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Abstract

Large Language Models (LLMs) have shown
extraordinary success across various text gener-
ation tasks; however, their potential for simple
yet essential text classification remains underex-
plored, as LLM pre-training tends to emphasize
generation over classification. While LLMs
with instruction tuning can transform classifica-
tion into a generation task, they often struggle
to categorize nuanced texts. One such example
is text revision, which involves nuanced edits
between pairs of texts. Although simply fine-
tuning LLMs for revision classification seems
plausible, it requires a large amount of revision
annotations, which are exceptionally expensive
and scarce in the community. To address this
issue, we introduce a plug-and-play layer-wise
parameter-efficient fine-tuning (PEFT) frame-
work, i.e., IR-Tuning, which fine-tunes a subset
of important LLM layers that are dynamically
selected based on their gradient norm distribu-
tion, while freezing those of redundant layers.
Extensive experiments suggest that IR-Tuning
surpasses several layer-wise PEFT baselines
over diverse text revisions, while achieving fast
convergence, low GPU memory consumption,
and effectiveness on small revision corpora.

1 Introduction

Revision is regarded as an important part of writing
because it commonly improves the final written
work (Fitzgerald, 1987); however, as complexity
in the process of revision increases, it becomes
more difficult to interpret whether revision is in
line with the writer’s actual intentions (Sommers,
1980; Hayes and Flower, 1986). Particularly, deter-
mining the intentions between nuanced revisions is
challenging for computational models. For exam-
ple, Figure 1 shows the same piece of text revised
with different intentions, of which one added a
word furthermore to improve coherence, and the
other modified a word from style to visual to en-
hance clarity. Prior work (Du et al., 2022a,b) has
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Figure 1: An example where the same original text is
revised based on different intentions. The examples are
from the ITERATER corpus (Du et al., 2022b).

used small language models, e.g., RoBERTa (Liu
et al., 2019), to learn these intentions, which failed
to identify complex revisions due to the model’s
limited capability (Skitalinskaya and Wachsmuth,
2023). Hence, stronger models are needed to rec-
ognize diverse revision patterns.

Recently, large language models (LLMs) have
achieved impressive success in multiple NLP tasks,
such as text summarization (Takeshita et al., 2024),
question answering (Peng et al., 2024), and concept
reasoning (Li et al., 2024a). However, their applica-
tion in revision tasks remains underexplored. This
might be because revision tasks require LLMs to
learn an iterative process involving additions, dele-
tions, and modifications, each driven by distinct
intentions, but LLMs are mostly pre-trained to gen-
erate final texts. Although Shu et al. (2024) explore
LLMs with instruction tuning and reinforcement
learning for text revision, they focus on supervised
fine-tuning using massive datasets, which becomes
inefficient and expensive as the data size grows.
While Ruan et al. (2024a) fine-tune LLMs using
a parameter-efficient fine-tuning (PEFT) method,
i.e., QLoRA (Dettmers et al., 2023), to minimize
expenses, it requires training an adapter for every
LLM layer, thus becoming less efficient as the num-
ber of LLM layers increases.
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Figure 2: The illustration of over-sampling and down-sampling issues in the sampling-based layer-wise PEFT
method (Yao et al., 2024) and our proposed layer selection method, where the purple and green bars represent high
and low layer-wise importance scores introduced in Section 4.2, respectively.

Although standard PEFT methods (Hu et al.,
2022, 2023) proved to be efficient, they attempt
to learn entire LLM layers, despite prior research
indicating that LLM layers contribute differently
to downstream tasks (Pan et al., 2024; Zhao et al.,
2024). Recently, Yao et al. (2024) have introduced
an Importance-aware Sparse Tuning (IST) that sam-
ples a subset of important LLM layers for PEFT.
However, the number of its important layers re-
mains fixed throughout the fine-tuning, leading to
suboptimal layer selection. For example, impor-
tant layers might be overlooked (down-sampling)
if sampling a small number of layers, or unimpor-
tant layers might be included (over-sampling) if
selecting too many layers. Figure 2 illustrates these
scenarios, where down-sampling selects four out of
six important layers and over-sampling selects an
extra unimportant layer. Also, the number of impor-
tant layers can vary as the fine-tuning progresses,
but IST failed to address it. In contrast, we propose
Importance Redundancy Tuning, i.e., IR-Tuning1,
which uses an algorithm to select important lay-
ers for fine-tuning while freezing redundant ones,
where the fine-tuned layers are dynamically deter-
mined based on the distribution of LLM layer-wise
gradient norms throughout the fine-tuning.

To evaluate the effectiveness of the IR-Tuning
on text revision tasks, we work on three research
questions: RQ1: How do LLM layers contribute
differently to revision intention prediction? RQ2:
How can we dynamically select important layers
for fine-tuning LLMs on small corpora? RQ3: Are
contextualized instructions helpful for LLMs to
learn revision intentions? In particular, we make
the following contributions:

• We propose the first work that uses layer-wise
PEFT to address an essential text revision task.

1https://github.com/ZhexiongLiu/IR-Tuning

• We develop an algorithm to dynamically select a
subset of important LLM layers for fine-tuning.

• We demonstrate the feasibility of efficiently fine-
tuning LLMs with small revision corpora.

