@inproceedings{wang-etal-2025-human,
title = "Human-Inspired Obfuscation for Model Unlearning: Local and Global Strategies with Hyperbolic Representations",
author = "Wang, Zekun and
Zeng, Jingjie and
Li, Yingxu and
Yang, Liang and
Lin, Hongfei",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.774/",
pages = "14354--14366",
ISBN = "979-8-89176-335-7",
abstract = "Large language models (LLMs) achieve remarkable performance across various domains, largely due to training on massive datasets. However, this also raises growing concerns over the exposure of sensitive and private information, making model unlearning increasingly critical.However, existing methods often struggle to balance effective forgetting with maintaining model utility. In this work, we propose HyperUnlearn, a human-inspired unlearning framework. We construct two types of fuzzy data{---}local and global{---}to simulate forgetting, and represent them in hyperbolic and Euclidean spaces, respectively. Unlearning is performed on a model with frozen early layers to isolate forgetting and preserve useful knowledge.Experiments demonstrate that HyperUnlearn effectively forgets sensitive content while maintaining the model{'}s language understanding, fluency, and benchmark performance, offering a practical trade-off between forgetting and capability preservation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-human">
<titleInfo>
<title>Human-Inspired Obfuscation for Model Unlearning: Local and Global Strategies with Hyperbolic Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zekun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingjie</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yingxu</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongfei</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Large language models (LLMs) achieve remarkable performance across various domains, largely due to training on massive datasets. However, this also raises growing concerns over the exposure of sensitive and private information, making model unlearning increasingly critical.However, existing methods often struggle to balance effective forgetting with maintaining model utility. In this work, we propose HyperUnlearn, a human-inspired unlearning framework. We construct two types of fuzzy data—local and global—to simulate forgetting, and represent them in hyperbolic and Euclidean spaces, respectively. Unlearning is performed on a model with frozen early layers to isolate forgetting and preserve useful knowledge.Experiments demonstrate that HyperUnlearn effectively forgets sensitive content while maintaining the model’s language understanding, fluency, and benchmark performance, offering a practical trade-off between forgetting and capability preservation.</abstract>
<identifier type="citekey">wang-etal-2025-human</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.774/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>14354</start>
<end>14366</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Human-Inspired Obfuscation for Model Unlearning: Local and Global Strategies with Hyperbolic Representations
%A Wang, Zekun
%A Zeng, Jingjie
%A Li, Yingxu
%A Yang, Liang
%A Lin, Hongfei
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F wang-etal-2025-human
%X Large language models (LLMs) achieve remarkable performance across various domains, largely due to training on massive datasets. However, this also raises growing concerns over the exposure of sensitive and private information, making model unlearning increasingly critical.However, existing methods often struggle to balance effective forgetting with maintaining model utility. In this work, we propose HyperUnlearn, a human-inspired unlearning framework. We construct two types of fuzzy data—local and global—to simulate forgetting, and represent them in hyperbolic and Euclidean spaces, respectively. Unlearning is performed on a model with frozen early layers to isolate forgetting and preserve useful knowledge.Experiments demonstrate that HyperUnlearn effectively forgets sensitive content while maintaining the model’s language understanding, fluency, and benchmark performance, offering a practical trade-off between forgetting and capability preservation.
%U https://aclanthology.org/2025.findings-emnlp.774/
%P 14354-14366
Markdown (Informal)
[Human-Inspired Obfuscation for Model Unlearning: Local and Global Strategies with Hyperbolic Representations](https://aclanthology.org/2025.findings-emnlp.774/) (Wang et al., Findings 2025)
ACL