Real, Fake, or Manipulated? Detecting Machine-Influenced Text
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Abstract

Large Language Model (LLMs) can be used to
write or modify documents, presenting a chal-
lenge for understanding the intent behind their
use. For example, benign uses may involve
using LLM on a human-written document to
improve its grammar or to translate it into an-
other language. However, a document entirely
produced by a LLM may be more likely to
be used to spread misinformation than simple
translation (e.g., from use by malicious actors
or simply by hallucinating). Prior works in Ma-
chine Generated Text (MGT) detection mostly
focus on simply identifying whether a docu-
ment was human or machine written, ignoring
these fine-grained uses. In this paper, we intro-
duce a HiFrarchical, length-RObust machine-
influenced text detector (HERO), which learns
to separate text samples of varying lengths from
four primary types: human-written, machine-
generated, machine-polished, and machine-
translated. HERO accomplishes this by com-
bining predictions from length-specialist mod-
els that have been trained with Subcategory
Guidance. Specifically, for categories that
are easily confused (e.g., different source lan-
guages), our Subcategory Guidance module en-
courages separation of the fine-grained cate-
gories, boosting performance. Extensive ex-
periments across five LLMs and six domains
demonstrate the benefits of our HERO, outper-
forming the state-of-the-art by 2.5-3 mAP on
average'.

1 Introduction

Fine-grained Machine Generated Text (FG-MGT)
detection aims to predict if a document was human-
written, machine-generated, or some combination
thereof. Prior work has primarily focused on
separating paraphrased or machine-polished text

*Denotes equal contribution
'Code: https://github.com/ellywang66/HERO
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Figure 1: Paraphrasing/polishing human-written text or
translating it into another language are often benign ap-
plications of an LLM that users of MGT detectors, like
moderators, may wish to ignore. However, off-the-shelf
methods (e.g., (Hans et al., 2024)) often identify this
type of data as machine-generated. In this paper, we in-
crease the practical use of MGT detectors by separating
text into fine-grained production categories, providing
insight into content intent.

from human and/or completely machine-generated
text (Krishna et al., 2024; Li et al., 2024; Abassy
et al., 2024), as these are often benign uses of a
language model. In contrast, machine generated
text may hallucinate (Cao et al., 2022; Parikh et al.,
2020; Zhou et al., 2021; Maynez et al., 2020; Shus-
ter et al., 2021; Gou et al., 2023; Meng et al., 2022)
and is more likely to contain misinformation (Lin
et al., 2022; Zellers et al., 2019), making them less
trustworthy. However, prior work ignores other be-
nign uses of LLMs, like machine translation, which
may also be flagged as machine-generated by tradi-
tional MGT detectors (see Fig. 1).

To address this issue, in this paper we introduce
a HiErarchical, length-RObust machine-influenced
text detector (HERQ), which provides fine-grained
labels to better understand document authorship.
Specifically, as shown in Fig. 2, we expand the
set of possible authorship categories to not only
include machine translated text, but also the source
language from which it is translated from. As we
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Figure 2: Illustration of Fine-grained Machine Gener-
ated Text Detection (FG-MGT). The goal of FG-MGT
is to identify different types of generated text to pro-
vide some insight into the potential intent. In this paper,
we extend the study of Abassy et al. (2024) to include
machine-translated text.

will show, identifying the source language both
provides more detailed authorship information and
also improves the ability of HERO to identify trans-
lated text as a whole. However, separating simi-
lar categories of machine-influenced (i.e., trans-
lated or polished) text is challenging. For example,
paraphrasing and translation both originate from
a human-written article, and a sophisticated actor
may also try to make their generated text more
human-like in an effort to make it harder to detect.
This is further exacerbated during inference when
documents are from different domains or language
models than those seen during training.

A straightforward approach to solve our FG-
MGT problem would be to use a coarse-to-fine
approach (e.g., (Xu et al., 2023; Yuan et al., 2023;
Amit et al., 2004)), where we train a model to pre-
dict the general categories, and then refine them
using specialized models. However, this approach
has two drawbacks. First, it can increase inference
time as both coarse and fine models must be used
for each input document. Second, it introduces a
tradeoff between coarse and fine model predictions
that may be challenging to define for strong dis-
tribution shifts at test time (e.g., documents from
out-of-domain language models). Thus, as we will
show, this type of naive adaptation results in poor
performance in practice. Instead, we introduce
Subcategory Guidance modules, where we com-
pute a separate loss function on subsampled logits
to distinguish between closely related fine-grained
categories. Unlike traditional coarse-to-fine meth-
ods, this does not add any additional computational
requirements at test time, enabling it to scale to
large numbers of categories.

Another challenge faced in FG-MGT is the vari-
ability of input text lengths, where smaller docu-
ments prove more challenging to detect. While
this challenge is shared with the traditional MGT
task (Hans et al., 2024; Mitchell et al., 2023; Verma
et al., 2024; Guo et al., 2023; Zhang et al., 2024;
Gehrmann et al., 2019; Su et al., 2023; Tian and
Cui, 2023), the introduction of fine-grained cate-
gories amplifies the issue in our setting. Inspired
by work in bias mitigation (Wang et al., 2020),
we train a set of expert classifiers, each special-
ized towards a specific text length. Following prior
work (Wang et al., 2020), we use all classifiers at
test time regardless of input document length. See
Fig. 3 for an illustration of our approach.

Our contributions are summarized as follows:

* We introduce HERO, a robust FG-MGT detector
that combines categories into a hierarchy to focus
the model’s ability to discriminate between fine-
grained categories, which outperforms the state-
of-the-art by 2.5-3 mAP on average.

* We show Subcategory Guidance modules pro-
vide an effective approach for separating similar
categories without incurring test-time resource
costs suffered by related work.

* We conduct an in-depth analysis on FG-MGT
using HERO to identify potential manipulation
and misinformation in text content to ensure the
safe deployment of LLMs.