2 Related Work

2.1 Revision Intention in NLP
Text revision primarily focuses on analyzing revi-
sion intention to understand human edits (Zhang
and Litman, 2015; Shibani et al., 2018; Afrin
et al., 2020; Kashefi et al., 2022; Du et al., 2022b;
Chong et al., 2023; Mita et al., 2024; Jourdan et al.,
2024). However, identifying intention is challeng-
ing, largely because collecting annotated revision
corpora are expensive (Zhang et al., 2017; Antho-
nio et al., 2020; Spangher et al., 2022; Du et al.,
2022b; D’Arcy et al., 2024). Prior work (Zhang
et al., 2016; Yang et al., 2017; Afrin and Litman,
2018; Kashefi et al., 2022; Afrin et al., 2020; Afrin
and Litman, 2023) has developed feature-based
computational methods, which cannot generalize
to other corpora. Although Du et al. (2022b); Jiang
et al. (2022) have trained small language models,
such as RoBERTa (Liu et al., 2019), for identifying
revision intention, they have struggled to learn com-
plex revision patterns due to the models’ capabili-
ties. While more recent work either prompts LLMs
with instruction (Ruan et al., 2024b) or fine-tunes
LLMs using standard PEFT (Ruan et al., 2024a),
they have not investigated how LLM layers con-
tribute to revision tasks. In contrast, we propose a
novel layer-wise PEFT method that facilitates LLM
fine-tuning more effectively and efficiently using
small revision corpora.

2.2 Parameter-Efficient Fine-tuning
PEFT methods offer promising solutions for fine-
tuning LLMs in a computationally efficient manner.
They update a small fraction of LLM parameters
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Evidence Revision Reasoning Revision
Total

Relevant Irrelevant Repeated Others LCE not LCE Commentary Others

Add 1,774 397 225 136 1,069 317 425 299 4,642
Delete 598 102 45 56 318 121 194 70 1,504
Modify 138 26 6 53 105 23 41 55 447

Total 2,510 525 276 245 1,492 461 660 424 6,593

Table 1: The statistics of revisions in the ArgRevision corpus.

by using adapter-based techniques (Houlsby et al.,
2019; Wang et al., 2022; Lei et al., 2024), low-
rank adaptations (Hu et al., 2022; Edalati et al.,
2025; Liu et al., 2024), and prompt-based ap-
proaches (Lester et al., 2021; Li and Liang, 2021;
Liu et al., 2022). While standard PEFT implements
an identical design across all LLM layers, it cannot
explore each layer’s unique contribution to down-
stream tasks, despite prior work suggesting layer
redundancy in pre-trained models (Lan et al., 2020;
Sajjad et al., 2023; Zhang et al., 2023; Elhoushi
et al., 2024). Recently, Kaplun et al. (2023) develop
a greedy search to select useful layers, Pan et al.
(2024) instead randomly select layers, and Zhu et al.
(2024) pick layers based on front-to-end or end-
to-front heuristics, all for fine-tuning LLMs, but
these methods either need expensive computations
or utilize simple strategies that could cause down-
graded performance on complex tasks. While prior
work (Yao et al., 2024; Zhou et al., 2025) sampled
a subset of important layers based on importance
scores, their methods could cause over-sampling
and down-sampling issues, as shown in Figure 2.
Although Wei et al. (2025) utilize an unrolled differ-
entiation method to identify the most useful LLM
layers, they require expensive computation on hy-
perparameter optimization. In contrast, we propose
a plug-and-play PEFT framework that utilizes an
efficient algorithm to dynamically select a subset of
important LLM layers based on their gradient norm
distribution in each fine-tuning iteration, ensuring
high-gradient layers are prioritized for update.

3 Corpora

Text revision is rarely annotated because annota-
tion is expensive; thus, we collect an argument re-
vision corpus called ArgRevision, which includes
essays written by elementary and middle school
students with limited writing skills. We use this
corpus to study revisions in argumentation, which
is critically needed for argument writing evaluation
research (Li et al., 2024b; Correnti et al., 2024).
Additionally, we use a publicly available revision
corpus (Du et al., 2022b) that contains articles writ-

Space Essays MVP Essays

RER# Kappa RER# Kappa

Reasoning 148 0.86 135 0.84
Evidence 108 0.89 136 0.80

Table 2: The annotation agreement for reasoning and
evidence RER annotations for a batch of 117 essays in
our prior studies (Liu et al., 2023a).

ten by experienced authors, editors, and researchers.
We conduct experiments using text revisions from
both skilled and less skilled writers.

3.1 Argument Revision

The ArgRevision corpus contains pairs of essays
before and after revisions, collected using our de-
ployed automated writing evaluation system (Liu
et al., 2025). The corpus contains 990 essay drafts
written by students in grades four to eight from
schools in Pennsylvania and Louisiana, who are
taking the Response to Text Assessment (Correnti
et al., 2013). 172 students wrote essays in response
to a prompt about the United Nations’ Millennium
Villages Project (MVP). Afterward, the students
revised their essay drafts in response to feedback
provided by the system, and each student com-
pleted three drafts, resulting in 344 pairs of essay
drafts, e.g., draft1-draft2 and draft2-draft3. An-
other 158 students did the same tasks in response
to another essay prompt about Space Exploration
(Space), yielding 316 pairs of essay drafts. We
combine the essays from the two prompts as stu-
dents share similar writing skills, and the scoring
rubric is consistent across the prompts.

