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Abstract

Fine-grained control is essential for precise
and customizable text generation, yet existing
benchmarks evaluate models on only a few
attributes, typically fewer than five. We in-
troduce ULTRABENCH, a new benchmark for
extremely fine-grained controllable generation
(EFCG), which evaluates large language mod-
els (LLMs) under dense, multi-attribute con-
straints. Each sample includes approximately
70 attributes, combining LLM-extracted soft
constraints (e.g., style and tone) with program-
matically enforced hard constraints (e.g., word
count). Using ULTRABENCH, we conduct a
comprehensive evaluation of state-of-the-art
LLMs and prompting strategies. Models such
as GPT-4.1 and Qwen3-8B perform well on
individual constraints, achieving instruction-
level accuracy above 70%, but consistently fail
to satisfy all constraints simultaneously. To
understand this limitation, we analyze model
behavior across different dimensions. First,
we observe a clear position bias: models tend
to prioritize constraints presented later in the
prompt while neglecting those that appear ear-
lier. Second, we find that structural-related
constraints are significantly more difficult to
satisfy than content- or style-based ones, sug-
gesting that current models struggle to coordi-
nate global structure with token-level control.
Finally, our error analysis reveals distinct fail-
ure modes: GPT-4.1 often attempts to follow
constraints but falls short in precision, whereas
LLaMA frequently omits constraints, partic-
ularly in multi-turn settings. These findings
highlight fundamental limitations in EFCG and
underscore the need for new methods that sup-
port dense, instruction-sensitive generation1.

1 Introduction
Large language models (LLMs) have demon-
strated impressive instruction-following capabil-

* Corresponding author.
1Code and data is available at https://github.com/

LongfeiYun17/ultrabench

ities (Lou et al., 2023; OpenAI et al., 2024), en-
abling them to interpret natural language com-
mands and perform complex tasks such as multi-
turn dialogues (Ouyang et al., 2022), question an-
swering (Zhang et al., 2023), and structured writ-
ing (Sun et al., 2024). These capabilities have
powered the rapid development of controllable text
generation (CTG) in various domains (Zhou et al.,
2023a; Chang et al., 2024).

Figure 1: Instruction-level accuracy (left) and prompt-
level accuracy (right) as a function of the number of con-
straints for GPT-4.1-nano and LLaMA-3.1-8B-Instruct.
As the number of constraints increases, instruction-level
accuracy gradually declines, while prompt-level accu-
racy drops sharply, indicating the increasing difficulty of
satisfying all constraints simultaneously under extreme
fine-grained controllability settings.

However, real-world applications including per-
sonalized content generation, product recommen-
dation, and creative writing, often require simul-
taneously satisfying dozens of fine-grained con-
straints. These constraints span content elements,
stylistic features, structural formats, and pragmatic
goals, far exceeding the complexity handled in ex-
isting benchmarks, which typically focus on 3–5 at-
tributes or incrementally added constraints in multi-
turn setups (Huang et al., 2023; Jiang et al., 2023;
He et al., 2024). As illustrated in Figure 1, model
performance declines as the number of constraints
increases, even for state-of-the-art LLMs. While
these models may achieve reasonable accuracy on
individual constraints, their ability to satisfy all
constraints simultaneously deteriorates rapidly un-
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der denser constraint settings. This highlights the
growing challenge of extreme fine-grained control-
lability as constraint scales.
To address this gap, we propose ULTRABENCH, a
benchmark for Extremely Fine-Grained Control-
lable Generation (EFCG). ULTRABENCH synthe-
sizes training data with over 70 mixed hard and soft
constraints per sample from realistic high-quality
corpus, leveraging large language models for soft
attribute extraction and programmatic rules for hard
constraint enforcement. The key idea behind UL-
TRABENCH is to construct a large and diverse set
of constraint types, some of which can be instanti-
ated into multiple attributes; by adapting naturally
occurring texts to accommodate more constraints
and enriching them with 3–5 soft constraints ex-
tracted via GPT-4.1 (OpenAI, 2025), we build high-
quality, densely labeled examples that reflect real-
istic fine-grained control demands. To ensure data
quality, we incorporate a multi-stage quality con-
trol pipeline involving both automated validation
and human verification (see §2.6). ULTRABENCH

offers a rigorous testbed for evaluating LLMs’ abil-
ity to satisfy dense, diverse, and interactive control
conditions.
Through extensive experiments on ULTRABENCH,
we conduct a comprehensive evaluation of several
state-of-the-art LLMs. Our findings are as follows:
• ULTRABENCH presents a significantly more

challenging benchmark than existing controllable
generation datasets, highlighting considerable
room for improvement in this area.

