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Abstract
Drug repurposing plays a critical role in ac-
celerating treatment discovery, especially for
complex and rare diseases. Biomedical knowl-
edge graphs (KGs), which encode rich clin-
ical associations, have been widely adopted
to support this task. However, existing meth-
ods largely overlook common-sense biomedi-
cal concept knowledge in real-world labs, such
as mechanistic priors indicating that certain
drugs are fundamentally incompatible with
specific treatments. To address this gap, we
propose LLaDR, a Large Language Model-
assisted framework for Drug Repurposing,
which improves the representation of biomedi-
cal concepts within KGs. Specifically, we ex-
tract semantically enriched treatment-related
textual representations of biomedical entities
from large language models (LLMs) and use
them to fine-tune knowledge graph embed-
ding (KGE) models. By injecting treatment-
relevant knowledge into KGE, LLaDR largely
improves the representation of biomedical con-
cepts, enhancing semantic understanding of
under-studied or complex indications. Experi-
ments based on benchmarks demonstrate that
LLaDR achieves state-of-the-art performance
across different scenarios, with case studies on
Alzheimer’s disease further confirming its ro-
bustness and effectiveness. Code is available at
https://github.com/xiaomingaaa/LLaDR.

1 Introduction

Drug repurposing has emerged as an effective strat-
egy to accelerate drug development by identify-
ing new therapeutic uses for existing drugs (Push-
pakom et al., 2019; Huang et al., 2024; Inoue et al.,
2024). With the increasing complexity of biologi-
cal systems and the growing availability of hetero-
geneous biomedical data (Chen et al., 2024), there
is a critical need for computational approaches
that can efficiently integrate and reason over these
large-scale sources (Wei et al., 2024a). Traditional
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Figure 1: Comparison of standard KG embedding (top)
and LLaDR (bottom). LLaDR incorporating semantic
concept knowledge generates more meaningful repre-
sentations, leading to better separation of entities.

drug repurposing relies heavily on expert-driven
analysis of medical literature and clinical data, re-
quiring interdisciplinary collaboration across phar-
macology, chemistry, and medicine (Samborskyi
et al., 2017). This process is time-consuming and
resource-intensive, often leading to low through-
put (Hodos et al., 2016). Recent advances in
deep learning have improved drug repurposing per-
formance by learning complex representations of
drugs and targets from data (Zhao et al., 2022;
Su et al., 2022; Zhao et al., 2023), enhancing
both accuracy and interpretability (Lee and Lee,
2024). However, these models often overlook struc-
tured domain knowledge from clinical research and
biomedical ontologies (Tayebi and BabaAli, 2024).
To address this, several works (Bang et al., 2023;
Tayebi and BabaAli, 2024; Huang et al., 2024) have
incorporated knowledge graph embedding (KGE)
techniques to model biomedical entities and rela-
tions, enabling more interpretable and knowledge-
aware drug repurposing. These methods leverage
structured biomedical knowledge to improve pre-
diction and support reasoning over complex biolog-
ical interactions.
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However, an important yet underexplored as-
pect of biomedical KGs is the presence of general-
purpose biomedical concept knowledge—common-
sense mechanistic constraints that are critical for
safe and effective treatment decisions. For example,
acetylcholinesterase inhibitors (e.g., Donepezil) are
effective for Alzheimer’s disease but contraindi-
cated in Parkinson’s disease psychosis due to po-
tential cholinergic overstimulation (Goldman and
Holden, 2014). Such concept-level priors are rarely
captured by structure-only KG embedding models,
leading to limited reliability when generalizing to
rare or mechanistically complex diseases.

To address this gap, we propose LLaDR (Large
Language Model-assisted Drug Repurposing), a
framework that integrates concept-level semantics
extracted from LLMs into KG embeddings, promot-
ing better representations of biomedical concepts
(e.g., compound, disease, gene, and cell lines in
Figure 1). LLaDR generates enriched biomedical
concept representations by prompting LLMs with
textual discriptions and using these embeddings
to guide KGE fine-tuning. By injecting treatment-
aware knowledge into KGs, LLaDR enhances both
predictive accuracy and robustness in drug repur-
posing tasks. In summary, our main contributions
are as follows: (1) We propose the first framework
that integrates common-sense biomedical concept
knowledge to enhance KG-based drug repurposing;
(2) We introduce a novel KG fine-tuning approach
that leverages LLM-derived concept knowledge to
improve the semantic expressiveness of knowledge
graph embeddings; (3) Extensive experiments show
that LLaDR achieves state-of-the-art performance
on standard benchmarks and exhibits strong robust-
ness under KG noise and semantic perturbations.

2 Related Work

2.1 Drug Repurposing

Recent advances in drug repurposing leverage
graph learning and deep representation models
to capture complex drug-target-disease relation-
ships (Zhao et al., 2022; Su et al., 2022; Zhao
et al., 2023). Transformer-based architectures have
further improved molecular generation by model-
ing repurposing-aware chemical semantics (Lee
and Lee, 2024). To enhance interpretability and
knowledge grounding, several methods incorporate
biomedical knowledge graphs, encoding structured
relations between entities for more reliable predic-
tions (Tayebi and BabaAli, 2024; Bang et al., 2023).

These approaches extend beyond data-driven corre-
lations by integrating curated ontologies and multi-
relational graphs. Foundation models have re-
cently emerged as powerful tools for repurposing,
combining large-scale clinical data and language
model reasoning to support explainable, clinician-
aligned decisions (Huang et al., 2024; Inoue et al.,
2024). However, most existing approaches focus
on structural or statistical associations, often ne-
glecting high-level biomedical constraints such as
contraindications and mechanistic incompatibili-
ties—factors essential for clinically valid repurpos-
ing. To address this, we propose a concept-aware
framework that explicitly incorporates biomedical
priors into the reasoning process, enabling more
trustworthy and mechanistically grounded repur-
posing decisions.