We preprocess collected essays for revision an-
notation. First, the sentences from the original and
revised drafts (e.g., draft1-draft2, draft2-draft3) are
aligned into pairs of original sentences and revised
sentences using a sentence alignment tool Bertal-
ign (Liu and Zhu, 2022). The aligned pairs are
automatically labeled with no change if the origi-
nal sentence and the revised sentence are the same,
modify if the original and the revised sentence are
not empty but not the same, add if the original sen-
tence is empty but the revised sentence is not, or
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module that updates layer-wise importance scores on all the layers, then a layer-selection module to select important
layers for fine-tuning. Finally, the weights in the selected layers are updated with fine-tuning through LoRA.

delete if the revised sentence is empty but the orig-
inal sentence is not. The changed alignments are
classified into surface (meaning-preserving) and
content (meaning-altering) revisions by a BERT-
based (Devlin et al., 2019) classifier trained on a
college-level revision corpus (Kashefi et al., 2022)
with an F1 score of 0.96. Following Afrin et al.
(2020), we use the Revisions of Evidence and Rea-
soning (RER) scheme to annotate content revisions
into evidence and reasoning revisions. Specifically,
evidence revisions are annotated with relevant, ir-
relevant, repeated evidence and others, and rea-
soning revisions are annotated with linked claim-
evidence (LCE), not LCE, commentary and others.
Here, we do not use the others label as it contains a
mixture of revisions based on multiple rarely anno-
tated intentions. Table 1 shows annotated intention
statistics. The annotation is done by expert annota-
tors, and each revision is annotated by one expert.
Some annotators participated in the same annota-
tion tasks in our prior studies (Liu et al., 2023a),
of which the two-annotator agreements on a batch
of 117 student essays about both MVP and Space
prompts are shown in Table 2. The annotation ex-
amples are shown in Table 8 in the Appendix.

3.2 Article Revision

We use a publicly available revision corpus named
ITERATER (Du et al., 2022b), which annotates
4,018 text revisions from Wikipedia, ArXiv, and
news articles. Wikipedia articles are written by edi-
tors who often focus on improving the clarity and
structure of articles. ArXiv articles are written by
scientific authors who generally revise hypotheses,
experimental results, and research insights. News
articles are written by editors interested in clarity
and readability. The ITERATER corpus contains

six intention labels: clarity, fluency, coherence,
style, meaning-changed, and others. Here, we do
not use the others label as it denotes unrecognizable
intentions. The revision statistics and examples are
shown in Table 9 and Table 10 in the Appendix.

4 Method

We propose a novel plug-and-play layer-wise PEFT
framework, i.e., IR-Tuning, which attempts to up-
date the weights of important LLM layers while
keeping those of redundant layers unchanged. Fig-
ure 3 shows the framework components.

4.1 Layer-wise Importance Score
Supposing an LLMM consisting of l transformer
layers mi,M = {mi}li=1, our objective is to gen-
erate a subset S ofM as important layers and the
remaining set S̄ as redundant layers. Inspired by
prior work (Zhang et al., 2024), we use layer-wise
gradient norm N = {ai}li=1 to denote LLM lay-
ers’ importance scores for two reasons. First, lay-
ers with high gradient norms suggest large weight
updates that make key contributions to the rapid
optimization of the loss function along the gradi-
ent direction, which can facilitate efficient gradient
descent. Second, larger gradient norms may carry
more information relevant to downstream tasks,
which makes LLM layers informative during fine-
tuning. These hypotheses have been confirmed and
utilized in prior work (Lee et al., 2023; Zhang et al.,
2024). Empirically, we use a threshold γ to split
M into S and S̄:

S = {mi | ai > γ} , (1)

S̄ = {mi | ai ≤ γ} , (2)

where γ is obtained by a layer selection algorithm
described in the next section.
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4.2 Important Layer Selection

Unlike prior work that selects the top n important
layers from a ranked score list (Yao et al., 2024),
we formulate the layer selection as a distribution
divergence problem, arguing that the important lay-
ers and redundant layers are from different distri-
butions. Although this idea has been used in Liu
et al. (2023b) for splitting a large amount of meta-
learning tasks into easy and hard tasks, we instead
focus on a smaller set of LLM layer splitting based
on their importance scores. Here, we have a null
hypothesisH0: the importance scores of layers in
M follows a single distribution, and an alterna-
tive hypothesis H1: there exists a subset S ofM,
where the importance scores of layers in S follow
a different distribution from those of the remain-
ing layers S̄. Therefore, the optimal set S∗ can be
obtained by solving the optimization problem:

S∗ = argmaxN log
Likelihood (H1 | N )

Likelihood (H0)
. (3)

Intuitively, we need to maximize the likelihood
of the alternative hypothesis that suggests the
layer-wise importance scores in S and S̄ are dif-
ferent, where the former is denoted as NS =
{ai | mi ∈ S} and the latter is denoted as NS̄ ={
ai | mi ∈ S̄

