-LA
model outperforms the baselines in terms of aver-
age performance on the top 100 tail classes. This
is mainly because real-world datasets often follow
a long-tailed distribution, where some classes ap-
pear very infrequently. The TF-IDF model strug-
gles with tail classes due to the low frequency of
domain-specific terms in the overall corpus, caus-
ing it to overlook their features. HiTIN, on the other
hand, exhibits better tail performance by leverag-
ing prior knowledge of label hierarchy and learning
path-based features for rare classes. In contrast, our
CSPC-LA model captures the fine-grained textual
details of patents and pays more attention to chal-
lenges posed by rare classes, resulting in stronger
predictive ability on these difficult cases.

5 Conclusion

In this work, we present CSPC-LA, a patent clas-
sification model that leverages the structural infor-
mation of patent claims and the hierarchical or-
ganization of labels. By introducing modules for
claim-structure graph learning and hierarchical la-
bel modeling, our approach captures fine-grained
textual signals and strengthens the alignment be-
tween patent content and label semantics, resulting
in improved classification performance. Moving
forward, we aim to explore entity-level structural
relations within patents, viewing claim dependen-
cies as semantic elaborations between entities in all
types of claims, to further enhance the model’s ca-
pacity in understanding complex patent structures.

108



Limitations

Although our model has achieved good results
based on this, there are still certain limitations.
Firstly, although we collected and processed the
2024 patent application data published by USPTO,
covering newer trend information, some labels
lacked samples due to year limitations. In order
to achieve better learning of label information, fu-
ture work will consider processing data from other
years to improve data diversity. Secondly, although
we have focused on the reference relationship at
the sentence level in the claims, the reference rela-
tionship is essentially a more detailed elaboration
of the dependent claims around a certain inven-
tion object (entity) in the independent claims. In
addition, there are certain differences and similar-
ities between patents belonging to the same label
and those belonging to different labels. Comparing
them from a more macro perspective can also have
good results. Therefore, future work will focus
on more detailed information within patents and
the relationships between patents. In addition, the
training speed of the model is limited by equip-
ment and data volume, which makes its training
relatively slow. In the future, parallel operation
optimization will be carried out to accelerate the
model training and enhance its practical applica-
tion value. Finally, due to current computational
constraints, we have not yet utilized large language
models. In future work, we plan to actively explore
their application in patent classification to further
enhance performance.
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A Theroretical Analysis

In subsection 3.3, we introduced the use of struc-
tural entropy to measure redundant information in
label structures, and compressed label structures
by reducing structural entropy redundancy to make
their content distribution more uniform. In this
section, we provide a detailed introduction to the
construction definition and algorithm of encoding
trees. The process of building a coding tree mainly
includes three types, namely Merge, Delete, and
Swap, as shown in Figure 6.

v;

Figure 6: Operations in Constructing Coding Tree

After introducing the three basic operations, we
represent the encoding tree construction algorithm.
The input of this algorithm is the original IPC struc-
ture ' = (Vp, Ep, Hy)and the height Hto be com-
pressed. The main steps are to construct the tree,
compress the tree, and correct the cross layer con-
nections. Firstly, place all nodes on the same layer
and construct an initial binary tree structure based
on structural entropy, which is merging the node
pairs that minimize the structural entropy each time.
Secondly, in the second step, the tree is compressed
to a height of H. Then, the node with the lowest
structural entropy is selected for removal, and the
cross layer links are corrected in the third step. Fi-
nally, a coding tree with a height of H is formed,
and the process is shown in Algorithm 1.

B Experimental Details

B.1 Dataset

We extracted patent information containing com-
plete claims and their citation structures, titles, ab-
stracts, and IPC tags from the 2024 original patent
application data file (WIPO, 2024a) published by
USPTO, and constructed a patent text dataset. The
raw data is recorded and saved in XML format,
with each file containing the patent application
content for the past week, and all files organized
by date. A total of 52 original compressed files
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Algorithm 1: Encoding Tree Construction
Input: Graph 7' = (Vp, E7), height H
Output: Encoding tree 7" = (Vv, Eqv)

// Initialization
VAV
while Jv,.o0; such that |v,.children| > 2 do
Select the node pair (v;, v;) that
maximally reduces structural entropy ;
Merge nodes (v;, ;) ;

// Compress the tree to height H
while T’ .height > H do
Select node v; whose removal increases
structural entropy the least ;
Delete node (v;)

’

~

/ Correct cross-level connections
oreach v; € T do
if |v;.parent.height — v;.height| > 1
then
L Swap node (v;, v;.parent) ;

by

return 7"

were obtained through the aforementioned web-
site. Using Python to parse XML files, the "xml.
etree. ElementTree" library is mainly used to parse
strings and extract information from relevant tags
of valid strings, including patent number, title, ab-
stract, claims, and IPC classification number. The
claims exist in the form of nested tags and are num-
bered in order during the extraction process. After
extraction, store it in the specified file.

