@inproceedings{liu-litman-2025-efficient,
title = "Efficient Layer-wise {LLM} Fine-tuning for Revision Intention Prediction",
author = "Liu, Zhexiong and
Litman, Diane",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.829/",
pages = "15319--15334",
ISBN = "979-8-89176-335-7",
abstract = "Large Language Models (LLMs) have shown extraordinary success across various text generation tasks; however, their potential for simple yet essential text classification remains underexplored, as LLM pre-training tends to emphasize generation over classification. While LLMs with instruction tuning can transform classification into a generation task, they often struggle to categorize nuanced texts. One such example is text revision, which involves nuanced edits between pairs of texts. Although simply fine-tuning LLMs for revision classification seems plausible, it requires a large amount of revision annotations, which are exceptionally expensive and scarce in the community. To address this issue, we introduce a plug-and-play layer-wise parameter-efficient fine-tuning (PEFT) framework, i.e., IR-Tuning, which fine-tunes a subset of important LLM layers that are dynamically selected based on their gradient norm distribution, while freezing those of redundant layers. Extensive experiments suggest that IR-Tuning surpasses several layer-wise PEFT baselines over diverse text revisions, while achieving fast convergence, low GPU memory consumption, and effectiveness on small revision corpora."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-litman-2025-efficient">
<titleInfo>
<title>Efficient Layer-wise LLM Fine-tuning for Revision Intention Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhexiong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diane</namePart>
<namePart type="family">Litman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Large Language Models (LLMs) have shown extraordinary success across various text generation tasks; however, their potential for simple yet essential text classification remains underexplored, as LLM pre-training tends to emphasize generation over classification. While LLMs with instruction tuning can transform classification into a generation task, they often struggle to categorize nuanced texts. One such example is text revision, which involves nuanced edits between pairs of texts. Although simply fine-tuning LLMs for revision classification seems plausible, it requires a large amount of revision annotations, which are exceptionally expensive and scarce in the community. To address this issue, we introduce a plug-and-play layer-wise parameter-efficient fine-tuning (PEFT) framework, i.e., IR-Tuning, which fine-tunes a subset of important LLM layers that are dynamically selected based on their gradient norm distribution, while freezing those of redundant layers. Extensive experiments suggest that IR-Tuning surpasses several layer-wise PEFT baselines over diverse text revisions, while achieving fast convergence, low GPU memory consumption, and effectiveness on small revision corpora.</abstract>
<identifier type="citekey">liu-litman-2025-efficient</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.829/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>15319</start>
<end>15334</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Efficient Layer-wise LLM Fine-tuning for Revision Intention Prediction
%A Liu, Zhexiong
%A Litman, Diane
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F liu-litman-2025-efficient
%X Large Language Models (LLMs) have shown extraordinary success across various text generation tasks; however, their potential for simple yet essential text classification remains underexplored, as LLM pre-training tends to emphasize generation over classification. While LLMs with instruction tuning can transform classification into a generation task, they often struggle to categorize nuanced texts. One such example is text revision, which involves nuanced edits between pairs of texts. Although simply fine-tuning LLMs for revision classification seems plausible, it requires a large amount of revision annotations, which are exceptionally expensive and scarce in the community. To address this issue, we introduce a plug-and-play layer-wise parameter-efficient fine-tuning (PEFT) framework, i.e., IR-Tuning, which fine-tunes a subset of important LLM layers that are dynamically selected based on their gradient norm distribution, while freezing those of redundant layers. Extensive experiments suggest that IR-Tuning surpasses several layer-wise PEFT baselines over diverse text revisions, while achieving fast convergence, low GPU memory consumption, and effectiveness on small revision corpora.
%U https://aclanthology.org/2025.findings-emnlp.829/
%P 15319-15334
Markdown (Informal)
[Efficient Layer-wise LLM Fine-tuning for Revision Intention Prediction](https://aclanthology.org/2025.findings-emnlp.829/) (Liu & Litman, Findings 2025)
ACL