}
. This can be solved by minimizing

the variance of the importance scores in NS and
NS̄ (Xie et al., 2021). Hence we choose an opti-
mal threshold γ∗ that leads to the minimum sum of
Var(NS) and Var (NS̄) such that

Var(NS) + Var (NS̄) <= Var(N ). (4)

Algorithm 1 summarizes the layer-splitting pro-
cess, where the input is the full-layer importance
score N and the output is the optimized threshold
γ∗, which can be used to split M into S and S̄
using Equations 1 and 2. The algorithm is effi-
cient, as it has a time complexity of O(l log l) with
respect to LLMM, which has l layers, and is in-
dependent of the size of fine-tuning data. If we
run the algorithm multiple times, we can further
split the important layers S into more important
and less important subsets. For example, a hier-
archical splitting of layer-wise importance score
N = {a1, a2, a3, a4, a5} is visualized in Figure 3
(b), which yields multiple subsets, whose impor-
tance are ranked {a1, a3} > {a2} > {a4, a5} if the
maximum splitting number is two. Hence, we
have a fine-grained set of importance layers S∗ =

Algorithm 1: Layer splitting algorithm
Output: optimized threshold γ∗

Input: importance score array N
Initialization: rank N in descending order;
set array V = ∅, l the length of N , j = 0

while j is less than l do
NS ←N [: j]
NS̄ ←N [j :]
Vj ← Var(NS) + Var(NS̄)
j ← j + 1

end
γ∗ = N [ArgMin(V)]

{m1,m3} used for fine-tuning if we select the high-
est importance score set {a1, a3}. While more hi-
erarchical splits yield more fine-grained important
layers, there is a trade-off between model perfor-
mance and fine-tuning efficiency, as too many splits
could cause down-sampling important layers, as de-
scribed in Figure 2.

4.3 Layer Update

Upon selection, the layers in S are encapsulated
with LoRA (Hu et al., 2022) for fine-tuning, while
the layers in S̄ are frozen. Since the importance
scoresN and splitting threshold γ keep updating as
the fine-tuning progress, the sizes of S and S̄ might
change, where important layers could become re-
dundant and contribute less to the fine-tuning if
their gradient norms descend below the optimized
threshold γ∗, and vice versa. In practice, we select
important and redundant layers every k step(s).

5 Experiments

5.1 Data Preprocessing

ArgRevision corpus contains substantial revisions,
which may have empty original sentences R1 (in
adding revisions) or empty revised sentences R2

(in deleting revisions) as shown in Table 8 in the
Appendix. Revisions in ITERATER are minor, of
whichR1 andR2 are not null as shown in Table 10
in the Appendix. Also, ArgRevision only allows
one intention for a revision, but ITERATER allows
multiple, e.g., the sameR1 could be revised to sev-
eralR2 with different intention labels as shown in
Figure 1 and more in rows 1, 2, and 3 in Table 10 in
the Appendix. Additionally, we formulate revisions
into vanilla and instruction data for vanilla fine-
tuning and instruction tuning, respectively, where
the former is a pair of {R1,R2}, and the latter are
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Figure 4: The importance scores (gradient norms) vary across different LLM layers on the ArgRevision corpus. The
high variances indicate that the gradients have changed significantly, suggesting the layers are actively learning
from the data. The layers with low variances suggest they have been frozen most of the time.

formulated with an instruction: ### Instruction:
Identify the intention of the revision between the
original sentence and the revised sentence. The
possible intentions include: Y . ### Original Sen-
tence: R1. ### Revised Sentence: R2, where Y is
the annotated intention labels.

5.2 Baselines and Evaluation Metrics
To evaluate the proposed method and answer our re-
search questions, we use three LLMs, i.e., Mistral-
7B, which is known for efficient inference (Jiang
et al., 2023), Llama3.1-8B, which achieves good
performance for general NLP tasks (Grattafiori
et al., 2024), and Deepseek-R1-8B, which is a dis-
tilled version of the Llama model with emphasized
reasoning capability (Guo et al., 2025). We com-
pare our IR-Tuning to the following baselines:

• RoBERTa: We use a RoBERTa-large (Devlin
et al., 2019) as a small language model baseline
the same as Du et al. (2022b).

• LISA-Baseline: We fine-tune randomly selected
four layers based on the algorithm in Pan et al.
(2024). Here, we apply LoRA to the selected
layers for PEFT based on Yao et al. (2024).

• IST-Baseline: We compute layer-wise impor-
tance scores based on Yao et al. (2024) and sam-
ple the top eight layers for PEFT with LoRA.

• Full-Finetuning: We fine-tune full LLM layers
with LoRA (Hu et al., 2022) as an upper bound.

In the implementation, we build the framework
with PyTorch2, use pretrained models from Hug-
gingface3, and optimize multi-class cross-entropy
loss with Adam optimizer on an Nvidia A100 GPU.
We set the batch size as 16, the maximum text
length cutoff as 256 for vanilla data and 1024 for
instruction data, and the learning rate as 2e-4. We

2https://pytorch.org
3https://huggingface.co

use a default one split to select important and redun-
dant layers every fine-tuning step, and log results
every 10 steps. We fine-tune LLMs for four epochs,
and train the RoBERTa model for 20 epochs. In ad-
dition, we split the ArgRevision corpus into 80%,
10%, and 10% for training, validation, and test
sets, respectively. We use the splits in Du et al.
(2022b) for the ITERATER corpus. The detailed
splits are shown in Tables 11 and 12 in the Ap-
pendix. We tune hyperparameters on the validation
sets and report macro-average Precision, Recall,
F1-score, and the area under the precision-recall
curve (AUPRC) used for evaluating imbalanced
multi-class classification, all on the test sets.

