@inproceedings{li-etal-2025-docmmir,
title = "{D}oc{MMIR}: A Framework for Document Multi-modal Information Retrieval",
author = "Li, Zirui and
Wu, Siwei and
Li, Yizhi and
Wang, Xingyu and
Zhou, Yi and
Lin, Chenghua",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.705/",
pages = "13117--13130",
ISBN = "979-8-89176-335-7",
abstract = "The rapid advancement of unsupervised representation learning and large-scale pre-trained vision-language models has significantly improved cross-modal retrieval tasks. However, existing multi-modal information retrieval (MMIR) studies lack a comprehensive exploration of document-level retrieval and suffer from the absence of cross-domain datasets at this granularity. To address this limitation, we introduce \textbf{DocMMIR}, a novel multi-modal document retrieval framework designed explicitly to unify diverse document formats and domains{---}including Wikipedia articles, scientific papers (arXiv), and presentation slides{---}within a comprehensive retrieval scenario. We construct a large-scale cross-domain multimodal dataset, comprising \textbf{450K} training, \textbf{19.2K} validation, and \textbf{19.2K} test documents, serving as both a benchmark to reveal the shortcomings of existing MMIR models and a training set for further improvement. The dataset systematically integrates textual and visual information. Our comprehensive experimental analysis reveals substantial limitations in current state-of-the-art MLLMs (CLIP, BLIP2, SigLIP-2, ALIGN) when applied to our tasks, with only CLIP (ViT-L/14) demonstrating reasonable zero-shot performance. Through systematic investigation of cross-modal fusion strategies and loss function selection on the CLIP (ViT-L/14) model, we develop an optimised approach that achieves a \textbf{+31{\%}} improvement in MRR@10 metrics from zero-shot baseline to fine-tuned model. Our findings offer crucial insights and practical guidance for future development in unified multimodal document retrieval tasks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-docmmir">
<titleInfo>
<title>DocMMIR: A Framework for Document Multi-modal Information Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zirui</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siwei</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yizhi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingyu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>The rapid advancement of unsupervised representation learning and large-scale pre-trained vision-language models has significantly improved cross-modal retrieval tasks. However, existing multi-modal information retrieval (MMIR) studies lack a comprehensive exploration of document-level retrieval and suffer from the absence of cross-domain datasets at this granularity. To address this limitation, we introduce DocMMIR, a novel multi-modal document retrieval framework designed explicitly to unify diverse document formats and domains—including Wikipedia articles, scientific papers (arXiv), and presentation slides—within a comprehensive retrieval scenario. We construct a large-scale cross-domain multimodal dataset, comprising 450K training, 19.2K validation, and 19.2K test documents, serving as both a benchmark to reveal the shortcomings of existing MMIR models and a training set for further improvement. The dataset systematically integrates textual and visual information. Our comprehensive experimental analysis reveals substantial limitations in current state-of-the-art MLLMs (CLIP, BLIP2, SigLIP-2, ALIGN) when applied to our tasks, with only CLIP (ViT-L/14) demonstrating reasonable zero-shot performance. Through systematic investigation of cross-modal fusion strategies and loss function selection on the CLIP (ViT-L/14) model, we develop an optimised approach that achieves a +31% improvement in MRR@10 metrics from zero-shot baseline to fine-tuned model. Our findings offer crucial insights and practical guidance for future development in unified multimodal document retrieval tasks.</abstract>
<identifier type="citekey">li-etal-2025-docmmir</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.705/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>13117</start>
<end>13130</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DocMMIR: A Framework for Document Multi-modal Information Retrieval
%A Li, Zirui
%A Wu, Siwei
%A Li, Yizhi
%A Wang, Xingyu
%A Zhou, Yi
%A Lin, Chenghua
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F li-etal-2025-docmmir
%X The rapid advancement of unsupervised representation learning and large-scale pre-trained vision-language models has significantly improved cross-modal retrieval tasks. However, existing multi-modal information retrieval (MMIR) studies lack a comprehensive exploration of document-level retrieval and suffer from the absence of cross-domain datasets at this granularity. To address this limitation, we introduce DocMMIR, a novel multi-modal document retrieval framework designed explicitly to unify diverse document formats and domains—including Wikipedia articles, scientific papers (arXiv), and presentation slides—within a comprehensive retrieval scenario. We construct a large-scale cross-domain multimodal dataset, comprising 450K training, 19.2K validation, and 19.2K test documents, serving as both a benchmark to reveal the shortcomings of existing MMIR models and a training set for further improvement. The dataset systematically integrates textual and visual information. Our comprehensive experimental analysis reveals substantial limitations in current state-of-the-art MLLMs (CLIP, BLIP2, SigLIP-2, ALIGN) when applied to our tasks, with only CLIP (ViT-L/14) demonstrating reasonable zero-shot performance. Through systematic investigation of cross-modal fusion strategies and loss function selection on the CLIP (ViT-L/14) model, we develop an optimised approach that achieves a +31% improvement in MRR@10 metrics from zero-shot baseline to fine-tuned model. Our findings offer crucial insights and practical guidance for future development in unified multimodal document retrieval tasks.
%U https://aclanthology.org/2025.findings-emnlp.705/
%P 13117-13130
Markdown (Informal)
[DocMMIR: A Framework for Document Multi-modal Information Retrieval](https://aclanthology.org/2025.findings-emnlp.705/) (Li et al., Findings 2025)
ACL