2.2 LLM incorporated Knowledge
Representation

Recent advances in integrating pre-trained lan-
guage models (PLMs) with knowledge graphs
(KGs) have shown promise in aligning unstructured
text with structured knowledge. KG-BERT (Yao
et al., 2019), PKGC (Lv et al., 2022), and KG-
LLM (Yao et al., 2025) adopt classification or
prompt-based training to inject KG information
into PLMs. FAE (Verga et al., 2020) and KE-
PLER (Wang et al., 2021b) further combine cross-
modal fusion with graph-enhanced contrastive ob-
jectives to bridge textual and relational signals.
However, these methods are computationally in-
tensive due to the need to sample or enumerate
large numbers of triples. To improve efficiency,
StAR (Wang et al., 2021a) and CSProm-KG (Chen
et al., 2023) fuse graph and PLM embeddings, but
are limited to small-scale models and overlook the
structured semantic priors encoded by LLMs. Fully
prompt-based approaches (Wei et al., 2024b; Bi
et al., 2024) offer stronger generalization but are
expensive and less suited to specialized tasks like
drug repurposing. In contrast, LLaDR leverages
LLMs to extract biomedical concept semantics
and integrates them into KG embedding through
a lightweight, hierarchical alignment framework,
enabling scalable and concept-aware reasoning for
drug repurposing.

3 LLaDR Framework

We present LLaDR (as shown in Fig.2), a novel
framework specifically designed for fine-tuning
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knowledge graph embeddings through the strate-
gic integration of textual information derived from
open knowledge sources. This comprehensive
framework consists of two core operational phases
that work in tandem: (1) Generating discription :
During this initial stage, we employ advanced large
language models (LLMs) such as GPT-4 to system-
atically generate rich, context-aware textual discrip-
tions for every entity within the knowledge graph.
These AI-generated discriptions are subsequently
processed through state-of-the-art sentence embed-
ding techniques like Sentence-BERT to create high-
dimensional vector representations, which are then
stored alongside the original KG embeddings in
parallel npy format files for entity-discription align-
ment. (2) Knowledge Graph Fine-Tuning: This
crucial stage implements a multi-layered optimiza-
tion approach where the initial DRKG embeddings
undergo enhancement through three synergistic
mechanisms - firstly by concatenating textual em-
beddings through weighted averaging, secondly by
applying geometric alignment constraints to pre-
serve structural relationships, and thirdly by incor-
porating semantic consistency regularization terms
that bridge the gap between symbolic KG repre-
sentations and neural text embeddings. The itera-
tive fine-tuning process leverages adaptive learning
rate scheduling and contrastive loss functions to
ultimately produce knowledge representations that
simultaneously capture topological accuracy from
the graph structure and nuanced semantic depth
from open-domain textual knowledge.

3.1 Generating Discription

We input entities into a large language model to
obtain their semantically rich discriptions, utilizing
the model’s sophisticated natural language process-
ing capabilities to generate detailed, nuanced, and
contextually grounded representations of these en-
tities. By leveraging the model’s advanced under-
standing of language and its ability to synthesize
information from vast datasets, we ensure that the
resulting discriptions capture not only the explicit
attributes of the entities but also their implicit re-
lationships, connotations, and broader contextual
significance. This process guarantees that the dis-
criptions are comprehensive, encompassing both
the surface-level features and the deeper seman-
tic layers of the entities, while also maintaining
high levels of accuracy and relevance to their spe-
cific domains or applications. The integration of
the large language model’s outputs thus provides a

robust foundation for downstream tasks, enabling
more precise and meaningful interactions with the
entities in question.
Step 1: Entity Embedding Initialization serves
as the foundational step in this procedure, where we
are provided with a comprehensive set of entities
denoted as E = {e1, . . . , e|E|} within a Knowl-
edge Graph (KG). The primary objective of this
step is to enhance the semantic representations of
these entities by leveraging the capabilities of a
Large Language Model (LLM) to generate detailed
and informative discriptions for each entity.

To achieve this, for every individual entity ei
within the set E, we utilize a carefully designed
prompt template to query the LLM. An example
of such a template could be phrased as follows:
"Briefly describe [entity] in a concise yet informa-
tive manner, adhering to the format ’[entity] is a
[discription]’." This structured approach ensures
that the generated discriptions are not only con-
sistent in format but also rich in semantic content,
thereby facilitating the subsequent steps in the em-
bedding process.

By systematically iterating through each entity
in the set E and applying this method, we aim
to construct a robust and semantically enriched
representation of the entire entity collection, which
will serve as the basis for further processing and
analysis within the Knowledge Graph framework.

Subsequently, the entity embedding vie ∈ Rdim(f)

and discription embedding vid = f(di) ∈ Rdim(f)

are obtained using an embedding model f and con-
catenated to form the enriched representation:

vi = [vie; v
i
d]. (1)

3.2 Knowledge Graph Fine-Tuning
Step 2: LLaDR fine-tunes the knowledge graph
embeddings by incorporating the text embeddings,
which serve as an additional source of information
to enrich the structural representations of entities
and relations. This integration is guided by two pri-
mary constraints designed to optimize the embed-
dings for both alignment and predictive accuracy.
The first constraint, known as the text embedding
deviation constraint, ensures that the structural em-
beddings derived from the knowledge graph remain
closely aligned with their corresponding textual
representations, thereby maintaining consistency
between the two modalities. The second constraint
focuses on the link prediction objective, which di-
rectly optimizes the embeddings to accurately pre-
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Figure 2: Overview of LLaDR. Input and Output are highlighted at each step. Step 1: Obtain text embeddings for all
entities in DRKG, achieved by merging word embeddings with discription embeddings retrieved from LLMs. Step
2: We utilize the initial vectors generated by LLMs and apply them to the training of knowledge graphs, thereby
obtaining the final embeddings of entities and relations enriched with comprehensive semantics.