2 Related Work

Most prior work in detecting Machine Generated
Text (MGT) treats this task as a binary classifica-
tion problem (Bhattacharjee et al., 2023; Solaiman
et al., 2019; Guo et al., 2023; Tian et al., 2024,
Mitchell et al., 2023; Hans et al., 2024; Zhang et al.,
2024; Hu et al., 2023; Kuznetsov et al., 2024), i.e.,
detecting whether the input text is human-written
or machine-generated. These include Metric-based
methods (Mitchell et al., 2023; Su et al., 2023; Bao
et al., 2024; Hans et al., 2024; Miralles-Gonzalez
et al., 2025), which extract distinguishable features
from the text using the target language models.
E.g., Solaiman et al. (2019) apply log probability,
Gehrmann et al. (2019) use the absolute rank of
each token, and Verma et al. (2024) searches over
a language model’s feature space. Many of these
methods (e.g., (Mitchell et al., 2023; Su et al., 2023;
Bao et al., 2024), rely on an observation that small
changes to generated text typically lower its log
probability under the language model, a pattern not

15023



Length Expert Output

_ Detectors ; Generated
Machine (Sec 3.1.2) Logits Subcategory
Generated/Human [ et 7| Guidance
ized (128 Tokens) betoctor Lo 5] (Sec3.1.1)
The San Francisco-based Al firm
anticipates that the. Length 128
Human Written Expert c
ross
(256 Tokens) _»| Detector —> 5 Entropy Loss
OpenAl said on Tuesday that it had Length 256
begun training a new flagship.
Translated (512 Expert ST’:"st'ated
Tokens) ¥ Detector —> ‘é c: egory
Op':g:k\halsostated thatitis Length 512 uidance
establishing a new safely. (Sec 3.1.1)

Figure 3: Our HERO framework. Each input is pro-
cessed by a specialized expert detector based on its
token length. In addition to the standard cross-entropy
loss, we introduce generated subcategory guidance to
machine-generated and machine-humanized text, while
translated subcategory guidance is used for translated
text. See Sec. 3 for discussion.

seen in human-written text. Thus, these methods in-
ject perturbations to the input text. However, these
models are only defined for the binary classifica-
tion, and it is unclear if they can be extended to
our setting as we need to separate many types of
machine influenced text.

Some recent studies have recognized the impor-
tance of detecting other categories of MGT (Kr-
ishna et al., 2024; Li et al., 2024; Nguyen-Son
et al., 2021), including machine paraphrased and
translated text. For example, Krishna et al. (2024)
enhanced machine paraphrased text detection us-
ing retrieval methods, and Li et al. (2024) iden-
tified paraphrased sentences through article con-
text. Nguyen-Son et al. (2021) applied round-
trip translation to detect Google-translated text.
Macko et al. (2023); Mao et al. (2025) explored de-
tecting generated text in non-English languages,
but not machine-translated text. Abassy et al.
(2024) explored a fine-grained reason task similar
to ours, but did not consider the effect of machine-
translated text. The high similarity between the
sub-categories can also reduce the generalization
of such an approach to detect other types of manip-
ulations.

3 Expanding Fine-grained Machine
Generated Text Detection

Given an article x; € A&, fine-grained machine-
generated text (FG-MGT) detection aims to sep-
arate samples into a set of categories y; €
{0,1,..., K'} where y; = 0 corresponds to human-
written text, and y; = k where k € {1,..., K}
corresponds to one of K distinct categories of
machine-influenced text. Prior work on FG-MGT

explored up to four categories: human written, ma-
chine generated, humanized machine generated,
and paraphrased/polished human written text (Kr-
ishna et al., 2024; Li et al., 2024; Abassy et al.,
2024). However, this ignores translated text, an-
other form of machine-influenced generation with
often benign use, but, as shown in Fig. 1, may be
detected as LLM-generated. Thus, to provide ad-
ditional insight for users of FG-MGT models, we
add a new category based on the source language
a document was translated from. However, as we
will show, we find that separating these types of
similar generation types is challenging, especially
on out-of-domain generators used at test time.

To address our FG-MGT task, we introduce Hi-
Erarchical, length-RObust machine-influenced text
detector (HERO), which makes two improvements
to FG-MGT detectors. First, Sec. 3.1.1 describes
our Subcategory Guidance modules, which help
construct a feature representation that can more eas-
ily separate similar categories. Second, Sec. 3.1.2
discusses our length-expert approach to improving
support for varying document lengths. Sec. 3.2
discusses our data generation process that we use
to train and evaluate our FG-MGT detectors.

3.1 Our HERO Approach

As discussed earlier, our objective is to create a
FG-MGT model that can identify if a document
is machine-generated and the specific type of ma-
chine influence. While our approach is designed to
generalize across a wide range of authorship types
and languages, in this paper we focus on predict-
ing likelihoods over eight categories for English
articles: human written, machine generated, para-
phrased, humanized, translated (Chinese), trans-
lated (Russian), translated (Spanish), and translated
(French) as defined at the beginning of Sec. 3. Our
HERO model begins by taking our input document
x passes it through a shared feature encoder g. To
learn to identify our categories above, we use cross
entropy Lo g, whose classifier uses the input from
g(z) and estimates the likelihood that sample z
was produced by one of the FG-MGT categories.
A simple approach would be to simply change
an MGT detector (e.g., (Hans et al., 2024; Mitchell
et al., 2023; Verma et al., 2024; Guo et al., 2023;
Zhang et al., 2024; Gehrmann et al., 2019; Su et al.,
2023; Tian and Cui, 2023)) to produce a multi-class
outputs. However, we found these models struggle
to distinguish between similar generation types,
especially when evaluated on out-of-distribution
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language models. We address this issue with a
Subcategory Guidance module in the next section.

3.1.1 Fine-grained Text Classification via
Subcategory Guidance

One common strategy for discriminating between
fine-grained categories is to build a coarse-to-fine
hierarchy (Xu et al., 2023; Yuan et al., 2023; Amit
et al., 2004), where categories become more similar
as you traverse down the hierarchy. However, these
methods are often deployed within a single domain,
i.e., the distribution of the data see during training
is similar to that seen at test time. This is due, in
part, to the fact that these methods require careful
tuning to balance the predictions of the hierarchy
of classifiers being deployed. Ile., they require
careful calibration between the coarse and fine-
grained classifiers to boost performance. In FG-
MGT, this would put a significant limitation on
our detectors, as it would effectively mean that we
can only deploy them on seen text domains and for
language models used during training.