6 Results

6.1 The Importance of LLM Layers
To understand the layer-wise contributions to the
revision prediction, we visualize importance score
(gradient norm) changes across all the LLM layers
during IR-Tuning on the ArgRevision corpus, as
shown in Figure 4. For Mistral-7B, gradient up-
dates across almost all layers have relatively high
variances. This suggests that all the LLM layers
are actively updating and share similar capacities
for handling text revisions. Regarding Deepseek-
R1-8B, several layers, such as Layers 0 to 5 except
Layer 3 and Layers 21 to 25, exhibit low gradi-
ent variances, which suggests these layers are not
heavily involved in the fine-tuning process. Instead,
layers with relatively high gradient variances, such
as Layers 3, 7, 9, and several middle and top lay-
ers (Layers 29 to 31), suggest frequent updates
and active learning from the data. For Llama3.1-
8B, the top and bottom layers are almost identi-
cal to those of Deepseek-R1-8B, possibly because
Deepseek-R1-8B was distilled on Llama models,
thus sharing similar patterns. Despite differences
in layer-wise gradient norms across all the LLMs,
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Models Methods Layer Num ArgRevision Corpus ITERATER Corpus

Precision Recall F1-Score AUPRC Precision Recall F1-Score AUPRC

RoBERTa - - 52.00 46.35 47.95 51.47 44.99 51.19 46.31 52.69

Mistral-7B

Full-Finetuning fixed (32) 53.60 50.09 50.54 49.08 54.95 52.48 51.56 56.81

LISA-Baseline fixed (4) 31.00 34.29 31.06 43.98 45.31 47.32 45.14 51.24
IST-Baseline fixed (8) 44.51 40.64 40.69 46.39 45.47 50.67 46.61 50.60

IR-Tuning (ours) dynamic 51.45 46.26 47.20 49.16* 47.61 52.64* 49.38 54.22

DeepSeek-R1-8B

Full-Finetuning fixed (32) 54.13 47.94 49.33 50.78 52.04 53.03 51.62 56.00

LISA-Baseline fixed (4) 54.82* 38.94 37.48 44.85 46.94 50.18 47.26 51.74
IST-Baseline fixed (8) 44.98 44.27 43.76 48.64 47.40 52.11 48.64 52.76

IR-Tuning (ours) dynamic 52.20 47.19 48.47 50.14 52.93* 52.06 50.66 54.46

Llama3.1-8B

Full-Finetuning fixed (32) 54.06 49.30 50.56 51.14 53.33 54.51 52.38 57.46

LISA-Baseline fixed (4) 35.23 35.66 33.46 42.01 49.96 51.87 48.89 54.96
IST-Baseline fixed (8) 44.29 42.52 42.16 47.99 51.84 52.77 51.69 55.81

IR-Tuning (ours) dynamic 54.17* 49.17 50.15 52.69* 48.45 51.94 49.20 56.42

Table 3: The performance of different LLMs and PEFT methods on the ArgRevision and ITERATER test sets. The
bold numbers represent the best results, and the asterisks indicate that the results are better than full fine-tuning.

the proposed IR-Tuning can select high-gradient
layers to ensure the most informative layers are
effectively fine-tuned on the revision task; in con-
trast, less informative layers are not frequently used.
Similar observations on the ITERATER corpus are
shown in Figure 8 in the Appendix, which confirms
RQ1 that LLM layers contribute differently to re-
vision intention prediction, thus fine-tuning layers
that contribute more while freezing those that con-
tribute less can potentially benefit the revision task.

6.2 The Performance of IR-Tuning

We show the intention prediction performance on
the ArgRevision and ITERATER corpora in Ta-
ble 3. IR-Tuning achieves the best results across
almost all metrics and outperforms RoBERTa in
most settings, suggesting the generalizability of IR-
Tuning across different LLMs and revision corpora.
Although Llama3.1-8B achieves better F1 scores
using IST-Baseline instead of IR-Tuning on the IT-
ERATER corpus, the results are reversed in terms
of AUPRC. This is because unbalanced data can
cause the model to poorly learn the minority classes
(e.g., Style in Table 9 in the Appendix), which can
downgrade the macro F1 scores that treat each class
equally but are less sensitive to AUPRC. Thus, the
higher AUPRC in IR-Tuning across all settings sug-
gests its effectiveness compared to the baselines.
Sometimes, LLMs with IR-Tuning can outperform
full fine-tuning results on several metrics, which
demonstrates the success of IR-Tuning over stan-
dard PEFT methods. These results answer RQ2,
which suggests that we can dynamically select im-
portant layers for PEFT on even small corpora.