dict the relationships between entities within the
knowledge graph. By combining these constraints,
LLaDR not only enhances the alignment between
structural and textual representations but also im-
proves the overall performance and coherence of
the knowledge graph, making it more robust and
reliable for downstream tasks. This dual-objective
approach ensures that the embeddings capture both
the semantic nuances from the text and the rela-
tional dynamics from the graph structure, resulting
in a more effective representation.
Semantic Anchoring Constraint: To maintain
the original semantic integrity of the embeddings,
we implement the semantic anchoring constraint,
which is formulated as:

Lanc = −
∑

ei∈E
d(ei, v

′
i), (2)

Given that E represents the collection of entities, ei
idenotes the fine-tuned embedding associated with
entity ei, v′i stands for the sliced text embedding of
entity ei, and d(·, ·) indicates the distance function.

This constraint is critically important for large
clusters, where the inherent diversity of entities
may lead the fine-tuned embeddings to significantly
deviate from their original semantic meanings, po-
tentially undermining the model’s ability to gener-
alize. The constraint also plays a vital role when
working with sparse knowledge graphs, as it effec-
tively prevents the model from overfitting to the
limited and often incomplete structural information
that is available. By functioning as a powerful reg-
ularization term, it not only mitigates the risk of
overfitting but also substantially enhances the over-
all robustness and reliability of the learned embed-
dings, ensuring they remain semantically coherent

and practically useful across diverse scenarios.
Score Function-Based Fine-Tuning: LLaDR is a
highly versatile and general framework that can be
seamlessly integrated with a wide range of exist-
ing Knowledge Graph Embedding (KGE) models,
as demonstrated in previous studies (Daza et al.,
2021; Carvalho et al., 2023). These KGE mod-
els are specifically engineered to learn compact,
low-dimensional vector representations of both en-
tities and relations within a knowledge graph, with
the primary objective of effectively capturing and
preserving the rich semantic and structural informa-
tion that is inherently embedded within the graph
itself. In the context of our research, we place
particular emphasis on the task of link prediction,
which serves as a critical mechanism to enhance
and refine the model’s overall capability to make
precise and accurate predictions about the potential
relationships that may exist between various enti-
ties within the knowledge graph. The link predic-
tion loss function associated with this framework is
carefully defined and formulated to ensure optimal
performance in this regard and decomposed into
two components: the positive sample loss Lpos and
the negative sample loss Lneg. Lpos measures the
score of the observed triple (ei, r, ej):

Lpos = log σ(γ − fr(ei, ej)), (3)

Lneg computes a penalty term by averaging the
scores of negative samples e′j , where these samples
are randomly selected from the predefined negative
sampling set Nj corresponding to each observed
positive triple:

Lneg = − 1

|Nj |
∑

e′j∈Nj

log σ(fr(ei, e
′
j)− γ). (4)
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The link prediction loss function, which serves as
the core optimization objective in knowledge graph
embedding, can be formally expressed as:

Llink = −
∑

(ei,r,ej)∈D

[
Lpos + Lneg

]
, (5)

here D denotes the complete set of all triples con-
tained within the knowledge graph, while σ rep-
resents the sigmoid activation function,which is
employed to normalize the output values. The scor-
ing function fr(·, ·) , which is explicitly defined by
the selected Knowledge Graph Embedding (KGE)
model, serves as a critical component for quanti-
fying the compatibility or alignment between the
embedding vector of the head entity ei and the em-
bedding vector of the tail entity ej , given the spe-
cific relation r.Additionally Nj corresponds to the
set of negative tail entities that are systematically
sampled for the positive triple (ei, r, ej), where
each e′j signifies the embedding vector of a nega-
tive tail entity e′j within this sampled set. Finally,
γ is a predefined margin hyperparameter that plays
a pivotal role in regulating the training process and
ensuring the discriminative power of the learned
embeddings.

The link prediction-based fine-tuning process is
fundamentally designed to achieve two complemen-
tary objectives: first, it systematically minimizes
the scoring function fr(ei, ej) for the true, posi-
tive triples (ei, r, ej), ensuring that these triples are
assigned the highest possible compatibility scores
by the model. Simultaneously, it rigorously maxi-
mizes the margin or separation between the scores
of these true triples and the scores of the artificially
generated negative triples (ei, r, e′j) where e′j repre-
sents a corrupted or incorrect tail entity. This dual
optimization strategy serves as a powerful induc-
tive bias, compelling the model to distinctly dif-
ferentiate between valid and invalid relationships
by assigning significantly higher scores to the pos-
itive triples and substantially lower scores to the
negative triples. By enforcing this discriminative
scoring behavior, the fine-tuning process effectively
imbues the learned embeddings with the rich, local-
ized semantic patterns and relational structures that
are inherently present within the knowledge graph,
thereby enhancing their ability to capture and pre-
serve the nuanced contextual information that de-
fines the relationships between entities.The margin
hyperparameter γ further refines this process by
controlling the degree of separation required be-
tween the scores of positive and negative triples,

ensuring that the embeddings not only achieve high
discriminative power but also maintain robustness
and generalizability across diverse scenarios.
Training Objective: The training objective of
LLaDR is designed to optimize the model by inte-
grating two distinct constraints, each contributing
to the overall learning process. The objective func-
tion is formulated as follows:

L = ζ1Lanc + ζ2Llink, (6)

here, ζ1 and ζ2 are hyperparameters that determine
the relative importance of each constraint in the to-
tal loss. The first term, Lanc,represents the anchor
loss, which ensures that the embeddings of similar
entities or relations are pulled closer together in the
vector space. The second term,Link,corresponds
to the link loss, which enforces the structural con-
sistency of the knowledge graph by preserving the
relationships between entities.

