@inproceedings{dent-etal-2025-identifying,
title = "Identifying Rare Languages in {C}ommon {C}rawl Data is a Needles-in-a-Haystack Problem",
author = "Dent, Rasul and
Ortiz Suarez, Pedro and
Cl{\'e}rice, Thibault and
Sagot, Beno{\^i}t",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.77/",
pages = "1460--1473",
ISBN = "979-8-89176-335-7",
abstract = "Automatic language identification is frequentlyframed as a multi-class classification problem.However, when creating digital corpora forless commonly written languages, it may bemore appropriate to consider it a data min-ing problem. For these varieties, one knowsahead of time that the vast majority of doc-uments are of little interest. By minimizingresources spent on classifying such documents,we can create corpora covering previously over-looked languages faster than existing pipelines.To demonstrate the effectiveness of the tar-geted mining perspective, we introduce a newpipeline that can filter a single snapshot in twohours. We also provide web corpora for severalFrench-based Creoles."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dent-etal-2025-identifying">
<titleInfo>
<title>Identifying Rare Languages in Common Crawl Data is a Needles-in-a-Haystack Problem</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rasul</namePart>
<namePart type="family">Dent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pedro</namePart>
<namePart type="family">Ortiz Suarez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thibault</namePart>
<namePart type="family">Clérice</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benoît</namePart>
<namePart type="family">Sagot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Automatic language identification is frequentlyframed as a multi-class classification problem.However, when creating digital corpora forless commonly written languages, it may bemore appropriate to consider it a data min-ing problem. For these varieties, one knowsahead of time that the vast majority of doc-uments are of little interest. By minimizingresources spent on classifying such documents,we can create corpora covering previously over-looked languages faster than existing pipelines.To demonstrate the effectiveness of the tar-geted mining perspective, we introduce a newpipeline that can filter a single snapshot in twohours. We also provide web corpora for severalFrench-based Creoles.</abstract>
<identifier type="citekey">dent-etal-2025-identifying</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.77/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1460</start>
<end>1473</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying Rare Languages in Common Crawl Data is a Needles-in-a-Haystack Problem
%A Dent, Rasul
%A Ortiz Suarez, Pedro
%A Clérice, Thibault
%A Sagot, Benoît
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F dent-etal-2025-identifying
%X Automatic language identification is frequentlyframed as a multi-class classification problem.However, when creating digital corpora forless commonly written languages, it may bemore appropriate to consider it a data min-ing problem. For these varieties, one knowsahead of time that the vast majority of doc-uments are of little interest. By minimizingresources spent on classifying such documents,we can create corpora covering previously over-looked languages faster than existing pipelines.To demonstrate the effectiveness of the tar-geted mining perspective, we introduce a newpipeline that can filter a single snapshot in twohours. We also provide web corpora for severalFrench-based Creoles.
%U https://aclanthology.org/2025.findings-emnlp.77/
%P 1460-1473
Markdown (Informal)
[Identifying Rare Languages in Common Crawl Data is a Needles-in-a-Haystack Problem](https://aclanthology.org/2025.findings-emnlp.77/) (Dent et al., Findings 2025)
ACL