To investigate the efficiency of IR-Tuning, we
plot the losses of fine-tuning Llama3.1-8B on the
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Figure 5: The Llama3.1-8B fine-tuning losses on the
ArgRevision and ITERATER training sets, using IR-
Tuning and baseline PEFT methods.
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Figure 6: The GPU memory allocations for the Full-
Finetuning (FT) with and without PEFT (LoRA), and IR-
Tuning with PEFT (LoRA) on the ArgRevision corpus.

training sets of ArgRevision and ITERATER cor-
pora in Figure 5. IR-Tuning exhibits fast conver-
gence compared to other PEFT methods, of which
LISA has surprisingly high fluctuations during the
beginning steps, largely because it fine-tunes on
random layers rather than the layers with high gra-
dient norms. The similar patterns are observed
on Mistral-7B and Deepseek-R1-8B in Figure 9
and 10 in the Appendix. These observations high-
light the superiority of IR-Tuning for fast conver-
gence. In addition, we plot its GPU memory alloca-
tions while fine-tuning on the ArgRevision corpus
in Figure 6 and the ITERATER corpus in Figure 11
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Models Inputs ArgRevision Evidence ArgRevision Reasoning ITERATER Corpus

Relevant Irrelevant Repeated LCE not LCE Commentary Clarity Fluency Coherence Style Meaning

RoBERTa vanilla 78.14 42.35 13.64 66.67 25.24 61.67 66.47 81.22 30.30 11.11 54.21

Mistral-7B vanilla 78.11 35.96 16.00 71.52 42.11 63.72 71.65 75.95 31.43 0.00 55.17
instruct 78.52 31.46 5.00 67.52 38.33 62.39 72.93 80.90 37.14 0.00 55.91

Deepseek-R1-8B vanilla 75.97 30.77 8.89 66.01 26.00 58.99 74.73 82.22 37.93 16.67 62.79
instruct 76.53 33.71 13.04 71.73 35.16 60.66 72.04 82.87 33.33 10.53 54.55

Llama3.1-8B vanilla 76.51 30.23 4.44 69.39 33.65 67.15 72.38 87.64 31.88 19.05 55.56
instruct 79.69 34.57 10.26 71.57 35.64 69.17 75.33 83.62 30.51 0.00 56.52

Table 4: The F1 scores of IR-Tuning with vanilla inputs and instruction inputs on the ArgRevision (Evidence and
Reasoning) and ITERATER corpora. The bold numbers are the best results in each setting.

in the Appendix. For a fair comparison, we set the
batch size to one for both full fine-tuning and PEFT.
The histogram shows that IR-Tuning with LoRA
uses the smallest memory across different LLMs,
compared to full-layer fine-tuning with and without
LoRA, which confirms its memory efficiency.

6.3 The Effectiveness of Instruction Tuning
We evaluate IR-Tuning performance on specific
intentions with and without instruction tuning for
each corpus. For ArgRevision, Table 4 shows IR-
Tuning is worse than RoBERTa in predicting Irrel-
evant and mostly worse for Relevant and Repeated
intentions, all from evidence revision. This might
be because LLMs struggle to learn evidence revi-
sion with limited data; in contrast, LLMs perform
well in predicting reasoning revision. Although
Llama3.1-8B is generally better than Mistral-7B
in several NLP tasks, it does not hold true on ar-
gument revisions using vanilla input data, which
might be because Llama3.1-8B does not learn re-
visions well without proper instructions. However,
IR-Tuning can improve Mistral-7B without using
instruction tuning. For ITERATER, LLMs are gen-
erally better than the RoBERTa baseline except for
Style, which has limited annotations (e.g., 128 Style
labels in Table 9 in the Appendix). While instruc-
tion tuning is generally helpful on the ArgRevision
corpus, except for Mistral-7B, it sometimes down-
grades the performance on the ITERATER corpus
for Deepseek-R1-8B and Llama3.1-8B. This might
be because ArgRevision has substantial revisions
that add and delete entire sentences (e.g., rows
#1 and #2 in Table 8 in the Appendix), thus IR-
Tuning needs contextualized instructions to help
predict intentions. In contrast, the revisions in IT-
ERATER are minor (see Table 10 in the Appendix),
which rely less on the instructions to learn inten-
tions. These observations suggest that contextual-
ized instructions are not always helpful for LLMs
to learn revisions, which answers RQ3.

Models Sizes ArgRevision ITERATER

F1-Score AUPRC F1-Score AUPRC

Phi-2 2.7B 39.89 44.88 42.77 47.22
Mistral 7B 47.20 49.16 49.38 54.22

Deepseek-R1 8B 48.47 50.14 50.66 54.46
Llama3.1 8B 50.15 52.69 49.20 56.42
Llama2 13B 52.49 53.11 52.19 57.45

Table 5: The performance of IR-Tuning with LoRA
PEFT for different sizes of LLMs across two corpora.

Adapters ArgRevision ITERATER

F1-Score AUPRC F1-Score AUPRC

Botteneck 50.21 54.38 47.97 56.00
LoRA 50.15 52.69 49.20 56.42
DoRA 52.66 51.47 50.94 58.64

Table 6: The performance of IR-Tuning on Llama3.1-
8B with different PEFT adapters across two corpora.