By combining these two constraints, LLaDR
achieves a balanced optimization that not only cap-
tures the semantic similarities between entities but
also maintains the integrity of the relational struc-
ture. The hyperparameters ζ1 and ζ2 allow for
fine-tuning the model’s behavior, enabling it to pri-
oritize either the anchor or link constraint based
on the specific requirements of the task or dataset.
This flexibility makes the model adaptable to vari-
ous scenarios, ensuring robust performance across
different applications.

4 Experimental Setup

Datasets. We consider datasets that encompass
various domains and sizes, ensuring comprehen-
sive evaluation of the proposed model. Specif-
ically, we utilize the DRKG dataset (Ioannidis
et al., 2022), a biomedical knowledge graph that
includes drugs, diseases, genes, and cell lines,
comprising 68,471 entities, 101 relationships, and
4,359,327 triples, which are partitioned into train-
ing (3,889,539 triples), validation (429,959 triples),
and test (39,829 triples) sets to facilitate robust eval-
uation while preserving the integrity of the biomed-
ical relationships. Table 5 (in Appendix) shows the
statistics of DRKG (Ioannidis et al., 2022).
Drug Repurposing Task. In this study, we evalu-
ate the performance of our knowledge graph drug
repurposing model using a tail entity replacement
strategy. For each test triple,we randomly sam-
ple 50 candidate tail entities from a predefined list
of disease entities to construct candidate triples.

13971



Meanwhile, we selected three therapeutically rel-
evant relation types from DRKG as the relation
types for the candidate triples. Due to the random-
ness introduced by sampling candidate tail entities,
each experiment was repeated five times, and the
average result was reported.
Metrics. Following previous works, we use
Mean Rank (MR), Mean Reciprocal Rank (MRR),
Hits@N (H@N) and Area Under the Curve(AUC)
to evaluate link prediction. MR measures the aver-
age rank of true entities, lower the better. MRR av-
erages the reciprocal ranks of true entities, provid-
ing a normalized measure less sensitive to outliers.
Hits@N measures the proportion of true entities in
the top N predictions. AUC measures the quality
of the ranking.
Baselines. To benchmark the performance of our
proposed model, we compared it against the state
of-the-art PLM-based methods including CSProm-
KG (Chen et al., 2022) and KGT5 (Saxena et al.,
2022), GNN-based methods including GraphSAGE
(Tayebi and BabaAli, 2024), GAT, and Structure-
based methods including TransE (Carvalho et al.,
2023), DistMult (Jiang et al., 2023) and RotatE
(Dettmers et al., 2018). In Structure-based meth-
ods,we use dgl-ke (Zheng et al., 2020) as the base-
line.
Experimental Strategy. For PLM-based mod-
els, we reproduce CSProm-KG (Chen et al., 2022)
and KGT5 (Saxena et al., 2022) for DRKG,for
Structure-based KGE models, we assess and
present their best performance using optimal set-
tings, for GNN-based models, we use GraphSAGE
(Tayebi and BabaAli, 2024) and GAT frameworks
for testing. For LLaDR, we use OpenAI’s GPT-
3.5-turbo and GPT-4o-mini as the LLM for entity
discription generation. Text-embedding-3-small is
used for entity embedding initialization.

4.1 Experimental Results
Drug Repurposing Performance. We conducted a
drug repurposing experiment to rigorously evaluate
LLaDR, with the results meticulously summarized
in Table 10. In this experiment, we thoroughly as-
sessed the accuracy of LLaDR, The experimental
outcomes clearly show LLaDR’s superior perfor-
mance compared to existing approaches in every
evaluation criterion. This advantage is consistently
observed throughout all testing scenarios and mea-
surement standards, proving the method’s capabil-
ity to effectively integrate language model knowl-
edge with graph embedding techniques. The com-

parative results across different model architectures
unequivocally establish LLaDR’s leading position
in knowledge graph representation learning.

Backbone Variants MR↓ H@10↑ AUC↑

GNN
GraphSAGE 6.66 .813 .844

GAT 6.64 .812 .839

PLM
KGT5 10.48 .650 .806

CSProm-KG 6.64 .812 .839

TransE

Base 6.28 .840 .835
LLaDR-gpt-3.5 5.39 .871 .850

LLaDR-gpt-4o-mini 5.46 .864 .849
LLaDR-LLama 5.40 .867 .850

Best Imprv ↑16.5% ↑3.6% ↑1.7%

DistMult

Base 7.55 .786 .817
LLaDR-gpt-3.5 6.06 .839 .843

LLaDR-gpt-4o-mini 6.42 .821 .836
LLaDR-LLama 6.32 .826 .838

Best Imprv ↑24.5% ↑6.7% ↑3.1%

RotatE

Base 6.06 .850 .837
LLaDR-gpt-3.5 5.33 .873 .849

LLaDR-gpt-4o-mini 5.52 .862 .844
LLaDR-LLama 5.49 .862 .844

Best Imprv ↑13.6% ↑2.7% ↑1.4%

Table 1: The performance of LLaDR and baselines for
drug repurposing. The bold denotes the best results.