Then, extract the original reference relationship
of each legal patent claim. Firstly, parse the current
claim number from the aforementioned XML tag.
Secondly, use regular expressions to extract its ref-
erence object according to a specified pattern (such
as ’claim n’). Finally, assign a reference number
to each claim. When the claim is an independent
claim without a reference object, set the number
to —1. Based on this, the establishment of original
claim citation relationship has been completed and
stored in dataset in the form of a list.

In order to gain a preliminary understanding of
label distribution in the dataset, a statistical anal-
ysis was first conducted on the patent data, which
included counting the sample size of the top 50
subclass level categories, as shown in Figure 7.

As shown in the figure, there are significant dif-
ferences in the number of samples between dif-
ferent categories, and there are more samples be-
longing to the G and H parts of the small category,



(a) train, count by section

(c) dev, count by section

(d) dev, count by subclass

(e) test, count by section

(f) test, count by subclass

Figure 7: Count on USPTO-2024, the labels were col-
ored based on the type of part to which the subclass
belongs.

while there are fewer samples belonging to the D
part, ranking higher and showing a certain long tail
distribution trend (Lafond and Kim, 2019).

B.2 Baseline Settings

TF-IDF+LR: A logistic regression method using
TF-IDF features, and it establishes patent represen-
tations based on TF-IDF, a method that measures
the ability of keywords in text to distinguish cate-
gories.

BiLSTM: Use bidirectional long short-term mem-
ory networks to capture contextual sequence infor-
mation. It obtains information by modeling the
temporal dependencies between words in patent
texts.

DeepPatent (2018) (Li et al., 2018): A method
that gets patents’ information by extracting key
information from local n-gram features based on
convolutional neural networks. It focuses on the
ability to model local text structures.
BERT-for-patents(2020) (Srebrovic and Yon-
amine, 2020): A BERT-large model developed by
Google, which is pre-trained by over 100 million
patent documents, which concludes all texts of
patents (abstracts, claims, descriptions). In this
way, it has been endowed with rich knowledge in
the field of patents

PatentSBerta (2024) (Hamid Bekamiri and Ju-

rowetzki, 2024): Use claim text to calculate the
similarity between patents, and use the classifica-
tion number of neighboring patents to calculate the
target patent category. Basically, it uses STS-B
datasets to train a score model Roberta, which is
used to train embedding model SBERT by scoring
patent texts pair and making data for SBERT. And
Finally, it uses neighbors’ labels for predictions.
HARNN (2019) (Huang et al., 2019): Using RNN
and hierarchical attention mechanism, key informa-
tion is extracted from both sentence and document
levels, highlighting important content in patents.
HiTIN (2023) (Zhu et al., 2023): Enhance text rep-
resentation using label hierarchy information for
hierarchical multi label text classification, using
global classification methods. HiTIN ensures that
the network can effectively learn the relationships
between labels through node connection initializa-
tion, making it more suitable for scenarios with
imbalanced data.

Qwen-1.5-7B (2023) (Bai et al., 2023): Qwenl.5-
7B is part of Alibaba’s open-source LLM series,
built on the Transformer architecture with SwiGLU
activation. It supports a context length of up to 32K
tokens and demonstrates strong performance in
multilingual understanding, generation, and coding
tasks.

B.3 Parameter Effect

To investigate the impact of parameter settings on
model performance, we conducted experiments in
two main parts: one focusing on patent representa-
tion parameters—namely the number of claims N,
the number of words per claim W, and the number
of GAT layers L; and the other focusing on label
tree-related parameters, including the encoding tree
height H and aggregation methods (AV G, ALL
and SUM). Due to device memory constraints,
larger parameter values were chosen when neces-
sary. The experimental results for both parts are
shown below.

Structural Text Representation Part. In this part,
we examined the influence of each parameter on
patent representation without incorporating labels.
We experimented with N = {5,10,15}, W =
{64,128,256}, and L = {1, 2, 3}.