6.4 Generalizability and Robustness

To validate the generalizability of IR-Tuning, we
evaluate its performance using LLMs with varying
parameter sizes, ranging from small to large. Ta-
ble 5 shows that F1 scores and AUPRC generally
improve as the size of the model increases, which
implies that larger LLMs might work better since
larger models can capture complex revision pat-
terns and leverage richer contextual information. In
addition, we implement IR-Tuning using different
PEFT adapters, i.e., classic Bottleneck (Houlsby
et al., 2019) and advanced DoRA (Liu et al., 2024).
Table 6 shows that DoRA generally performs better
than LoRA on two corpora, except for AUPRC in
ArgRevision. This suggests that IR-Tuning bene-
fits from DoRA’s ability to decompose the weight
magnitude and direction within LLM layers (Liu
et al., 2024).

Furthermore, we compare our gradient-based im-
portance scoring metric with the magnitude-based
method regarding parameter weights (Ma et al.,
2023) and the similarity-based method that mea-
sures the hidden state before and after LLM lay-
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Model ArgRevision ITERATER

F1-Score AUPRC F1-Score AUPRC

Similarity 52.36 53.53 49.23 53.24
Magnitude 48.42 48.72 52.57 53.26
Gradient 50.15 52.69 49.20 56.42

Table 7: The performance of IR-Tuning on Llama3.1-
8B with LoRA PEFT and different importance scoring
metrics across two corpora.
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Figure 7: The performance (AUPRC) of IR-Tuning with
LoRA PEFT and different splits across two corpora.

ers (Chen et al., 2025), as shown in Table 7. Al-
though the similarity metric appears to be advanta-
geous on ArgRevision, it is more computationally
expensive than magnitude and gradient-based met-
rics, as it necessitates additional computations right
before and after each LLM layer. In addition, the
gradient-based metric has a higher AUPRC on the
ITERATER data, suggesting it’s more reliable for
unbalanced data, while the magnitude-based metric
has generally accurate predictions on ITERATER.
These observations suggest that performance varies
across corpora; however, gradient-based methods
are informative as they measure whether LLM lay-
ers are actively engaged during fine-tuning.

Moreover, we study the parameter sensitivity of
the layer-selection algorithm in Figure 7. In the
ArgRevision corpus, the performance of Llama3.1-
8B decreases as adding more splits, which could be
due to down-sampling issues, as shown in Figure 2.
Mistral-7B and Deepseek-R1-8B downgrade per-
formance in two splits but improve in three. In the
ITERATER corpus, performance typically drops
when adding more splits, except for Mistral-7B.
These observations suggest that the layer selection
depends on both data and models, where one split is
generally good for Llama-based models, and three
splits work best for Mistral-based models.

7 Conclusion

We present a layer-wise PEFT framework named
IR-Tuning, which dynamically selects a subset

of LLM layers for fine-tuning while freezing the
others. We demonstrate that IR-Tuning is effec-
tive across multiple revision corpora and LLMs,
and achieves fast fine-tuning convergence and con-
sumes low GPU memory. Although IR-Tuning is
primarily used for text revision in this study, it can
potentially be used for other NLP tasks. In future
work, we will evaluate its performance on more
revision tasks to generalize our findings.

Ethics Statement

We use our previously developed automated writ-
ing evaluation system (Liu et al., 2025) to collect
the ArgRevision corpus under standard protocols
approved by an Institutional Review Board (IRB).
Expert annotators, familiar with both the system
and the writing tasks, were employed to label revi-
sion intentions. The data collection and annotation
processes do not raise any ethical concerns. Fur-
thermore, our research on text revision, particularly
for argument essay revisions, is critically needed
for automated student writing evaluation, which
benefits both the education and NLP communities.

Limitations

Despite the effectiveness of our proposed method,
several limitations are noted. First, the integration
of IR-Tuning relies on the gradient norm on every
LLM layer to hypothetically measure the impor-
tance of the layers. However, more data-driven and
task-specific metrics, e.g., evaluation loss, could be
leveraged to score layer importance. Nevertheless,
IR-Tuning does not introduce significant computa-
tional overhead compared to standard PEFT, based
on our pilot studies. We will further investigate
its efficiency in future work. Also, we empirically
use one split for selecting LLM layers in our cur-
rent settings. We will explore automated methods
for splitting layers in future work. Second, com-
putational limitation constrains our evaluation to
relatively lightweight models. While larger LLMs,
e.g., Llama3.3-70B, offer enhanced capabilities for
contextual understanding, we are unable to incorpo-
rate them in this study. Our evaluations are based
on small annotated corpora, which have limited
generalizability to cover diverse revisions in real-
world scenarios. Third, we do not investigate other
PEFT techniques, e.g., prompt-tuning. Thus, a
deeper exploration of different PEFT methods, in-
struction designs, and diverse LLMs may achieve
more robust task-specific fine-tuning strategies.
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ID Sentence in Original Essay Sentence in Revised Essay Revision
Behavior

Revision
Type

Revision
Intention

1 Sauri has been struggling
with poverty. Delete Evidence Irrelevant

2

The author did convince
me that,"winning the fight
against poverty is achievable
in our life time"the author
tells us that this is achiev-
able in paragraph 3.in para-
graph 3 it says," we are
halfway to 2035, and the
world is capable of meeting
these goals.