As quantitatively demonstrated in Table 10,
the LLaDR framework maintains consistent per-
formance advantages across all evaluation met-
rics when benchmarked against contemporary
methodologies on DRKG datasets, including PLM-
enhanced architectures, graph neural network im-
plementations, and conventional structure-driven
models. This empirical validation underscores
LLaDR’s capability to effectively harness the se-
mantic comprehension capabilities of large lan-
guage models for optimizing knowledge graph
embedding spaces. Specifically, when employ-
ing GPT-3.5-turbo-generated textual discriptions
as contextual inputs, the LLaDRDistMult variant
achieves significant performance differentials com-
pared to baseline systems: a 24.5% relative im-
provement in Mean Rank (MR) metric for en-
tity alignment tasks and an 6.7% enhancement in
HITS@10 (H@10). Furthermore, the framework
demonstrates robust discriminative capacity with
a 3.1% increase in Area Under Curve (AUC) mea-
surements, collectively illustrating its effectiveness
in preserving structural integrity while integrat-
ing linguistic patterns from LLMs across multi-
ple evaluation dimensions. The performance im-
provements are consistently observed under differ-
ent experimental configurations and data sampling
conditions, confirming the reliability of these quan-
titative findings. The comparative results clearly
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establish LLaDR’s superiority in both structural
and semantic aspects of knowledge graph repre-
sentation learning. We show more results in Ap-
pendix A.3

Prompt.To validate the impact of different prompts
on the quality of generated text, we designed three
prompts for generating entity discriptions: a no-
prompt, an original prompt, and a refined prompt.
The specific three prompts and full experiment re-
sults are provided in Appendix A.4. The large
language model used in this experiment is GPT-4o-
mini.

Backbone Variants MR↓ H@10↑ AUC↑

TransE
noprompt 5.64 .856 .840

original prompt 5.46 .864 .849
good prompt 5.43 .867 .850

DistMult
noprompt 7.05 .800 .822

original prompt 6.42 .821 .836
good prompt 6.34 .824 .838

RotatE
noprompt 5.82 .851 .832

original prompt 5.52 .862 .844
good prompt 5.51 .863 .844

Table 2: LLaDR’s performance on different prompts for
drug repurposing.

Temperature.To validate the impact of tempera-
ture on the text generation quality of large language
models, we carefully designed a low-temperature
experiment, reducing the temperature to 0.1 for
text generation, which was used for downstream
tasks in drug repositioning. We compared this with
the experimental data at the original temperature
of 0.7.The full experiment results are provided in
Appendix A.4.

Backbone Temperature MR↓ H@10↑ AUC↑

TransE
low(0.1) 5.75 .856 .845

original(0.7) 5.46 .864 .849

DistMult
low(0.1) 6.44 .821 .836

original(0.7) 6.42 .821 .836

RotatE
low(0.1) 5.71 .857 .840

original(0.7) 5.52 .862 .844

Table 3: LLaDR’s performance on low temperature for
drug repurposing.

Robustness. We conducted a comprehensive ro-
bustness testing experiment to rigorously evaluate
the robustness of LLaDR. In this experiment, we
thoroughly assessed the robustness of LLaDR, as
clearly outlined in the paper, and systematically
compared its performance to baseline models un-
der varying levels of noise and data perturbation

(as shown in Fig.3). The primary goal was to crit-
ically evaluate the models’ ability to consistently
maintain predictive accuracy in less-than-ideal con-
ditions, ensuring a fair and detailed comparison
across all tested scenarios. Remarkably, LLaDR
demonstrated superior robustness, maintaining sta-
ble performance even under significant noise, pri-
marily due to its integrated regularization mecha-
nisms and the high-quality init embeddings gen-
erated by LLMs, which significantly contributed
to its resilience. In stark contrast, baseline mod-
els (Zheng et al., 2020), which lacked such so-
phisticated mechanisms, exhibited a noticeable and
progressive decline in accuracy as noise levels in-
creased, highlighting the limitations of their design.
More detailed results are reported in Appendix A.5.

Validity of Knowledge.We conducted a semantic
ablation experiment to validate the effectiveness
of discriptions generated by LLMs, analyzing the
impact of masking on model performance. We
masked 20%, 40%, and 60% of the discriptions
generated by the language model, then reused them
for drug repositioning tasks, measuring the result-
ing changes in accuracy and key metrics. Based on
the data in Table 4, it can be observed that with the
increase in the proportion of semantic masks, the
metrics across models decline significantly, con-
firming the critical role and effectiveness of the
discriptions generated by LLMs. The downward
trend in performance underscores the importance
of preserving the semantic integrity of the discrip-
tions. We provide the full results, including break-
downs and additional analyses, in Appendix A.6,
offering a comprehensive view of the experiment’s
outcomes.

Backbone Variants MR↓ H@10↑ AUC↑

TransE

original 5.46 .864 .849
mask 20% 5.96 .839 .843
mask 40% 6.04 .838 .838
mask 60% 6.12 .835 .836

DistMult

original 6.42 .821 .836
mask 20% 6.46 .820 .829
mask 40% 6.66 .813 .827
mask 60% 6.74 .809 .828

RotatE

original 5.52 .862 .844
mask 20% 5.86 .844 .840
mask 40% 5.93 .842 .838
mask 60% 6.03 .839 .836

Table 4: Robustness of LLaDR based on masked seman-
tic discription.
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(a) Robustness of LLaDR on Noisy KGs by Delete Operation (b) Robustness of LLaDR on Noisy KGs by Add Operation

Figure 3: Robustness of LLaDR on noisy KGs by deleting or adding unknown associations.