Instead, we introduce a Subcategory Guidance
module to help direct feature learning during train-
ing, which is discarded at test time. We group
together semantically similar categories that spe-
cialize in separating samples in each group. Specif-
ically, we create one module for each of the
four translated categories as well as for machine-
generated and humanized text. Although the ma-
chine generated and humanized text are both en-
tirely generated, the fact that a user decided to
query a language model to make the text appear
more human suggests they might be trying to ob-
fuscate a detector, providing some potential intent
information. Similarly, knowing the language a
document was translated from can provide clues as
to where a document first appeared. Our Subcat-
egory Guidance models aim to help our detector
better discriminate between these categories.

Unlike the coarse-to-fine methods discussed ear-
lier, these modules are discarded at test time. Thus,
they do not affect computational resources at test
time or require complicated calibration procedures
that do not generalize well to out-of-domain sam-
ples. Instead, they boost performance by guiding
the formation of the shared feature space produced
by the shared encoder g during training. Each Sub-
category Guidance module takes as input samples
that stem only from the categories of their type.
For example, the Translated Subcategory Guidance
only takes features from documents from the four

translated categories as input. Then it uses cross en-
tropy to separate documents into their fine-grained
categories. In effect, this simply amounts to com-
puting a loss over a subset of predictions, making
it easy to implement and deploy.

Our final objective consists of a tradeoff func-
tion balancing the task loss with our Subcategory
Modules, which we define as Lgy and Lyans for
the generated/humanized and translated categories,
respectively. Formally, our total loss is:

Lrotal = Lcg + M LcH + Lrans), (H

where A is a tunable hyper-parameter.

3.1.2 Improving Support to Varying
Document Lengths

Prior work has shown that short documents, which
inherently have little information about author-
ship, are challenging to identify as machine gener-
ated (Zhang et al., 2024). Solaiman et al. (2019)
found they could improve a detector’s robustness to
varying document lengths by randomly cropping ar-
ticles during training. However, a detector for short
length article has to naturally be more sensitive to
distribution changes given the limited information
than it does for a longer article. Training a single
model to adjust for both the sensitivity as well as
make fine-grained distinctions is challenging. In-
stead, we leverage a set of experts, each of which
specializes in documents up to a set length.
Formally, given an input text x, we train a set
of M expert classifiers { f1, ..., fas}, each trained
with a specific maximum token length and associ-
ated parameters W,,. Each expert is trained us-
ing Subcategory Guidance from Sec. 3.1.1. How-
ever, empirically we find that including some in-
formation from documents of lengths other than
the ones targeted by an expert can help improve
performance (e.g., seeing some 256 token length
documents can boost performance for a 512-length
expert). Thus, we used length cropping, where
with perop, documents of other lengths are included
during training to improve the model’s robustness.
Given a document at test time we can simply use
the expert of the closest length. If a document is
between experts, we use the larger one. However,
some prior work in bias mitigation has shown that
averaging experts even over settings they do not
specialize in can boost performance (Wang et al.,
2020). In effect, when compute is available, these
experts can form a type of ensemble. Thus, in
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our experiments we evaluate these experts as an
ensemble in addition to using them individually.

3.2 Data Preparation: Article Generation

We generate articles for a range of domains
(Sec. 3.2.1) and language models (Sec. 3.2.2) to
ensure FG-MGT methods generalize across many
settings, which we discuss in more detail below.

3.2.1 Source Datasets

GoodNews (Biten et al., 2019) provides URLs of
New York Times articles from 2010 to 2018. Af-
ter filtering out broken links and non-English arti-
cles, we randomly selected 8K/2K/2K articles for
train/test/validation splits.

VisualNews (Liu et al., 2021) has articles from
four media sources: Guardian, BBC, USA Today,
and Washington Post. We randomly selected 2K
articles for evaluation.

Student essays (Essay), creative writing (WP),
and news articles (Reuters) (Verma et al., 2024)
represent three diverse domains with 1K articles
from each dataset used for evaluation.

WikiText (Stephen et al., 2017) contains 60 test
articles collected from Wikipedia.

Each source dataset above provides per-category
article counts. E.g., for GoodNews this results in
2K human written articles * 8 categories = 16K
total test samples. Additionally, only GoodNews
was used for training, so results on the remaining
datasets provide insight into domain shifts of vary-
ing degrees (e.g., VisualNews and Reuters being
close domains, whereas the rest are far domains).

3.2.2 Generation Process

To ensure the quality of generated text we keep all
prompts for each category consistent throughout
the generation process. All other hyperparameters
such as temperature for each LLM are also kept the
same for consistency. Specifically, the language
models we used include Llama-3 (Touvron et al.,
2023), Qwen-1.5 (Bai et al., 2023), StableLM-
2 (Bellagente et al., 2024), ChatGLM-3 (Du et al.,
2022), and Qwen-2.5 (Yang et al., 2024). Llama-3
is set as our in-domain generator used for train-
ing the detector, and StableLM-2, ChatGLM-3,
Qwen-1.5, and Qwen-2.5 are out-of-domain gener-
ators to evaluate the model’s generalization ability.
When generating articles, we used a temperature
for Llama-3 of 0.6 and for StableLM-2 we used
0.7. For Qwen-1.5, Qwen-2.5, and ChatGLM-3 we
use default temperatures for generating responses.

To prevent the model from leaking information
about the article’s category (e.g., Llama-3 often
responds with "Here is the polished version:"), we
use the text starting from the second sentence as
input to the detector. Below we further discuss
category-specific generation processes.

Machine-generated articles were created by giv-
ing the LLM the title with the prompt: “Write an
article on the following title, ensuring that the arti-
cle consists of approximately z sentences," where
z represents the number of sentences in the original
article. This ensures that articles of different cate-
gories are of similar length, preventing the detector
from using length as a classification feature.

Machine-paraphrased articles were generated by
giving the LLM the entire human-written article as
input with the prompt "Paraphrase the following ar-
ticle: x." We provide a study the effect of replacing
only parts of the articles in App. B.

Machine-translated articles were produced using
the same process as for paraphrasing, only replac-
ing the word "paraphrase" with "translate" in the
prompt. Translated articles were drawn from the
following languages: Chinese, Spanish, Russian,
and French (additional discussion in App. C).