As shown in Table 5, the results indicate that
model performance improves as the number of
claims N increases, reaching the best performance
at N = 15. This may be because a smaller N
truncates many claims, losing rich information,
whereas N = 15 approximates the average number
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of claims, providing more complete content.

Table 5: Experiment of N.

N 5 10 15
Precision 41.18 4320 45.13
TOP@1 Recall 1476 15.64 17.20
F1 19.76 21.14 23.01
Precision 38.82 41.68 43.25
TOP@5  Recall 2423 2427 2641
F1 2641 27.66 29.33

For the word count per claim W, as shown in
Table 6, it can be observed that when W = 128, the
performance is competitive, but overall, the results
achieved in TOP@1 are better when W = 256.
Therefore,W = 256 is chosen as the reserved word
count for the claims.

Table 6: Experiment of W.

w 64 128 256
Precision 41.18 45.77 45.13
TOP@1 Recall 1476 16.03 17.20
F1 19.76  21.72 23.10
Precision 38.82 43.28 43.25
TOP@5  Recall 2423 2640 26.41
F1 3876 29.49 29.33

In Table 7, regarding the number of GAT layers
L, L = 3 yielded the highest recall and F1 scores,
with minor changes in precision, indicating that
deeper layers can enhance model performance.

Table 7: Experiment of L.

L 1 2 3
Precision 45.68 45.51 45.13
TOP@1 Recall 15.70 15.58 17.20
F1 21.77 21.59 23.10
Precision 42.09 41.34 43.25
TOP@5 Recall 24.79 24.51 2641
F1 28.34 28.03 29.33

Label Aware Representation Learning. For the
label tree experiments, we tested three aggregation
methods: SUM (summing representations from
all layers for prediction), AV G (averaging repre-
sentations from all layers), and ALL (based on
AV G but with supervision applied to each layer
separately).

In terms of aggregation methods, which is shown
in Table 8, the ALL method performs the best

because it adds independent supervision for each
layer on top of global integration, allowing the
model to learn useful features at different granu-
larities, which is superior to the AV G method that
only uses global supervision. In contrast, the AV G
method is more stable than the SUM method be-
cause it averages the representations of each layer,
avoiding the problem of the model being biased
towards individual layers due to the amplification
of information in one layer of the SU M method.

Table 8: Experiment of Aggregation Methods.

M SUM AVG ALL

Precision 36.81 39.76 46.85

TOP@1 Recall 14.58 15.27 18.34
F1 19.27 20.25 24.44

Precision 37.55 39.74 46.39

TOP@5  Recall 23.73 24.34 29.09
F1 2593 26.95 32.59

C Claim Selection Case Study

In the patent application process, claims are of-
ten withdrawn due to examiner feedback or volun-
tary amendments. Such withdrawals are typically
marked as "canceled" or "deleted". As this status
may change over different patent versions, it is
more reasonable to determine the final set of valid
claims during the analysis phase. To illustrate our
method, we analyze patent US10029235B2. The
basic statistics are shown in Table 9, where a large
portion of the original claims were withdrawn.

Table 9: Statistics of patent US10029235B2

Original claims 58
Withdrawn claims 38
Average words 24.7
1st valid claim 33. A method of ...
1st withdrawn claim 1-32. (canceled)

After concatenating the title and abstract, we
compute the semantic similarity between each
claim and the input text using a pretrained model.
The results are visualized in Figure 8, where a
darker color indicates higher cosine similarity. The
model effectively identifies withdrawn claims with
low relevance, allowing us to remove them to avoid
processing redundant information.

We further compare the citation structures of
claims selected by two methods: a sequential strat-
egy and a semantic-based selection strategy. Figure
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Figure 8: Cosine similarity between each claim and the
concatenated input

9 visualizes the retained claims and their reference
links. Nodes with orange borders denote sequen-
tially selected claims, while yellow-filled nodes
indicate those selected via the semantic method.
Given a target of selecting 15 claims, the sequen-
tial method only retained 10 valid ones due to
withdrawals. In contrast, the semantic method
successfully selected 15 meaningful claims, in-
cluding higher-level nodes with rich descriptions.
Claims #36 and #37 were excluded due to their
short lengths (8 and 9 words), which may limit
their informativeness during embedding.

() Chosen In Order
O Chosen By our Method
O Not Chosen

Figure 9: Citation structure of origin valid claims
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