4.2 Case Analysis

In our study, we employed a novel and systematic
drug repositioning strategy to identify promising
and potentially effective candidates for Alzheimer’s
disease treatment. This carefully designed strat-
egy was specifically developed to enhance both
the precision and breadth of therapeutic discovery
by integrating robust computational frameworks
with extensive biomedical data. LLaDR demon-
strated a significant and measurable improvement
in predictive accuracy, clearly and consistently
outperforming a broad range of traditional and
widely used methods, including several baseline
and benchmark algorithms across various evalua-
tion metrics. Through comprehensive and large-
scale screening of its top-ranked compounds across
a broad and diverse pharmacological space, we
successfully pinpointed several potential therapeu-
tics, including both Dasatinib and Quercetin, which
consistently showed strong and reproducible thera-
peutic potential in the context of Alzheimer’s dis-
ease. We further examined the textual discriptions
and related biomedical literature of Dasatinib and
Quercetin in meticulous detail, and carefully an-
notated the specific sections that may directly con-
tribute to their high ranking as potential treatments
for Alzheimer’s disease (as shown in Fig.4). Stud-
ies such as (Krzystyniak et al., 2022) provide addi-
tional and supporting evidence for the use of Dasa-
tinib and Quercetin in Alzheimer’s therapy, thereby
reinforcing their clinical relevance and practical
utility. These findings collectively and robustly
highlight LLaDR’s superior capability in identify-
ing clinically relevant drug candidates with signifi-
cant translational promise and therapeutic potential.
AppendixA.7 lists the top 10 predictions, further

validating, confirming, and strengthening the ro-
bustness, consistency, and overall reliability of our
proposed approach.

aging

damage

senescent cells

D+Q
Neural cells in 
hippocampus

Apoptotic cells

elimination of 
senecent cells

(b) Therapeutic Mechanism

Alzheimer

cause
     suppress

Dasatinib: Dasatinib is a tyrosine kinase inhibitor that...... and  has been shown 
to be effective in inducing remission and prolonging survival in patients with 
CML and Ph+ ALL.......

Quercetin: Quercetin has been studied for its potential health benefits, 
including its ability to reduce inflammation, boost the immune system, and 
protect against chronic diseases......

Figure 4: The mechanism of action of Dasatinib and
Quercetin in Alzheimer’s disease.

5 Conclusion

This study introduces LLaDR, a framework en-
hancing the Drug Repurposing Knowledge Graph
(DRKG) by combining structural embeddings with
LLM-derived semantics. It surpasses traditional
methods in drug-disease prediction accuracy by
jointly leveraging topological and contextual infor-
mation.

The approach captures structural and semantic
relationships critical for drug discovery, applica-
ble to biomedical KGs like disease-gene networks.
Future work may extend to larger graphs and mul-
timodal data.

In summary, LLaDR enhances DRKG for drug
repositioning, providing a scalable solution for
knowledge graph improvements in drug discovery.
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Limitations

While LLaDR significantly enhances drug repur-
posing by integrating LLM semantics with knowl-
edge graph embeddings and demonstrates remark-
able robustness to noise, certain limitations still
persist and require careful consideration and fur-
ther investigation in the future. Key challenges
include scalability issues, domain generalization
difficulties, and ethical concerns, which must be
addressed for broader adoption and practical imple-
mentation in real-world settings. (1) Dependence
on LLM: Errors or biases in LLM-generated dis-
criptions (e.g., GPT-3.5-turbo, GPT-4o-mini) can
significantly affect performance and reliability, po-
tentially limiting its effectiveness and practical util-
ity over time. (2) Scalability Challenges: Com-
putational costs may rise substantially for larger
graphs (millions of entities), posing practical bar-
riers to widespread use and deployment at scale.
(3) Interpretability Concerns: The "black-box"
nature of LLMs complicates clinical adoption and
raises transparency issues, limiting trust and accep-
tance among key stakeholders. Addressing these
challenges could unlock LLaDR’s potential for clin-
ical decision support and wider use in practice.
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A Appendix

A.1 Datasets

Dataset Entities Relations Train Valid Test
DRKG 68,471 101 3,889,539 429,959 39,829

Table 5: We have meticulously divided the comprehensive Drug Repurposing Knowledge Graph (DRKG) into three
distinct parts: 3,889,539 entries for the training set, 429,959 entries for the validation set, and 39,829 entries for
the test set. The test set primarily consists of meaningful triplets that describe the intricate relationships between
various drugs and diseases, which are specifically used for conducting essential drug repositioning experiments
aimed at identifying new therapeutic applications.

A.2 Hardware

Our experiment uses the RTX 3080 graphics card for training and testing, with a total of 100,000 steps for
training. For DRKG, one training session takes 2 hours.

A.3 Drug Repurposing Results

Structure-based

Model Frame H MR MRR H@3 H@10 AUC

Base (Zheng et al., 2020) — 6.28 .476 .568 .840 .835
TransE LLADR gpt-3.5-turbo 5.39 .533 .634 .871 .850

gpt-4o-mini 5.46 .529 .627 .864 .849

Base (Zheng et al., 2020) — 7.55 .423 .497 .786 .817
DisMult LLADR gpt-3.5-turbo 6.06 .499 .588 .839 .843

gpt-4o-mini 6.42 .482 .568 .821 .836

Base (Zheng et al., 2020) — 6.06 .493 .588 .850 .837
RotatE LLADR gpt-3.5-turbo 5.33 .550 .650 .873 .849

gpt-4o-mini 5.52 .551 .650 .862 .844

GNN-based

— Frame H MR MRR H@3 H@10 AUC

— GNN GraphSAGE 6.66 .465 .547 .813 .844
GAT 6.64 .465 .550 .812 .839

PLM-based

— PLM Model MR MRR H@3 H@10 AUC

— T5 KGT5(Saxena et al., 2022) 10.48 .393 .443 .650 .806
BERT CSProm-KG(Chen et al., 2022) 9.36 .422 .491 .705 .829