• Constraints appearing later in the prompt are
more likely to be satisfied, while earlier ones are
often ignored, indicating attention and memory
limitations in long-context inputs.

• Compared to surface-level content or style con-
straints, global layout and structure constraints
(e.g., sections, paragraph segmentation) are fre-
quently violated, revealing limitations in compo-
sitional reasoning.

• Proprietary models often detect and attempt to
follow most constraints but fails to execute them
precisely. In contrast, open-source small mod-
els frequently omit constraints, reflecting weaker
contextual memory and constraint grounding.

Overall, these results highlight substantial chal-
lenges in current LLMs’ controllability under ex-
tremely fine-grained settings. ULTRABENCH pro-
vides a rigorous and realistic testbed to drive future
research toward more reliable and interpretable con-
trollable text generation.

2 ULTRABENCH Construction

In this section, we first formally define the EFCG
task in §2.1, and then introduce the construction
process of ULTRABENCH. We categorize the con-
straints into two types, hard constraints (§2.2) and
soft constraints (§2.3), and describe how each type
is instantiated in the benchmark. In §2.4, we dis-
cuss the key capabilities required for successful
performance on this benchmark. We then present
the constraint distribution statistics in §2.5, and de-
scribe the quality control procedures used to ensure
data integrity in §2.6.

2.1 Problem Formulation

The task of EFCG generalizes traditional control-
lable text generation (CTG) by requiring models to
satisfy a large set of diverse and precise constraints
simultaneously. Formally, given an input X and
a constraint set c, the objective is to generate an
output Y such that Y adheres to c:

P (Y | X, c) =
n∏

i=1

Pθ(Yi | Y<i, X, c)

where n is the output length, θ denotes model pa-
rameters, and Y<i is the generated prefix.

2.2 Hard Constraints

Hard constraints are verifiable constraints defined
by deterministic rules that can be programmatically
checked, such as requiring a fixed number of para-
graphs, enforcing keyword presence, or forbidding
specific punctuation. In contrast, soft attributes like
tone or style rely on subjective interpretation.

Hard Constraints Typology We implement a
comprehensive set of 27 hard attribute types span-
ning six functional categories (see Appendix A).
These include:
1. Language & Language Code: constraints that

specify the response language.
2. Linguistic Style & Surface Form: case sen-

sitivity (uppercase/lowercase), punctuation re-
strictions, quotation formatting, and stylistic
highlights;

3. Length & Structural Layout: sentence/word/-
paragraph counts, section divisions, and struc-
tured layouts like bullet points;

4. Content Presence & Semantics: requirements
on keyword inclusion/exclusion, named entities,
numeric values, and specific content units;
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5. Content Frequency & Distribution: con-
straints on the repetition frequency of keywords,
letters, or capital words;

6. Output Format & Encoding: response format-
ting in JSON, hyperlink inclusion, constrained
or question endings, and placeholder enforce-
ment.

Each constraint is expressed in natural language to
resemble realistic user prompts and is paired with
a validator that automatically checks compliance.
For example, the instruction Your response should
contain at least 12 sentences. is evaluated by a
rule-based checker that tokenizes the output and
verifies the sentence count meets the threshold.

Figure 2: Hierarchical ring chart illustrating the taxon-
omy of instruction categories and subcategories used in
EFCG task.