Machine-humanized articles were created by giv-
ing the a machine-generated article as input to the
LLM with the prompt: “Rewrite this text to make
it sound more natural and human-written.” We pro-
vide a specific example in App. D.

4 Experiments

Implementation Details. Our base encoder uses
a DistilBERT (Sanh et al., 2020) backbone. The
maximum token length of the input text is set to 512
when training all methods (including our own). The
same maximum length is used evaluate the model’s
performance during testing except where noted.
For training, we used the Adam optimizer with a
maximum learning rate of 10~°. Following Zhang
et al. (2024); Verma et al. (2024), we fine-tuned the
model for three epochs to prevent overfitting. Our
experiments were conducted on a single GPU (e.g.,
A40, L40S). For a single dataset (e.g., GoodNews),
data preparation takes approximately 60 hours, and
training takes around 1 hour.

Metrics. Our main results use mean Average Pre-
cision (mAP) and the probability of detection (PD)
at 5% false positive rate (FPR). We report mAP per
generator, and then rank a detector’s overall perfor-
mance by averaging mAP across both in-domain
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In-domain LLMs

Out-of-domain LLMs

Model Llama3 Qwenl.5 Qwen2.5 ChatGLM3 StableLM2 avg PD
Scale -8B -7B -12B -6B -7B mAP 5%FPR
In-domain mAP on GoodNews (Biten et al., 2019)
OpenAl-D (large) 94.04 41.60  41.90 48.23 71.21  59.39 53.31
ChatGPT-D 80.83 38.79 40.43 40.00 62.74 52.56 47.08
LLM-DetectAlve 96.24 41.27 42.28 44.72 76.87 60.28 55.31
DistilBERT 96.89 38.99 40.91 42.21 74.59  58.72 53.77
HERO (ours) 98.33 44.05 41.88 50.47 76.93 62.33 56.23
Out-of-domain mAP on VisualNews (Liu et al., 2021)
OpenAlI-D (large) 60.67 32.62 37.99 38.51 52.53 44.46 36.64
ChatGPT-D 47.19 27.39 31.02 33.82 4993  37.87 31.20
LLM-DetectAlve 62.41 3254 3941 36.34 55.70 45.28 38.51
DistilBERT 61.11 31.64 32.77 36.75 5443 4334 36.49
HERO (ours) 64.17 38.98 37.70 42.17 5548 47.70 39.09
Out-of-domain mAP on WikiText (Stephen et al., 2017)
OpenAlI-D (large) 65.39 33.65 36.43 36.38 52.06 44.78 35.33
ChatGPT-D 38.78 29.16 32.76 30.78 43.08 3491 24.38
LLM-DetectAlve 65.62 29.89 28.55 27.52 4538 39.39 29.92
DistilBERT 66.37 33.51 28.42 30.19 49.82 41.66 33.12
HERO (ours) 72.19 37.97 31.52 3545 52.58 4594 37.00
Out-of-domain mAP on WP (He et al., 2023)
OpenAl-D (large) 55.48 46.69 44 .88 37.44 55.34 4797 23.50
ChatGPT-D 40.57 37.71 42.22 34.86 43.69 39.81 17.50
LLM-DetectAlve 65.39 48.53 51.35 35.35 56.32 51.39 28.50
DistilBERT 71.65 44.61 50.88 40.51 49.74 5148 29.25
HERO (ours) 73.68 47.14  41.01 39.12 52.58 50.71 42.55
Out-of-domain mAP on Reuters (He et al., 2023)
OpenAl-D (large) 74.63 50.72 51.51 54.11 54.08 57.01 26.75
ChatGPT-D 57.42 46.03 48.28 50.65 44.05 49.29 22.00
LLM-DetectAlve 85.92 38.48 43.37 53.54 59.65 56.19 22.75
DistilBERT 81.04 48.66 42.95 42.14 6593 56.14 31.00
HERO (ours) 84.50 48.59 41.99 50.85 5894 5698 49.70
Out-of-domain mAP on Essay (He et al., 2023)

OpenAlI-D (large) 51.29 29.09 31.74 40.79 3642 37.87 18.25
ChatGPT-D 32.27 33.24 29.97 30.62 2545 3031 11.75
LLM-DetectAlve 52.56 40.22 41.37 34.78 37.89 41.38 23.75
DistilBERT 48.98 36.13 31.16 28.39 36.57 36.25 17.25
HERO (ours) 60.07 38.20 35.90 33.11 35.69 40.59 33.76

Table 1: Fine-grained MGT detection results on in-domain GoodNews data and five out-of-domain datasets. HERO
outperforms or obtains similar results to prior work in nearly all settings and metrics, providing an overall advantage.

and out-of-domain LLMs (avg mAP). We alsore- 4.1 Baselines

port Fl score in some ablations. OpenAl-D (Solaiman et al., 2019) is a detector

trained on outputs from GPT-2 (Radford et al.,
15027



2019) series. OpenAl provides two versions:
RoBERTa-base and RoBERTa-large. With fine-
tuning and early stopping, OpenAl-D can also be
used to detect text generated by other LLMs.

ChatGPT-D (Guo et al., 2023) is designed to iden-
tify text produced by ChatGPT-3.5 (Ouyang et al.,
2022). It is trained using the HC3 (Guo et al., 2023)
dataset, which includes 40,000 questions along
with both human-written and ChatGPT-generated
answers, before finetuning on our task.

LLM-DetectAlve (Abassy et al., 2024) distin-
guishes between machine-generated, machine-
paraphrased, and human-written text by fine-tuning
RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2021) models. We apply the DeBERTa back-
bone of LLM-DetectAlve in our experiments.

DistilBERT (Sanh et al., 2020) is a distilled version
of BERT (Devlin et al., 2019). Since the model
is pre-trained using knowledge distillation, it is
smaller and faster at inference time.