Table 6: Drug Repurposing Performance Comparison.Results are averaged values (of ten runs for DRKG) of tail
entity predictions. LLADR consistently outperforms both PLM-based models, GNN-based models and Structure-
based models across all metrics, demonstrating its effectiveness in incorporating open-world knowledge from
LLMs for enhancing KG embeddings. The experimental outcomes clearly show LLADR’s superior performance
compared to existing approaches in every evaluation criterion. This advantage is consistently observed throughout
all testing scenarios and measurement standards, proving the method’s capability to effectively integrate language
model knowledge with graph embedding techniques. The comparative results across different model architectures
unequivocally establish LLADR’s leading position in knowledge graph representation learning.
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A.4 prompt,temperature,KL and bge

Backbone Temperature MR↓ MRR↑ H@3↑ H@10↑ AUC↑

TransE
low(0.1) 5.75 .504 .597 .856 .845

original(0.7) 5.46 .529 .627 .864 .849

DistMult
low(0.1) 6.44 .477 .563 .821 .836

original(0.7) 6.42 .482 .568 .821 .836

RotatE
low(0.1) 5.71 .531 .629 .857 .840

original(0.7) 5.52 .551 .650 .862 .844

Table 7: We can see that when using the embeddings generated from discriptions created at a low temperature
for experiments, the experimental metrics did not significantly decrease, proving the effectiveness of discriptions
generated at a low temperature.

Backbone Prompt MR↓ MRR↑ H@3↑ H@10↑ AUC↑

TransE
noprompt 5.64 .523 .615 .856 .840

originalprompt 5.46 .529 .627 .864 .849
goodprompt 5.43 .532 .631 .867 .850

DistMult
noprompt 7.05 .423 .499 .800 .822

originalprompt 6.42 .482 .568 .821 .836
goodprompt 6.34 .488 .574 .824 .838

RotatE
noprompt 5.82 .522 .620 .851 .832

originalprompt 5.52 .551 .650 .862 .844
goodprompt 5.51 .554 .650 .863 .844

Table 8: We can see that when using embeddings generated from discriptions created with different prompts for
experiments, the discriptions generated without prompts performed significantly worse in the drug repurposing
task compared to those generated with prompts, demonstrating the effectiveness of using prompts to generate
discriptions.

noprompt: (gpt-4o-mini)
example: noprompt,input HER2, get the output of gpt **Sample Input/Output:**
Input: "HER2"
Output: "HER2 (Human Epidermal growth factor Receptor 2) is a protein that plays a key role in the
growth and spread of cancer cells, particularly in breast cancer. It is encoded by the ERBB2 gene and is
overexpressed in approximately 15-20% of breast cancers, leading to more aggressive disease and poorer
prognosis.........

originalprompt: (gpt-4o-mini)
prompt: You are an expert providing detailed and accurate information and background about biological
entitiesTell me about the background and uses of the (HER2
**Sample Input/Output:**
Input: "HER2"
Output: HER2, or human epidermal growth factor receptor 2, is a gene located on chromosome 17. It
encodes a protein that is part of the epidermal growth factor receptor (EGFR) family, which is involved in
cell growth and differentiation. Overexpression of HER2 is associated with aggressive forms of breast
cancer and other cancers............
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goodprompt: (gpt-4o-mini)

prompt: Act as a biomedical knowledge graph specialist. Generate structured, for input biological entities
using this template:

**Output Structure:**

1. Background: Classification core biological significance

2. Appearance: Key structural/morphological features (if applicable)

3. Clinical Relevance: Diagnostic/therapeutic applications (if exists)

**Requirements:**

→ Maintain scientific accuracy

→ Use bullet-resistant phrasing (no markdown)

→ Separate sections with semicolons (;)

→ Exclude disclaimers/examples

**Response Example Format:**

Background: [2-3 sentences];

Appearance: [1-2 attributes];

Clinical: [1-2 applications]“‘

**Key Features:**

- Forces clinical relevance inclusion where available

- Enforces hard token limits through counting directive

- Prevents markdown/formatting bloat

- Prioritizes evidence-based applications

- Maintains domain-specific terminology

- Allows "N/A" for non-applicable sections (e.g., molecular entities)

**Sample Input/Output:**

Input: "HER2"

Output: HER2, or human epidermal growth factor receptor 2, is a gene located on chromosome 17. It
encodes a protein that is part of the epidermal growth factor receptor (EGFR) family, which is involved in
cell growth and differentiation. Overexpression of HER2 is associated with aggressive forms of breast
cancer and other cancers............

Backbone Variants MR↓ MRR↑ H@3↑ H@10↑ AUC↑

TransE
KL 5.84 .522 .615 .850 .838

original 5.46 .529 .627 .864 .849

DistMult
KL 6.89 .434 .512 .804 .827

original 6.42 .482 .568 .821 .836

RotatE
KL 5.80 .533 .628 .851 .835

original 5.52 .551 .650 .862 .844

Table 9: To verify whether the Kullback-Leibler divergence can serve the same purpose as the text embedding
deviation constraint in the original code, we replaced the text embedding deviation constraint in the original code
with the Kullback-Leibler divergence for experimentation.
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Backbone Variants MR↓ MRR↑ H@3↑ H@10↑ AUC↑

TransE
bge-v1.5-small 5.75 .504 .599 .857 .845

text-embedding-small 5.46 .529 .627 .864 .849

DistMult
bge-v1.5-small 6.89 .444 .525 .805 .826

text-embedding-small 6.42 .482 .568 .821 .836

RotatE
bge-v1.5-small 5.71 .542 .636 .854 .838

text-embedding-small 5.52 .551 .650 .862 .844

Table 10: To validate the effectiveness of the embeddings generated by the closed-source large model, we used
bge-v1.5-small to generate embeddings for entities and their discriptions, and applied them to downstream tasks in
drug repositioning. The results demonstrate that the embeddings generated by the closed-source large model remain
highly effective.

