@inproceedings{hayat-etal-2025-context,
title = "{C}on{T}ext-{LE}: Cross-Distribution Generalization for Longitudinal Experiential Data via Narrative-Based {LLM} Representations",
author = "Hayat, Ahatsham and
Khan, Bilal and
Hasan, Mohammad Rashedul",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.830/",
pages = "15335--15360",
ISBN = "979-8-89176-335-7",
abstract = "Longitudinal experiential data offers rich insights into dynamic human states, yet building models that generalize across diverse contexts remains challenging. We propose ConText-LE, a framework that systematically investigates text representation strategies and output formulations to maximize large language model cross-distribution generalization for behavioral forecasting. Our novel Meta-Narrative representation synthesizes complex temporal patterns into semantically rich narratives, while Prospective Narrative Generation reframes prediction as a generative task aligned with LLMs' contextual understanding capabilities. Through comprehensive experiments on three diverse longitudinal datasets addressing the underexplored challenge of cross-distribution generalization in mental health and educational forecasting, we show that combining Meta-Narrative input with Prospective Narrative Generation significantly outperforms existing approaches. Our method achieves up to 12.28{\%} improvement in out-of-distribution accuracy and up to 11.99{\%} improvement in F1 scores over binary classification methods. Bidirectional evaluation and architectural ablation studies confirm the robustness of our approach, establishing ConText-LE as an effective framework for reliable behavioral forecasting across temporal and contextual shifts."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hayat-etal-2025-context">
<titleInfo>
<title>ConText-LE: Cross-Distribution Generalization for Longitudinal Experiential Data via Narrative-Based LLM Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ahatsham</namePart>
<namePart type="family">Hayat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bilal</namePart>
<namePart type="family">Khan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Rashedul</namePart>
<namePart type="family">Hasan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Longitudinal experiential data offers rich insights into dynamic human states, yet building models that generalize across diverse contexts remains challenging. We propose ConText-LE, a framework that systematically investigates text representation strategies and output formulations to maximize large language model cross-distribution generalization for behavioral forecasting. Our novel Meta-Narrative representation synthesizes complex temporal patterns into semantically rich narratives, while Prospective Narrative Generation reframes prediction as a generative task aligned with LLMs’ contextual understanding capabilities. Through comprehensive experiments on three diverse longitudinal datasets addressing the underexplored challenge of cross-distribution generalization in mental health and educational forecasting, we show that combining Meta-Narrative input with Prospective Narrative Generation significantly outperforms existing approaches. Our method achieves up to 12.28% improvement in out-of-distribution accuracy and up to 11.99% improvement in F1 scores over binary classification methods. Bidirectional evaluation and architectural ablation studies confirm the robustness of our approach, establishing ConText-LE as an effective framework for reliable behavioral forecasting across temporal and contextual shifts.</abstract>
<identifier type="citekey">hayat-etal-2025-context</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.830/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>15335</start>
<end>15360</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ConText-LE: Cross-Distribution Generalization for Longitudinal Experiential Data via Narrative-Based LLM Representations
%A Hayat, Ahatsham
%A Khan, Bilal
%A Hasan, Mohammad Rashedul
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F hayat-etal-2025-context
%X Longitudinal experiential data offers rich insights into dynamic human states, yet building models that generalize across diverse contexts remains challenging. We propose ConText-LE, a framework that systematically investigates text representation strategies and output formulations to maximize large language model cross-distribution generalization for behavioral forecasting. Our novel Meta-Narrative representation synthesizes complex temporal patterns into semantically rich narratives, while Prospective Narrative Generation reframes prediction as a generative task aligned with LLMs’ contextual understanding capabilities. Through comprehensive experiments on three diverse longitudinal datasets addressing the underexplored challenge of cross-distribution generalization in mental health and educational forecasting, we show that combining Meta-Narrative input with Prospective Narrative Generation significantly outperforms existing approaches. Our method achieves up to 12.28% improvement in out-of-distribution accuracy and up to 11.99% improvement in F1 scores over binary classification methods. Bidirectional evaluation and architectural ablation studies confirm the robustness of our approach, establishing ConText-LE as an effective framework for reliable behavioral forecasting across temporal and contextual shifts.
%U https://aclanthology.org/2025.findings-emnlp.830/
%P 15335-15360
Markdown (Informal)
[ConText-LE: Cross-Distribution Generalization for Longitudinal Experiential Data via Narrative-Based LLM Representations](https://aclanthology.org/2025.findings-emnlp.830/) (Hayat et al., Findings 2025)
ACL