Add Evidence Relevant

3 ... ... ... ... ...

4
I can infer they want to get
Sauri out of poverty before
2035.

Add Reasoning Other

5

According to paragraph 3 it
says,"the plan is to get peo-
ple out of poverty, assure
them access to health care
and help them stabilize the
economy and quality of life
in their communities."

According to paragraph 3 it
says,"the plan is to get peo-
ple out of poverty, assure
them access to health care
and help them stabilize the
economy and quality of life
in their communities."

N/A N/A N/A

6
This shows the Sauri needs
as much help as they can to
get out of poverty.

This shows the Sauri needs
as much help as they can to
get out of poverty.

N/A N/A N/A

7 Also it shows that people are
willing to help Sauri. Add Reasoning LCE

8 ... ... ... ... ...

9
In 2035 I can infer that they
will be financially stable and
will have better housing.

In 2035 I can infer that they
will be financially stable and
will have better housing.

N/A N/A N/A

10 ... ... ... ... ...

11 Local leaders take it from
there." Add Evidence Relevant

12

This shows how they pro-
vided Sauri with the neces-
sities and they can see ac-
tion taking place and see im-
provements.

Add Reasoning LCE

Table 8: The examples of revision intention annotations for an essay in the ArgRevision corpus.

Clarity Fluency Coherence Style Meaning Others Total

Add 94 208 37 2 342 6 689
Delete 282 111 180 20 11 11 615
Modify 1,225 623 176 106 543 41 2,714

Total 1,601 942 393 128 896 58 4,018

Table 9: The statistics of revisions in the ITERATER corpus.
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ID Sentence in Original Article Sentence in Revised Article Revision
Intention

1

In this work, we point out the inability
to infer behavioral conclusions from
probing results, and offer an alternative
method which is focused on how the
information is being used, rather than
on what information is encoded.

In this work, we point out the inability
to infer behavioral conclusions from
probing results, and offer an alterna-
tive method which focuses on how the
information is being used, rather than
on what information is encoded.

Style

2

In this work, we point out the inability
to infer behavioral conclusions from
probing results , and offer an alterna-
tive method which focuses on how the
information is being used, rather than
on what information is encoded.

In this work, we point out the inability
to infer behavioral conclusions from
probing results and offer an alternative
method which focuses on how the in-
formation is being used, rather than on
what information is encoded.

Fluency

3

In this work, we point out the inability
to infer behavioral conclusions from
probing results , and offer an alterna-
tive method which focuses on how the
information is being used, rather than
on what information is encoded.

In this work, we point out the inability
to infer behavioral conclusions from
probing results , and offer an alterna-
tive method that focuses on how the
information is being used, rather than
on what information is encoded.

Clarity

4

A growing body of work makes use
of probing in order to investigate the
working of neural models, often con-
sidered black boxes.

A growing body of work makes use of
probing to investigate the working of
neural models, often considered black
boxes.

Coherence

5

We explore representations from differ-
ent model families (BERT, RoBERTa,
GPT-2 , etc.) and find evidence
for emergence of linguistic manifold
across layer depth (e.g., manifolds for
part-of-speech and combinatory cate-
gorical grammar tags). We further ob-
serve that different encoding schemes
used to obtain the representations lead
to differences in whether these linguis-
tic manifolds emerge in earlier or later
layers of the network .

We explore representations from differ-
ent model families (BERT, RoBERTa,
GPT-2 , etc.) and find evidence
for emergence of linguistic manifold
across layer depth (e.g., manifolds for
part-of-speech tags), especially in am-
biguous data (i.e, words with multiple
part-of-speech tags, or part-of-speech
classes including many words) .

Meaning-
changed

Table 10: The examples of revision intention annotations in the ITERATER corpus.

Evidence Revision Reasoning Revision

Relevant Irrelevant Repeated LCE not LCE Commentary

Train 2,029 425 216 1,200 358 506
Val 240 50 29 148 46 79
Test 240 50 31 144 56 71

Total 2,509 525 276 1,492 460 656

Table 11: The statistics of revision intentions in the training, validation, and test sets of the ArgRevision corpus.

Clarity Fluency Coherence Style Meaning

Train 1,258 739 311 100 807
Val 157 115 46 13 54
Test 186 88 36 15 35

Total 1,601 942 393 128 896

Table 12: The statistics of revision intentions in the training, validation, and test sets of the ITERATER corpus.
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Figure 8: The importance scores (gradient norms) vary across different LLM layers on the ITERATER corpus. The
high variances indicate that the gradients have changed significantly, suggesting the layers are actively learning
from the data. The layers with low variances mean they have been frozen most of the time.
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Figure 9: The Mistral-7B fine-tuning losses on the ArgRevision and ITERATER training sets, using IR-Tuning and
baseline PEFT methods.
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Figure 10: The Deepseek-R1-8B fine-tuning losses on the ArgRevision and ITERATER training sets, using IR-
Tuning and baseline PEFT methods.
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Figure 11: The GPU memory allocations for the Full-Finetuning (FT) with and without PEFT (LoRA), and IR-
Tuning with PEFT (LoRA) on the ITERATER corpus.
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