A.5 Robustness Experiment Results

Robustness Testing Experiment

Model Frame H MR MRR H@3 H@10 AUC

Base (Zheng et al., 2020)

original 6.28 .476 .568 .840 .835
delete 20% 6.74 .442 .520 .817 .824
delete 40% 6.98 .425 .502 .807 .817
delete 60% 7.23 .416 .490 .793 .811
add 20% 10.44 .315 .358 .661 .761
add 40% 12.23 .268 .297 .594 .732
add 60% 13.68 .233 .242 .528 .702

TransE

LLADR

original 5.39 .533 .634 .871 .850
delete 20% 5.42 .526 .626 .868 .851
delete 40% 5.45 .527 .623 .866 .851
delete 60% 5.49 .528 .625 .864 .849
add 20% 6.03 .511 .602 .841 .835
add 40% 6.55 .493 .581 .822 .821
add 60% 7.00 .476 .559 .804 .812

Base (Zheng et al., 2020)

original 7.55 .423 .497 .786 .817
delete 20% 7.68 .412 .483 .781 .817
delete 40% 7.61 .396 .461 .781 .813
delete 60% 8.16 .410 .483 .768 .806
add 20% 9.12 .358 .412 .722 .796
add 40% 9.96 .333 .380 .687 .787
add 60% 10.09 .323 .370 .683 .783

DistMult

LLADR

original 6.06 .823 .588 .839 .843
delete 20% 6.38 .487 .572 .823 .836
delete 40% 6.41 .486 .571 .822 .836
delete 60% 6.76 .452 .534 .810 .819
add 20% 7.20 .465 .543 .798 .812
add 40% 8.00 .452 .525 .784 .805
add 60% 8.27 .442 .514 .780 .799

Base (Zheng et al., 2020)

original 6.06 .493 .588 .850 .837
delete 20% 6.15 .482 .574 .844 .836
delete 40% 6.25 .474 .562 .837 .835
delete 60% 6.55 .454 .538 .822 .827
add 20% 8.88 .379 .440 .728 .789
add 40% 9.83 .034 .392 .695 .771
add 60% 10.41 .334 .384 .669 .764

RoTatE

LLADR

original 5.33 .550 .650 .873 .849
delete 20% 5.35 .553 .653 .870 .848
delete 40% 5.45 .553 .648 .864 .846
delete 60% 5.53 .551 .646 .860 .844
add 20% 5.82 .518 .610 .850 .844
add 40% 6.33 .495 .586 .832 .837
add 60% 6.81 .477 .564 .811 .827
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Table 11: Robustness Testing Experiment.To rigorously evaluate LLADR’s robustness and generalization capa-
bilities, we conducted extensive and systematic noise injection experiments on the comprehensive DRKG dataset,
introducing progressive corruption levels of 20%, 40%, and 60% alongside randomized removal of corresponding
proportions (20%, 40%, and 60%) of triples. This carefully designed dual-pronged experimental approach effectively
mimics extreme real-world data degradation scenarios, thoroughly assessing the model’s stability, fault tolerance,
and adaptability under adverse conditions. The comprehensive results empirically validate LLADR’s exceptional
resilience and consistent performance, conclusively proving its ability to maintain reliable and accurate predictions
even under severe data perturbations and information loss, thereby strongly confirming its suitability for practical
real-world applications dealing with uncertain or unreliable data quality.

A.6 Mask Experiment Results

Mask Discription Experiment

Model Mask MR MRR H@3 H@10 AUC

TransE

original 5.46 .529 .627 .864 .849
mask 20% 5.96 .522 .609 .839 .843
mask 40% 6.04 .512 .600 .838 .838
mask 60% 6.12 .504 .589 .835 .836

DistMult

original 6.42 .482 .568 .821 .836
mask 20% 6.46 .469 .551 .820 .829
mask 40% 6.66 .457 .537 .813 .827
mask 60% 6.74 .457 .538 .809 828

RotatE

original 5.52 .551 .650 .862 .844
mask 20% 5.86 .532 .623 .844 .840
mask 40% 5.93 .525 .613 .842 .838
mask 60% 6.03 .519 .605 .839 .836

Table 12: Mask Discription Experiment. To validate the effectiveness of LLM-generated semantics, we conducted
semantic ablation experiments by progressively masking 20%, 40%, and 60% of GPT-4o-mini-generated discriptions.
These masked texts, preserving syntactic structure but losing key phrases, were tested across TransE, DistMult,
and RotatE models. The performance degradation across masking ratios quantitatively reveals the critical role of
semantic completeness in enhancing KG embeddings. The experimental results show a clear correlation between
the amount of semantic information removed and the decline in model performance, with each incremental masking
level leading to progressively worse outcomes. This pattern holds consistently across all three tested models,
demonstrating that the semantic content plays an essential role regardless of the underlying embedding architecture.
The findings provide concrete evidence that the quality and completeness of LLM-generated discriptions directly
impact the effectiveness of knowledge graph representation learning.

A.7 Top 10 Drugs

Top-10

Dasatinib (Krzystyniak et al., 2022)
Methylthioninium (Baddeley et al., 2015)

Digoxin (Erdogan et al., 2022)
Mitoxantrone (Reiss et al., 2024)
Gemcitabine

Suramin (Culibrk et al., 2024)
Quercetin (Krzystyniak et al., 2022)

Flufenamic acid
Amiodarone (Mitterreiter et al., 2010)
Quinacrine (Park et al., 2021)

Table 13: We carefully selected the top 10 potential drugs for treating Alzheimer’s disease and conducted an online
survey, and we found that most of the predicted drugs are associated with relevant literature on Alzheimer’s, which
further validates the effectiveness and reliability of LLaDR’s predictions.
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