Attribute Identification and Augmentation Un-
like synthetic prompt-generation methods (Lam-
bert et al., 2024b), which often result in low output
diversity (Long et al., 2024), our dataset is built by
identifying and minimally adapting inherent prop-
erties of real-world texts to support a wide range of
verifiable constraints.
We begin with the FineWeb corpus (Penedo et al.,
2024), filtering samples based on token length and
retaining those between 256 and 2,048 tokens. This
range excludes short, noisy content (Soldaini et al.,
2024) and avoids excessively long texts that pose
computational challenges. We exclude short texts
mainly because they do not provide sufficient ca-
pacity or structure for testing such dense constraint
adherence and would therefore not serve our pri-
mary evaluation goals. Moreover, short texts in

large-scale pretraining corpora often include low-
information content (e.g., navigation menus, copy-
right disclaimers, advertisements). For each re-
tained sample, we extract a variety of pre-existing
textual attributes, including sentence count, named
entities, capitalized terms, and bullet structures.
These attributes are then rephrased into natural lan-
guage constraints to simulate realistic user instruc-
tions.
Programmatic Text Transformation To sup-
port more constraints for each text, we apply a set
of rule-based transformations to each input. These
include structural edits such as inserting markdown
highlights, splitting content into sections, and re-
placing entities with bracketed placeholders (e.g.,
[location]). We also enforce content-level con-
straints by injecting specific sentences and append-
ing required postscript formats. These transfor-
mations enable each text to satisfy dozens of fine-
grained, verifiable requirements.

Example of Soft Attribute Extraction

Input Text: Electric vehicles (EVs) are not only a solution to rising
fuel costs, but also a major step toward environmental sustainabil-
ity. With increasing government incentives and expanding charging
infrastructure, EVs are becoming more accessible to everyday con-
sumers.
Extracted Soft Attribute Instructions:

• Content Theme: Write about the economic and environ-
mental benefits of electric vehicles.

• Situation Context: Assume the audience consists of envi-
ronmentally conscious consumers.

• Writing Style: Use an informative and journalistic writing
style.

• Tone / Emotion: Maintain a positive and encouraging tone
throughout.

• Example Pattern: Include two to three concrete advantages
as examples.

2.3 Soft Constraints

Rather than assigning a large number of soft at-
tributes to each text, which can lead to semantic
overlap and unreliable supervision due to their sub-
jective nature, we focus on five core dimensions
that are naturally grounded in most writing: (1)
content theme, (2) situation context, (3) writing
style, (4) emotional tone, and (5) example usage
pattern. These dimensions provide orthogonal con-
trol handles for generation, enabling fine-grained
guidance without introducing artificial or specula-
tive attributes.

2.4 Core Abilities Needed in ULTRABENCH

To successfully perform the EFCG task, language
models must demonstrate the following capabili-
ties:
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1. Multi-Constraint Tracking: The model must
jointly track heterogeneous constraints, includ-
ing discrete (e.g., keyword counts), continuous
(e.g., word limits), structural (e.g., formatting),
and symbolic (e.g., named entities or identi-
fiers), maintaining a constraint-aware internal
state throughout generation.

2. Global-Local Coordination: Models must
align high-level structure (e.g., section layout)
with low-level lexical fidelity (e.g., exact token
usage), as decisions across levels are tightly cou-
pled.

3. Constraint-Aware Planning: Effective gener-
ation requires anticipating future constraint tar-
gets, allocating content budget, and avoiding
early commitments that jeopardize later satisfac-
tion.

4. Compositional Reasoning: Constraints inter-
act in complex ways, such as between sentence
count and keyword placement, requiring mod-
els to resolve conflicts and compose feasible
solutions that jointly satisfy all requirements.

We design ULTRABENCH to systematically eval-
uate these capabilities across diverse and densely
constrained generation scenarios, enabling stress-
testing of fine-grained controllability in modern
LLMs.
2.5 Constraint Statistics

The train split contains 12,844 examples, while
the test split contains 1,293 examples. On aver-
age, each example includes 74.6 hard constraints
and 4.79 soft constraints in the train set, and 74.7
hard constraints and 4.80 soft constraints in the
test set. While the total number of constraints per
example is consistent, the type distribution is imbal-
anced to reflect different levels of control. Global
constraints (e.g., JSON Format, Title, Quotation
Wrapper) apply broadly across texts, while local
constraints (e.g., Keywords, Named Entities) are
input-specific and depend on semantic compatibil-
ity. We provide a detailed overview of the hard con-
straint distribution in ULTRABENCH benchmark in
Figure 3.