4.2 Results

Tab. 1 compares the performance of our HERO
approach to prior work on in-domain and out-of-
domain datasets, respectively. Note that both ta-
bles have results on in-domain and out-of-domain
LLMs used for generation. HERO achieves a boost
in both mAP and PD 5%FPT in nearly all settings
(e.g., a 2% boost in avg mAP on GoodNews as
seen in Tab. 1). In cases where we underperform
prior work on avg mAP, e.g., 1 point worse on
WP and Essay in Tab. 1, we greatly outperform in
PD 5%FPT (a 12.5% and 10% gain, respectively).
Thus, our approach demonstrates significant bene-
fits over the methods from prior work.

Fig. 4 reports per-class performance on Good-
News and Reuters as representatives of in-domain
and out-of-domain data, respectively. We make
two major observations about these results. First,
in-domain data and LL.Ms gets nearly perfect per-
formance, highlighting the significant role shifts
in both has on performance. For example, while
nearly all methods get perfect performance on hu-
manized data in Fig. 4(a), when we shift domains
(but not LLMs) in Fig. 4(b) performance drops
significantly. Second, no method gets the best per-
formance consistently across all categories. For ex-
ample, while HERO gets best performance identi-
fying out-of-domain human-written articles, LLM-
DetectAlive performs best on identifying Russian-
sourced translations on Reuters (but performs rela-

Llam Qwen StableL ChatGL Qwen avg
a3-8B 1.5-7B M2-12B M3-6B 2.5-7B mAP

(a) DistilBERT (2020)

L=32 3797 2538 2275 2410 2642 27.33
L=50 4549 31.01 27.47 28.05 31.52 32.71
L=128 58.09 3797 3398 33.68 39.64 40.67
L=256 46.41 29.46 37.60 32.01 34.19 35.93
L=500 66.71 32.12 58.50 59.37 3247 49.834
L=512 61.13 31.18 54.49 35.02 32.88 4294
(b) HERO (ours) - Single Length Specialist Only

L=32 37.51 32.15 31.18 2622  29.61 31.33
L=50 44.62 36.68 3408 30.04 33.72 35.83
L=128 62.23 4394 38.53 36.81 43.79 45.06
L=256 5098 33.75 4322 34.67 39.25 40.37
L=500 63.79 37.73 56.44 40.53 38.42 47.38
L=512 60.87 3536 54.5I 38.00 3550 44.85
(c) HERO (ours) - All Length Specialists

L=32 36.39 31.78 30.92 2579 29.22 30.82
L=50 42.65 35.75 33.66 29.04 3293 3481
L=128 60.23 42.51 37.20 35.01 42.08 43.40
L=256 51.92 32,50 39.27 34.46 38.63 39.36
L=500 69.91 47.39 58.98 3847 47.07 5236
L=512 64.07 38.22 56.73 41.00 38.04 47.61
Table 2: Comparison of mAP scores on Visual-

News (Liu et al., 2021) across different input lengths for
DistilBERT (2020) and HERO. HERO consistently out-
performs DistilBERT across all lengths and generators.
For length-specialist models, we use the expert closest
in length, defaulting to the longer one when in between.

tively poorly on paraphrased data). Thus, our per-
formance improvements come from having more
consistent results rather than being strictly better
for all categories.

Tab. 2 reports performance on various input
document lengths using our FG-MGT detectors.
Across all token length settings, performance gen-
erally improves with longer token lengths with the
best results consistently observed at 500 and 512
tokens. Compared to DistilBERT (2020), both the
individual length specialist and HERO demonstrate
improved performance. The Length Specialist ap-
proach shows especially strong performance on
short lengths, with the single specialists outper-
forming the ensemble, validating that such docu-
ments require special care.

4.3 HERO Model Analysis

Tab. 4 provides an ablation study to show the contri-
bution of each component of HERO. We see Sub-
category Guidance provides a 2.5 average mAP
gain over the baseline DistilBERT (Sanh et al.,
2020). We also compare to a naive coarse-to-fine
approach that first tries to predict if an input docu-
ment is human-written, machine-generated, para-
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Figure 4: Per-class mAP results on the GoodNews (Biten et al., 2019) and Reuters (Verma et al., 2024) datasets.
Top row: In-domain LLMs. Bottom row: Out-of-domain LL.Ms. Our method shows more robust performance,

especially on human-written and translated categories.

ID LLMs OOD LLMs
Model Low Median High Low Median High
In-domain mAP on GoodNews (Biten et al., 2019)

OpenAl-D (base) 95.23 94.53 92.71 52.58 27.30 29.06
OpenAlI-D (large) 92.36 90.87 84.25 58.44 25.97 28.16
ChatGPT-D 72.81 69.87 65.68 46.41 26.40 25.74
LLM-DetectAlve 93.45 95.03 89.59 65.90 25.99 31.86
DistilBERT 94.85 95.49 92.46 62.97 26.55 27.38
HERO (ours) 97.41 97.36 95.50 64.61 26.44 27.31

Out-of-domain mAP on WikiText (Stephen et al., 2017)

OpenAI-D (base) 67.02 69.39 64.81 31.29 29.40 32.49
OpenAlI-D (large) 72.88 69.68 67.56 42.19 30.92 33.11
ChatGPT-D 53.40 44.53 40.96 28.55 29.01 27.66
LLM-DetectAlve 67.20 71.23 63.40 37.48 31.11 31.52
DistilBERT 70.50 65.74 57.9534.24 29.04 32.18
HERO (ours) 73.98 69.19 63.08 36.76 32.06 34.13

Table 3: Fine-grained MGT detection results by BLEU
translation quality. We find that HERO performs espe-
cially well across quality groups on out-of-domain data.

phrased, or translated. If it is machine-generated or
translated, we use a separate detector to separate it
into the subcategories. Comparing the 2nd and 3rd
row of Tab. 4, we see the naive approach underper-
forms our Subcategory Guidance approach by 14.5
average mAP, highlighting the challenges of gen-
eralizing beyond the training domain in our task.
We also show that Length Cropping and our expert
models from Sec. 3.1.2 both individually boost per-
formance, but when we combine all components
we see the best performance.

Tab. 3 reports the effect of translation quality
binned into low, medium, and high based on BLEU
scores. Similar to our per-category results dis-
cussed earlier, HERO’s benefits stem from perform-
ing better across the varying degrees of translation
quality. Notably, our approach performs especially
well on out-of-domain data (WikiText results), ob-
taining the best performance in all but one setting.
We also evaluate how the extent of paraphrasing
used affects performance in App. B, where HERO
typically reports at least a 2 average mAP gain
over the baseline DisilBERT model. These results
demonstrate our approach’s robustness to a wide
range of applications.

