@inproceedings{wang-etal-2025-bimax,
title = "{B}i{M}ax: Bidirectional {M}ax{S}im Score for Document-Level Alignment",
author = "Wang, Xiaotian and
Utsuro, Takehito and
Nagata, Masaaki",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.704/",
pages = "13095--13116",
ISBN = "979-8-89176-335-7",
abstract = "Document alignment is necessary for the hierarchical mining, which aligns documents across source and target languages within the same web domain. Several high-precision sentence embedding-based methods have been developed, such as TK-PERT and Optimal Transport (OT). However, given the massive scale of web mining data, both accuracy and speed must be considered.In this paper, we propose a cross-lingual Bidirectional Maxsim score (BiMax) for computing doc-to-doc similarity,to improve efficiency compared to the OT method.Consequently, on the WMT16 bilingual document alignment task,BiMax attains accuracy comparable to OT with an approximate 100-fold speed increase.Meanwhile, we also conduct a comprehensive analysis to investigate the performance of current state-of-the-art multilingual sentence embedding models."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-bimax">
<titleInfo>
<title>BiMax: Bidirectional MaxSim Score for Document-Level Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaotian</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takehito</namePart>
<namePart type="family">Utsuro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masaaki</namePart>
<namePart type="family">Nagata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Document alignment is necessary for the hierarchical mining, which aligns documents across source and target languages within the same web domain. Several high-precision sentence embedding-based methods have been developed, such as TK-PERT and Optimal Transport (OT). However, given the massive scale of web mining data, both accuracy and speed must be considered.In this paper, we propose a cross-lingual Bidirectional Maxsim score (BiMax) for computing doc-to-doc similarity,to improve efficiency compared to the OT method.Consequently, on the WMT16 bilingual document alignment task,BiMax attains accuracy comparable to OT with an approximate 100-fold speed increase.Meanwhile, we also conduct a comprehensive analysis to investigate the performance of current state-of-the-art multilingual sentence embedding models.</abstract>
<identifier type="citekey">wang-etal-2025-bimax</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.704/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>13095</start>
<end>13116</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BiMax: Bidirectional MaxSim Score for Document-Level Alignment
%A Wang, Xiaotian
%A Utsuro, Takehito
%A Nagata, Masaaki
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F wang-etal-2025-bimax
%X Document alignment is necessary for the hierarchical mining, which aligns documents across source and target languages within the same web domain. Several high-precision sentence embedding-based methods have been developed, such as TK-PERT and Optimal Transport (OT). However, given the massive scale of web mining data, both accuracy and speed must be considered.In this paper, we propose a cross-lingual Bidirectional Maxsim score (BiMax) for computing doc-to-doc similarity,to improve efficiency compared to the OT method.Consequently, on the WMT16 bilingual document alignment task,BiMax attains accuracy comparable to OT with an approximate 100-fold speed increase.Meanwhile, we also conduct a comprehensive analysis to investigate the performance of current state-of-the-art multilingual sentence embedding models.
%U https://aclanthology.org/2025.findings-emnlp.704/
%P 13095-13116
Markdown (Informal)
[BiMax: Bidirectional MaxSim Score for Document-Level Alignment](https://aclanthology.org/2025.findings-emnlp.704/) (Wang et al., Findings 2025)
ACL