2.6 Quality Control

We apply separate quality control procedures for
hard and soft constraints to ensure the consistency
and high quality of the dataset.

Hard Constraint Validation. To avoid viola-
tions of mutually exclusive constraints (e.g., All
Uppercase vs. All Lowercase), each transformed
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Figure 3: Distribution of hard constraint categories in
the training set.

sample is programmatically validated to ensure that
all assigned constraints are simultaneously satisfied.
Only examples that pass all checks are retained.

Soft Attribute Verification. To ensure the relia-
bility of extracted soft attributes, we implement a
two-stage verification process:
• Stage 1: LLM-based Validation After extract-

ing soft attributes using a strong LLM, we con-
duct a second-pass check. Given the original text
and the extracted attributes, the model evaluates
each attribute independently with a binary ”YES”
or ”NO” decision. If any attribute is marked
”NO,” the entire example is discarded, filtering
out hallucinated or unsupported soft attributes.
The extraction and judgment prompts could be
found in Appendix B.

• Stage 2: Human Spot-Check The human anno-
tators randomly sample 200 examples for manual
review. Annotators are required to identify a sup-
porting span from the source text for each soft
attribute. Out of the 200 examples, 197 showed
complete alignment, yielding a consistency rate
of 98.5%. Minor deviations were observed in
only 3 cases.

While minor inconsistencies may persist due to the
subjective nature of soft attributes, this multi-stage
process ensures strong overall alignment between
the text and its annotated constraints.

2.7 Evaluation Metrics

To comprehensively evaluate EFCG capabilities,
we adopt two complementary metrics for hard
constraints: Instruction-level Accuracy (IA) and
Prompt-level Accuracy (PA), along with a model-
based evaluation protocol for soft constraints,
termed Constraint Satisfaction Rate (CSR).
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Instruction-level Accuracy. This metric as-
sesses the model’s ability to satisfy individual con-
straints, offering a fine-grained view of controlla-
bility under multi-attribute setups. Formally, given
m examples where the ith example contains n(i)

constraints, the instruction-level accuracy (IA) is
defined as:

IA =
1

m

m∑

i=1

1

n(i)

n(i)∑

j=1

s
(i)
j

where s
(i)
j ∈ {0, 1} indicates whether the jth con-

straint in the ith example is satisfied.

Prompt-level Accuracy. This metric captures
whether the model satisfies all constraints within
a single prompt, reflecting its ability to maintain
compositional correctness across multiple simulta-
neous requirements. Formally, it is defined as:

PA =
1

m

m∑

i=1

n(i)∏

j=1

s
(i)
j

Constraint Satisfaction Rate (CSR). For soft
constraints, we rely on model-based evaluation. A
strong LLM judge (e.g., GPT-4.1 (OpenAI, 2025))
is prompted with the generated text and its asso-
ciated soft constraint list. For each constraint, the
judge produces a binary output (Yes if fully satis-
fied, No otherwise), based solely on the observable
content. CSR is computed analogously to IA:

CSR =
1

m

m∑

i=1

1

n(i)

n(i)∑

j=1

s
(i)
j

where s
(i)
j ∈ {0, 1} is the binary decision from the

judge. To minimize randomness in judgment, we
set the decoding temperature to 0.1 to encourage
deterministic generation.
Together, these metrics offer a comprehensive eval-
uation framework that reflects both fine-grained
constraint adherence and holistic generation qual-
ity.

2.8 Comparison With Existing Datasets

Existing controllable generation benchmarks, such
as IFBench (Pyatkin et al., 2025), Follow-
Bench (Jiang et al., 2023), and CFBench (Zhang
et al., 2024), typically evaluate only 3–5 constraints
per instance. This limited scope quickly saturates

Benchmarks Num. Type. Meth.
IFEval 541 4 Python
CELLO 523 4 Python
FollowBench 820 5 LLM
InFoBench 500 5 LLM + Python
FoFoBench 494 1 LLM
ComplexBench 1150 4 LLM
CFBench 1000 10–25 LLM + Python
ULTRABENCH 1288 29 LLM + Python

Table 1: Comparison of different benchmarks

with current SOTA models and fails to reveal fine-
grained differences in instruction-following qual-
ity. By contrast, imposes over 70 constraints per
example, combining hard and soft attributes to en-
able fine-grained assessment of control, composi-
tionality, and robustness under high cognitive load.
Moreover, it uniquely requires both surface-level
fidelity (e.g., entities, digits, keywords) and global
structural planning (e.g., layout, formatting, JSON
compliance), reflecting the dual-level controllabil-
ity increasingly demanded in real-world applica-
tions such as personalized writing and enterprise
report generation.