Is HERO still effective if subcategory informa-
tion is not required? Tab. 5 we evaluate a setting
where the goal is only to predict one of four cat-
egories: human written, machine generated, ma-
chine paraphrased, and translated (effectively elim-
inating the subcategories). We compare a Dis-
tlIBERT trained to predict these four categories
with HERO, where we take the highest subcategory
score to represent our confidence in that category.
We see that HERO still obtains 3 mAP gain on
average, demonstrating the benefits of leveraging
subcategory information even if the fine-grained
category predictions are not necessary.

Fig. 5 shows the effect of training on different
combinations of languages. As we increase the
number of languages beyond two, we start to see
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In-domain LLMs

Out-of-domain LLMs

Model Llama3 Qwenl.5 Qwen2.5 ChatGLM3 StableLM2 avg PD F1
Scale -8B -7B -12B -6B -7B mAP 5%FPR Score
DistilBERT (2020) 61.11 31.64 54.43 36.75 32.77 4334 3649 3230
+Naive Coarse-to-Fine 42.62 29.12 28.36 26.89 30.66 31.53 10.67 22.62
+Subcategory Guidance 61.20 37.09 54.83 39.16 37.56 4597 39.09 33.87
+Length Cropping (2019) 60.69 38.24 53.84 40.06 3420 4540 37.66 31.22
+Length Specialists 63.21 34.44 54.05 39.72 38.10 4590 38.86 33.85
HERO (ours) 64.17 38.98 55.48 42.17 37770  47.70 39.09 33.99

Table 4: Ablation Study on Visualnews (Liu et al., 2021). Each component contributes to model performance.
Additionally, our Subcategory Guidance outperforms alternatives like a Naive Coarse-to-Fine approach.

Model Llama3 Qwenl.5 StableLM2 ChatGLM3 Qwen2.5 avg mAP
Scale -8B -7B -12B -6B -7B

DistilBERT (2020) 49.58 45.24 41.66 44.30 45.68 45.29
HERO (Ours) 5246 47.29 45.59 47.23 48.19 48.15

Table 5: Comparison of mAP scores on VisualNews (Liu et al., 2021) for DistilBERT (2020) and HERO on
human-written, machine-generated, machine paraphrased, and machine translated categories. Identifying source
languages can still boost performance even when all translations are treated as a single category.

Effect of Multilingual Training on average mAP
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Figure 5: Effect of multilingual training on average
mAP across different language combinations evaluated
on the four class VisualNews (Liu et al., 2021) setting
also reported in Tab. 5. Models trained on multiple
languages generally outperform those trained on a single
language, with the highest average mAP observed when
training on all four languages.

some saturation, where there are smaller differ-
ences between models, suggesting that a very large
number of languages may not be necessary to rec-
ognize a document as originating from another lan-

guage.
5 Conclusion

In this paper, we conduct an in-depth study of
fine-grained MGT detection, aiming to further
distinguish between machine translated and ma-
chine paraphrased texts from MGT. We introduced

HERO, a fine-grained machine-influenced text de-
tection framework that goes beyond the classical
binary classification approach. Our hierarchical
structure, combined with length-specialist models,
enables strong generalization across diverse LLMs
and varying input lengths, making it suitable for
real-world applications. Our extensive experiments
across multiple LLMs and different datasets show
that HERO consistently outperforms the state-of-
the-art by 2.5-3 mAP, and does especially well in
out of domain settings. We also show that identi-
fying source languages can boost a model’s ability
to identify translated text. Overall, HERO enables
more accurate detection of machine-influenced con-
tent, which is essential for future works in discern-
ing between benign and malicious uses of LLMs.

Acknowledgments. This material is based upon
work supported by DARPA under agreement num-
ber HR00112020054. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not neces-
sarily reflect the views of the supporting agencies.

6 Limitations

In this paper, we have investigated the FG-MGT
task and our proposed HERO shows improved per-
formance over existing detectors. Despite the im-
proved performance, our method still has several
limitations, discussed further below.

While our proposed method improves perfor-
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mance for zero-shot evaluations in our experiments,
our approach does not guarantee 100% accuracy on
other LLMs and datasets. Therefore, we strongly
discourage the use of our approach without proper
human supervision (e.g., for plagiarism detection
or similar formal applications). A more appropri-
ate application of HERO is to introduce human-
supervision for more reliable detection against
LLM-generated misinformation.

We also notice the performance difference be-
tween in-domain LLM and out-of-domain LLMs.
As shown in Sec. 4.2, the performance of HERO on
out-of-domain generators (StableLM-2, ChatGLM-
3, Qwen-2.5, Qwen-1.5) is still lower than that on
in-domain generators (Llama-3). Therefore, out-of-
domain evaluations remain a challenge for future
research in this topic.

Our translated data also utilized a round-trip
strategy (discussed in App. C) to control for con-
tent consistency. However, these translations may
also introduce some noise into the articles that
may make them easier to detect. Thus, our re-
sults should be seen as only an approximation of
the model’s true performance.
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Figure 6: Average mAP across different token-length
specialist models evaluated on VisualNews (Liu et al.,
2021). Models trained with a single token length achieve
moderate performance, while combining specialists
across multiple token lengths significantly improves de-
tection accuracy. The highest average mAP is observed
when using specialists for 128, 256, and 512 tokens.
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Figure 7: Effect of GH (Generate-Humanized) and
Trans loss weights for guided learning on average mAP
performance evaluated on VisualNews (Liu et al., 2021).
The model achieves the highest mAP when both the GH
and Trans loss weights are set to 0.01.

Appendix
A Additional Results

Fig. 7 shows the effect of changing the loss weight
A from Eq. 1. The same value of A performs best
for both, reducing the number of hyperparameters
that need to be tuned for our model.

Fig. 6 ablates the number and size of experts
to train. We find that three experts generally pro-
vide enough coverage to perform well on a diverse
set of lengths. That said, the number of experts
likely would vary depending on the maximum in-
put sequence a model can support. However, very
long documents are easier to detect as machine-
generated (see Tab. 2), so support for very long
sequences may not be necessary as a model may
be able to effectively detect a language model was
used on just part of a document.

