@inproceedings{rolshoven-etal-2025-unlocking,
title = "Unlocking Legal Knowledge: A Multilingual Dataset for Judicial Summarization in {S}witzerland",
author = {Rolshoven, Luca and
Rasiah, Vishvaksenan and
Bose, Srinanda Br{\"u}gger and
Hostettler, Sarah and
Burkhalter, Lara and
St{\"u}rmer, Matthias and
Niklaus, Joel},
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.832/",
pages = "15382--15411",
ISBN = "979-8-89176-335-7",
abstract = "Legal research depends on headnotes: concise summaries that help lawyers quickly identify relevant cases. Yet, many court decisions lack them due to the high cost of manual annotation. To address this gap, we introduce the Swiss Landmark Decisions Summarization (SLDS) dataset containing 20K rulings from the Swiss Federal Supreme Court, each with headnotes in German, French, and Italian. SLDS has the potential to significantly improve access to legal information and transform legal research in Switzerland. We fine-tune open models (Qwen2.5, Llama 3.2, Phi-3.5) and compare them to larger general-purpose and reasoning-tuned LLMs, including GPT-4o, Claude 3.5 Sonnet, and the open-source DeepSeek R1. Using an LLM-as-a-Judge framework, we find that fine-tuned models perform well in terms of lexical similarity, while larger models generate more legally accurate and coherent summaries. Interestingly, reasoning-focused models show no consistent benefit, suggesting that factual precision is more important than deep reasoning in this task. We release SLDS under a CC BY 4.0 license to support future research in cross-lingual legal summarization."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rolshoven-etal-2025-unlocking">
<titleInfo>
<title>Unlocking Legal Knowledge: A Multilingual Dataset for Judicial Summarization in Switzerland</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luca</namePart>
<namePart type="family">Rolshoven</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vishvaksenan</namePart>
<namePart type="family">Rasiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Srinanda</namePart>
<namePart type="given">Brügger</namePart>
<namePart type="family">Bose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Hostettler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lara</namePart>
<namePart type="family">Burkhalter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Stürmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Niklaus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Legal research depends on headnotes: concise summaries that help lawyers quickly identify relevant cases. Yet, many court decisions lack them due to the high cost of manual annotation. To address this gap, we introduce the Swiss Landmark Decisions Summarization (SLDS) dataset containing 20K rulings from the Swiss Federal Supreme Court, each with headnotes in German, French, and Italian. SLDS has the potential to significantly improve access to legal information and transform legal research in Switzerland. We fine-tune open models (Qwen2.5, Llama 3.2, Phi-3.5) and compare them to larger general-purpose and reasoning-tuned LLMs, including GPT-4o, Claude 3.5 Sonnet, and the open-source DeepSeek R1. Using an LLM-as-a-Judge framework, we find that fine-tuned models perform well in terms of lexical similarity, while larger models generate more legally accurate and coherent summaries. Interestingly, reasoning-focused models show no consistent benefit, suggesting that factual precision is more important than deep reasoning in this task. We release SLDS under a CC BY 4.0 license to support future research in cross-lingual legal summarization.</abstract>
<identifier type="citekey">rolshoven-etal-2025-unlocking</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.832/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>15382</start>
<end>15411</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unlocking Legal Knowledge: A Multilingual Dataset for Judicial Summarization in Switzerland
%A Rolshoven, Luca
%A Rasiah, Vishvaksenan
%A Bose, Srinanda Brügger
%A Hostettler, Sarah
%A Burkhalter, Lara
%A Stürmer, Matthias
%A Niklaus, Joel
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F rolshoven-etal-2025-unlocking
%X Legal research depends on headnotes: concise summaries that help lawyers quickly identify relevant cases. Yet, many court decisions lack them due to the high cost of manual annotation. To address this gap, we introduce the Swiss Landmark Decisions Summarization (SLDS) dataset containing 20K rulings from the Swiss Federal Supreme Court, each with headnotes in German, French, and Italian. SLDS has the potential to significantly improve access to legal information and transform legal research in Switzerland. We fine-tune open models (Qwen2.5, Llama 3.2, Phi-3.5) and compare them to larger general-purpose and reasoning-tuned LLMs, including GPT-4o, Claude 3.5 Sonnet, and the open-source DeepSeek R1. Using an LLM-as-a-Judge framework, we find that fine-tuned models perform well in terms of lexical similarity, while larger models generate more legally accurate and coherent summaries. Interestingly, reasoning-focused models show no consistent benefit, suggesting that factual precision is more important than deep reasoning in this task. We release SLDS under a CC BY 4.0 license to support future research in cross-lingual legal summarization.
%U https://aclanthology.org/2025.findings-emnlp.832/
%P 15382-15411
Markdown (Informal)
[Unlocking Legal Knowledge: A Multilingual Dataset for Judicial Summarization in Switzerland](https://aclanthology.org/2025.findings-emnlp.832/) (Rolshoven et al., Findings 2025)
ACL