3 Experiments

Our experiments provide a comprehensive evalu-
ation of state-of-the-art language models on UL-
TRABENCH benchmark. We aim to answer the
following research questions:
• How well do current SOTA LLMs perform on

the EFCG task in ULTRABENCH? (§3.1, §3.2)
• To what extent does constraint position within

the prompt affect model adherence? (§3.3)
• Which types of constraints are the most difficult

to satisfy under extreme conditions? (§3.4)
• What are the underlying causes of failure when

models face densely constrained prompts? (§3.5)
• Can post-training on ULTRABENCH improve

model performance on EFCG tasks? (§3.6 §3.7)

3.1 Models and Baselines

We evaluate a wide range of state-of-the-art large
language models (LLMs) on ULTRABENCH, in-
cluding LLaMA-3.1-8B-Instruct (Dubey et al.,
2024), Qwen-3-8B (Team, 2025), as well as Tulu-
3.1-8B (Lambert et al., 2024a). We also include
proprietary models such as GPT-4.1 and GPT-
4o (Achiam et al., 2023), Gemini-2.5-Flash (Anil
et al., 2023), and Claude-3.5-Sonnet-v2 (Anthropic,
2024).
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Model
Zero-shot Grouped Stepwise Multi-turn-2 Multi-turn-3

IA CSR IA CSR IA CSR IA CSR IA CSR

Qwen-3-8B 70.22 67.58 73.99 70.63 71.33 62.63 66.83 71.69 68.52 67.92
Llama-3.1-8B-Inst 72.33 88.66 74.83 90.21 72.27 88.26 71.39 92.62 70.71 90.14
Tulu-3.1-8B 72.22 84.58 77.32 87.19 66.07 71.16 60.36 51.26 52.99 26.09
GPT-4.1 80.26 96.16 84.34 96.73 78.76 95.51 79.98 96.59 79.67 95.22
GPT-4o 78.37 93.84 79.43 93.98 77.57 92.68 76.41 94.44 76.82 93.79
Gemini-2.0-Flash 79.92 95.01 85.40 92.53 76.88 91.49 76.71 83.69 74.84 79.87
Claude-3-5-Haiku 77.44 91.49 79.44 91.04 77.99 92.07 77.22 87.08 76.86 86.30

Table 2: Instruction adherence (IA) and constraint satisfaction rate (CSR) across prompting methods. (prompt-level
accuracy, PA, is omitted because it is 0 for all settings).

Model
Zero-shot Grouped Constraints Stepwise Planning Multi-turn-2

Str Fmt Ling Cont Freq Str Fmt Ling Cont Freq Str Fmt Ling Cont Freq Str Fmt Ling Cont Freq

Qwen-3-8B 50.10 77.28 81.49 76.61 62.80 50.33 81.64 81.97 77.07 71.18 65.13 66.48 75.29 78.09 63.46 49.54 65.82 77.19 69.64 64.05
Llama-3.1-8B-Inst 56.52 49.59 68.88 81.56 63.78 60.00 53.14 69.24 80.08 71.21 55.90 49.03 74.11 80.68 64.37 50.63 38.28 65.70 80.79 62.11
Tulu-3.1-8B 59.44 44.16 84.66 78.99 65.37 65.54 50.15 84.85 80.50 75.16 57.11 34.48 69.57 71.33 61.66 49.33 21.55 59.47 62.54 60.64
GPT-4.1 67.13 86.25 92.19 89.12 69.20 70.29 87.27 91.89 86.67 81.89 61.56 90.82 93.98 88.30 66.64 67.04 76.11 90.65 87.55 71.09
GPT-4o 68.14 60.69 91.20 84.49 71.55 70.58 60.14 90.86 82.20 76.79 67.87 68.91 90.32 83.51 70.47 64.10 57.30 89.50 83.72 68.34
Gemini-2.5-pro 53.43 89.85 92.41 90.49 67.68 61.65 92.34 92.11 89.94 80.97 50.63 86.41 90.41 87.08 65.02 52.34 86.41 89.87 83.91 68.37
Claude-3-5-Haiku 63.27 62.47 88.09 83.08 71.59 61.65 61.61 90.38 83.05 76.52 65.34 68.91 89.99 83.11 72.24 62.01 47.36 84.78 81.76 73.83