Class confusion matrix. To provide a more in-
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Figure 8: Confusion Matrix for in-domain LLMs on
VisualNews. HERO performs well in most categories,
especially on the machine-translated articles.

tuitive understanding of HERO, we provide the
visualization for HERO’s performance across dif-
ferent FG-MGT categories on VisualNews using
confusion matrices as shown in Fig. 8 and Fig. 9.
The results show that HERO can accurately dis-
tinguish translated text from different source lan-
guages, even when evaluated on out-of-domain
LLMs. However, the model continues to struggle
with distinguishing between generated and human-
ized content. This challenge may stem from the
fact that both types are produced by LLMs using
human written input, resulting in similar surface-
level characteristics.

B Effect of Paraphrasing Extent

To examine how the extent of paraphrasing can
affect the performance of HERO, we paraphrased
20%, 40%, 60%, 80%, and 100% of the input text.
The resulting performance is shown in Fig. 10. As
paraphrasing extent increases, the detection accu-
racy also improves, suggesting that higher levels
of paraphrasing make manipulation patterns more
discernible to the model.

C Round-trip Translation Strategy

To create translated versions of the same docu-
ments, we adopt the strategy of round-trip transla-
tion to generate translated data for our FG-MGT
task. Fig. 11 provides a specific example: we
first translate the original article into target lan-
guages (Chinese, Spanish, French, Russian), and
then translate these articles back into English, ob-
taining machine-translated articles for detection.
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Figure 9: Confusion Matrix on out-of-domain LLMs on VisualNews. Our method can still accurately distinguish
between human-written and machine-generated categories. However, when compared to in-domain evaluations in
Fig. 8, detecting machine-humanized text becomes more challenging.
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Figure 10: We illustrate the effect of paraphrasing extent on average mAP. Higher levels of paraphrasing improve
the model’s performance.

D Humanized example

The purpose of machine-humanized data is to sim-
ulate a setting where a bad actor may attempt to
make their generated text harder to detect. It ac-
complishes this by querying a LLM with a request
to make the input article sound more human using
processes based on those from Abassy et al. (2024)
(see Sec. 3.2.2 for additional discussion). Fig. 12
shows an example of the differences produced by
machine-humanized data.
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Forrester

Chinese

The Battle for Dominance in Internet Social Interaction

Facebook and its competitors are signaling a battle for dominance in the
realm of internet social interaction. Jeremiah Owyang, a partner at digital
strategy consulting firm Altimeter Group, predicts a multi-round showdown in
this space.

Privacy Concerns

Analysts caution that Facebook's expansion into broader network influence
might be hindered by privacy concerns, as it would require sharing an
increasing amount of user information with third-party websites.

"They need more user consent to share data," says Augie Ray, an
analyst at Forrester Research.

Following Google's Playbook

Facebook's approach is reminiscent of Google's strategy from a decade ago.
Google solidified its position as the primary search destination and then
expanded its influence by integrating its search box and advertising system
across the web. As Facebook becomes a significant traffic source for other
sites, the rivalry between these two internet giants is poised to intensify.

Translation
from Chinese

The Battle for Control Over Social Interactions Across the
Internet

The moves by Facebook and its rivals are setting up a battle for
control over social interactions on the Internet.

“There is definitely a multiround fight that is going to be
happening here," said Jeremiah Owyang, a partner at the
Altimeter Group, a digital strategy consulting firm.

Privacy Concerns

Analysts note that Facebook's desire to expand across the web.
might face privacy hurdles since it will involve sharing more
personal information with other websites.

“They are going to have to secure more consumers'
approval for data-sharing,” said Augie Ray, an analyst at
Forrester Research.

Following Google’s Footsteps

Facebook's strategy mirrors an approach taken by Google nearly a
decade ago. After establishing itself as the top Internet search
engine, Google syndicated its search box and advertising system
across the web through toolbars and partnerships. Now, as
Facebook becomes a major source of web traffic, its rivalry with
Google is intensifying

La Batalla por el Control de las Interacciones Sociales en la Red

Las movidas de Facebook y sus competidores estan creando un escenario de
batalla por el control de las interacciones sociales en intemet.

ivamente habra una pelea multironda que va a suceder
," dijo Jeremiah Owyang, socio de Altimeter Group, una empresa
de consultoria estratégica en estrategias digitales.

Desafios de Privacidad

Los analistas sefialan que la ambicién de Facebook de expandir su influencia
en la red podria enfrentar obsta i con la privacidad, ya
que requeriria compartir cantidades cada vez mayores de informacion personal
de sus usuarios con otros sitios web.

“Tendran que proteger mas el consentimiento de los usuarios
para la transmision de datos," afirmé Augie Ray, analista de
Forrester Research,

Siguiendo el Camino de Google

El enfoque de Facebook es similar al de Google hace casi una década.
Después de establecerse como el centro de busqueda en la red, Google
comenzé a expandir su buscador y sistema publicitario a través de extensiones
y alianzas. Ahora que Facebook se ha convertido en
importante de trafico para otros sitios web, la rivalidz
Google es inevitable.

Spanish

The Battle for Social Interaction Control on the Internet

Facebook and its competitors are gearing up for a battle to control social
interaction on the internet.

“Definitely there will be a round fight that's going to happen
here," said Jeremiah Owyang, a partner at Altimeter Group, a strategic
digital consulting firm.

Privacy Concerns

Analysts argue that Facebook's ambition to expand its reach on the internet
may face privacy obstacles. Extending its influence would require the
company to share more personal information with other websites.

“They will have to protect more the user consent for data
transmission," said Augie Ray, an analyst at Forrester Research.

Following Google’s Footsteps

Facebook's strategy mirrors Google’s approach from nearly a decade ago.
Google first established itself as the internet's primary search engine and then
extended its reach by expanding its search and advertising systems through
extensions and alliances. As Facebook becomes a major traffic source for
other websites, rivalry between Facebook and Googlf

Translation
from Spanish

Les Initiatives de Facebook et la Bataille pour le Contréle des
Sociales sur Internet

Les initiatives de Facebook et de ses concurrents préparent le terrain pour une
bataille de contréle des interactions sociales sur Interet.