Table 3: Category-level accuracy (%) for the five constraint types: Structure (Str), Format (Fmt), Linguistic (Ling),
Content (Cont), and Frequency (Freq). Bold indicates the highest score and underlined the second highest within
each model.

To assess the controllability of these models, we
evaluate the following baseline prompting meth-
ods:
• Zero-shot: The model generates text given the

complete list of hard and soft constraints in a
single prompt, without any additional structuring
or guidance.

• Grouped Constraints: Constraints are grouped
into semantically related categories (e.g., content,
style, structure) to shorten the prompt length and
reduce cognitive load during generation.

• Stepwise Planning: The model first generates an
intermediate plan or outline from the constraints,
and then conditions on this plan to produce the
final output.

• Multi-turn: Constraints are evenly partitioned
across multiple turns. In each turn, the model
generates a partial response based on the new
subset of constraints and the preceding genera-
tion.

3.2 Overall Results

We use Sglang (Zheng et al., 2024) as the serving
framework, with the following decoding param-
eters: max new tokens=2048, temperature=0.7,
top p=0.95, and repetition penalty=1.0. Ta-
ble 2 presents the performance of various
LLMs and prompting strategies on ULTRABENCH.
Among all evaluated models, GPT-4.1 achieves
the highest instruction-level accuracy in the zero-

shot setting at 80.26%, followed by Gemini-2.0-
Flash (79.92%) and GPT-4o (78.37%). Despite
their strong per-constraint performance, all models
achieve near-zero prompt-level accuracy (PA), un-
derscoring the inherent difficulty of satisfying all
constraints simultaneously.
Grouped Constraints consistently yield the highest
IA across all models, outperforming both Zero-
shot and other prompting strategies. For instance,
Tulu-3.1-8B improves from 72.22% (Zero-shot)
to 77.32% (Grouped), a gain of +5.10%, demon-
strating the benefit of presenting constraints in se-
mantically structured groups. Zero-shot prompt-
ing typically ranks second, offering reasonable per-
formance without additional planning or organi-
zation. In contrast, Stepwise Planning and Multi-
turn prompting underperform, with Multi-turn-3
yielding the lowest IA and CSR across all models.
This degradation likely stems from increased de-
mands on constraint tracking: stepwise and multi-
turn formats require the model to manage evolving
constraint states and maintain long-range memory,
which current LLMs struggle to do reliably. As
shown in Table 3, across all prompting strategies,
models perform best on linguistic style constraints,
often exceeding 90% accuracy, reflecting strong
lexical and syntactic control. In contrast, format-
ting constraints remain the most challenging, partic-
ularly under multi-turn prompting, where accuracy
frequently drops below 60%, suggesting limited
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capability for maintaining global formatting con-
sistency.

3.3 Position Bias
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Figure 4: Average instruction-level accuracy by rela-
tive constraint position in the prompt. Later-positioned
constraints are more likely to be satisfied, indicating a
position bias across models.
In this section, we investigate whether large lan-
guage models exhibit position bias when handling
multiple hard constraints. To this end, we conduct
a controlled experiment by randomly shuffling the
order of instructions in the prompt. We select 1,080
evaluation samples and permute the constraint se-
quences before generation, aiming to disentangle
the effects of position and inherent constraint diffi-
culty.
Model responses are generated with a maximum
length of 2,048 tokens and evaluated for instruction-
level accuracy. For analysis, we group results by
each instruction’s relative position, computed as its
index normalized by the total number of constraints
in the prompt.
Figure 4 shows the instruction-level accu-
racy across relative positions for three models:
LLaMA-3.1-8B-Instruct (Dubey et al., 2024),
Qwen-2.5-7B-Instruct (Yang et al., 2024), and
Tulu-3-8B (Lambert et al., 2024b). All models
show a clear position bias, with later instructions
more likely to be satisfied. This indicates a sys-
temic issue in multi-constraint generation: LLMs
tend to prioritize later instructions while underper-
forming on earlier ones.
To further understand this behavior, we analyze
how attention is distributed across the prompt. We
split each prompt into three segments evenly (early,
middle, late), excluding the first token due to atten-
tion sink effects (Xiao et al., 2023). Model outputs
are generated via greedy decoding. During gener-
ation, we log decoder self-attention weights every
20 steps across all layers and heads, aggregating

attention over the three regions. This analysis is
conducted on 256 randomly sampled prompts.

Figure 5: Average attention weights over generation
steps across early, middle, and late prompt regions. At-
tention to late prompt tokens dominates throughout the
generation, while attention to early instructions quickly
decays, indicating position bias and potential omission
of earlier constraints. Attention was recorded every 20
steps using greedy decoding.
As shown in Figure 5, attention to the late prompt
region remains consistently high throughout the
generation, while early regions receive persistently
lower attention. These results reinforce the pres-
ence of position bias and suggest that LLMs dis-
proportionately attend to recent instructions, poten-
tially reducing global constraint adherence.

3.4 Attribute-Level Failure Patterns

Figure 6: Bars represent model performance on individ-
ual constraint types, sorted by average difficulty. While
both models perform well on surface-level constraints
(e.g., content presence, style cues), accuracy declines
significantly on structure-related and formatting-specific
instructions, revealing challenges in global layout con-
trol and fine-grained formatting compliance.

To better understand which types of fine-grained
constraints pose the greatest challenge to cur-
rent LLMs, we evaluate instruction-level accu-
racy across all constraint categories for two rep-
resentative models: llama-3.1-8b-instruct and
qwen-2.5-7b-instruct. As shown in Figure 6,
both models perform well on shallow, surface-level

15444



Error Type Definition Example

Constraint Violation Constraint is present in the output, but vio-
lated.

Output has 100 words when asked
for at least 300; bullet count is incor-
rect.

Constraint Omission The constraint has no trace in the output,
the model ignored it entirely.

No keyword at all; missed key sen-
tence or end-sentence constraints.

Soft Constraint Mis-
match

Output has incorrect tone, style, or content. Asked for optimistic tone, but output
is neutral or negative.

Refusal or Non-
response

Output is too generic or short to assess
whether constraints are satisfied.

“I’m sorry, I can’t help with that.”

Table 4: Categorization of common error types observed
in EFCG. Each type reflects a distinct failure mode in
constraint adherence.

constraints such as keyword inclusion and forbid-
den words. However, accuracy drops substantially
for constraints involving structural reasoning, such
as JSON formatting, paragraph-level alignment,
and key sentence insertion. These results indicate
that failures in EFCG are not merely due to con-
straint overload but stem from fundamental limita-
tions in modeling global-local compositionality.

3.5 Error Analysis

We categorize the most common errors into four
types (Table 4): (1) Constraint Violation: The
model attempts to satisfy a constraint, but fails to
meet its exact requirements. (2) Constraint Omis-
sion: The model entirely ignores a constraint, with
no attempt to address it. (3) Soft Constraint Mis-
match: The response deviates from the expected
tone, style, or emotional intent specified by soft
constraints. (4) Refusal or Non-response: The
model refuses to answer, deflects the instruction,
or generates vague and generic output that lacks
sufficient content to assess constraint adherence.
We use an LLM-based evaluator to classify error
types efficiently.

gp
t

zero_shot grouped stepwise_planning multi_turn2 multi_turn3

lla
m

a

zero_shot grouped stepwise_planning multi_turn2 multi_turn3

Constraint Missing Constraint Violation Soft Constraint Missing Refusal

Figure 7: Each pie chart shows the proportion of four
error types. GPT-4.1 errors are dominated by constraint
violations across all settings, whereas LLaMA3 exhibits
a shift from violations to omissions in multi-turn set-
tings, indicating challenges with long-context constraint
tracking.
We observe distinct error patterns between GPT-
4.1 and LLaMA3 models across prompting strate-
gies. For GPT-4.1, constraint violation remains

the dominant error type across all settings, suggest-
ing that the model consistently attempts to fulfill
constraints but often fails to meet precise specifica-
tions. This indicates strong instruction-following
intent, but limited precision in fine-grained con-
straint execution.