«lly aura certainement un combat en plusieurs tours ici », a déclaré
Jeremiah Owyang, associé chez Altimeter Group, une firme de conseil en
stratégie numérique.

Obstacles de Confidentialité

Les analystes estiment que le désir de Facebook d'étendre son influence sur le Web
pourrait rencontrer des obstacles liés a la vie privée, car cela exigera que

Original
Article

prise partage de plus en plus d sur ses
avec dautres sites.

«lis devront obtenir | de plus de pour le
partage de données », a déclaré Augie Ray, analyste chez Forrester
Research.

Suivre I'Approche de Google

La stratégie de Facebook suit, dans une certaine mesure, I'approche adoptée par
Google prés d'une décennie plus tot. Aprés s'étre établi comme la principale
destination des requétes sur le Web, Google a commencé 4 diffuser sa barre de
recherche et son systéme de publicité a travers le Web via des barres d'outils et des

s and the Battle for Control of Social Interactions on
the Internet

Facebook's initiatives, along with those of its competitors, are setting the
stage for a battle over control of social interactions on the Internet.

"There will certainly be a multi-round fight here," said Jeremiah
Owyang, a partner at Altimeter Group, a digital strategy consulting firm.

Privacy Hurdles

Analysts believe that Facebook's ambition to expand its influence across the
Web could face privacy hurdles, as it will require the company to share
increasing amounts of personal information about its users with other sites.

“They will need to secure more consumers' approval for data
sharing," said Augie Ray, an analyst at Forrester Research.

Following Google's Approach

To some extent, Facebook's strategy mirrors Google's approach from nearly a
decade earlier. After establishing itself as the primary destination for web
searches, Google began syndicating its search bar and advertising system
across the Web through toolbars and partnerships. Now, as Facebook
becomes an increasingly important source of trafic for other websites, rival
between the two companies seems inevitable.

partenariats. Alors que Facebook devient une source de Translation
importante pour dautres sites Web, la rivalité entre les df

s French from French
BuTBa 3a KOHTPONb HaA Z B The Battle for Control Over Social Interactions on the Internet

Reitcteus Facebook 1 ero KOHKYPEHTOB FOTOBAT NOYBY ANs GUTBbLI 33 KOHTPONL
Hag i 8 VHTep)

«3pect onpeaeneHHo 6yaeT MHOrO payHAos 60pLGkI», — ckasan
[xepemu Oysn, napTHep Komnanum Altimeter Group, KOHCANTUHTOBO/
bMpMbi B 0BNACTH UMDPOBOI CTpATerUM.

NPo6nems! KoHbUACHUMANLHOCTH

AHGNUTUKM OTMENIOT, 4TO Facebook k 8 UhTep
MoxeT YTbCA C Tak Kak 370
noTpeGyer obmena ece G nuHOR < Apyrumn
caiitami

«/M npupeTes nonyuuTs cornacue GonbLero wMcna noTpeGuTenei
Ha 0BMeH AaHHBIMIty, — Cka3an OracT Poi, aHANUTUK KOMNaHMN
Forrester Research.

Creays npumepy Google

Crparerus Facebook B0 MHOTOM HaroMUHaeT NoAXoA, KoTopslii Google
MCNONL30BaN NOYTM AGCAT NET Ha3aA. YkpENuB CBOM NO3MLIMN Kak BeAYLLA
NOUCKOBLIIA ABIKOK, GOOgle Haan PACTPOCTPAHATS CBOIO MOUCKOBYIO CTPOKY 1
PeKNaMHYIO CHCTEMy Yepes NaHENH UHCTPYMEHTOB W NAPTHEPCKME NPOTPaMMbI.
Teneps, koraa Facebook CTaHOBUTCA BaHbIM UCTOMHMK]
&r0 conepHiyecTao ¢ Google ycunusaeTc.

Russian

The actions of Facebook and its competitors are setting the stage for a battle
over control of social interactions on the Internet.

“There will definitely be multiple rounds of this fight,” said
Jeremiah Owyang, a partner at Altimeter Group, a digital strategy
consulting firm.

Privacy Concerns

Analysts note that Facebook's expansion across the Intemet could encounter
privacy issues, as it would involve sharing increasing amounts of personal
information with other websites.

“They are going to have to secure more consumers' approval for
data sharing,” said Augie Ray, an analyst at Forrester Research.
Following Google’s Lead

Facebook's strategy mirrors the approach that Google took nearly a decade
ago. After becoming the leading search engine, Google expanded by
syndicating its search box and advertising system through toolbars and
partnerships. Now, as Facebook emerges as an important source of traffic for
websites, its rivalry with Google is intensifying. .
Translation

from Russian

Figure 11: Round-trip Strategy for Generating Translated Articles.This strategy allows us to automatically
produce translated articles from existing datasets, eliminating the need for additional data collection. See Sec. C for

discussion.
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Original Text Humanized Text

As former President Donald Trump’s pres- As Donald Trump’s presidency winds down,
idency comes to an end, it’s worth exam- it’s pertinent to reflect on the Supreme Court
ining his list of potential Supreme Court . nominees he had in mind during his tenure.
picks that he hoped to see seated during his H uman |zed If his picks had come to fruition, they would
time in ofﬁce'. If. successful, these choices have undeniably left a lasting impact, solid-
would have significantly influenced the le- | 3|  ifying conservative ideologies and poten-
,'gall landscape, with a focus CICIEEREING tially altering significant legal precedents.
Jurisprudence and a potential shift in long- Notable candidates like Amy Coney Bar-
standing precedents. Some of the names

rett and Brett Kavanaugh, who were floated

that surfaced in his administration’s efforts, by his admini . . X di
including Amy Coney Barrett and Brett Ka- yjhislacministration,continuelto/spark diss

vanaugh, remain controversial and continue CILLIE and {nﬂuence the dynamics of th.e
to shape the future of the highest court in highest court in the country, even after their
the land. confirmation battles.

Figure 12: Humanized text example. We utilize machine-generated text and ask the LLMs to rewrite it to sound
more natural and human-like, while maintaining the same level of detail and length.
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