In contrast, LLaMA3 exhibits a different trajectory.
Under zero-shot, grouped, and stepwise prompt-
ing, constraint violation remains the most frequent
error type, but constraint missing also accounts
for a substantial portion of failures. This indicates
that the model not only struggles with precise ex-
ecution but also frequently overlooks constraints
altogether. In multi-turn settings, the error distri-
bution shifts further, with omission errors surpass-
ing violations, suggesting increasing difficulty in
maintaining constraint representations over longer
contexts. These patterns highlight LLaMA’s lim-
itations in long-context retention and constraint
grounding, particularly when instructions are dis-
tributed across multiple conversational turns.

3.6 SFT Improves Hard but Hurts Soft
Constraints

We fine-tuned three models: Llama-3.2-3B (Dubey
et al., 2024), Qwen2.5-3B-Instruct (Yang et al.,
2024), and Gemma-2-2b-it (Team, 2024) on the
training set of ULTRABENCH using supervised fine-
tuning (SFT), where the adapted text served as the
supervision signal. Evaluation of the test set in
the zero-shot setting reveals a consistent trade-off:
SFT leads to substantial gains in instruction ad-
herence (IA), particularly for Gemma (+12.7) and
Qwen2.5 (+5.5), suggesting improved understand-
ing and alignment with hard constraints. However,
these gains come at the cost of degraded constraint
satisfaction rate (CSR), especially for Llama-3.2
and Gemma, where CSR drops by 24.5 and 11.0
points, respectively.

Models IA PA CSR

Llama-3.2-Instruct 70.75 0.00 82.95
Llama-3.2-Instruct W/ SFT 75.88 0.78 58.45

Qwen2.5-3B-Instruct 70.07 0.00 85.50
Qwen2.5-3B-Instruct W/ SFT 75.58 0.00 75.23

Gemma-2-2b-it 24.42 0.00 17.03
Gemma-2-2b-it W/ SFT 37.12 0.00 5.99

Table 5: Performance comparison for SFT model and
base model.
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Model IA CSR
Base Model 70.75 82.95
SFT Model 75.88 58.45
DPO Model 73.06 54.30

Table 6: Performance of different models on ULTRA-
BENCH using IA and CSR.

3.7 RL Fine-tuning Challenges in
Controllable Generation

To evaluate ULTRABENCH under reinforcement
learning paradigms, we fine-tuned LLaMA-3.2-
3B-Instruct with Direct Preference Optimization
(DPO) (Rafailov et al., 2023), using GPT-4o to
generate candidate responses and selecting prefer-
ences via a weighted combination of IA and CSR.
While the DPO model achieved higher IA than the
base model, its CSR dropped sharply, indicating
that optimizing scalar preference signals may im-
prove instruction adherence at the cost of stylistic
and semantic fidelity. This highlights a fundamen-
tal challenge in controllable generation: densely
packed, heterogeneous constraints are difficult to
capture with single-dimensional rewards, motivat-
ing future work on constraint-aware reinforcement
learning methods.

4 Case Study

We show an example in Figure 8. In this case, the
model demonstrated several notable successes. It
followed the required structure with a proper Mark-
down title, highlighted section, placeholders, and
sufficient length, while also incorporating most of
the mandated keywords (such as airplane, steward,
flagged, and molto). It further satisfied the NER
constraints by including both a PERSON (Chef
Marco) and GPE entities (Italy, Curinga), and it
maintained the intended casual and lighthearted
blog style throughout.
At the same time, the model exhibited important
failures. It omitted the PRODUCT entity, missed
three lexical requirements related to keyword fre-
quency and a fixed sentence, and violated strict
character-level quotas (for g, i, and d). Placehold-
ers were present but not aligned with PRODUCT
constraints, and attempts to repeat certain keywords
such as glutine created tradeoffs with the character-
level rules.
Overall, this case illustrates how the model handles
high-level stylistic and structural demands effec-
tively, but struggles with symbolic constraints and
multi-attribute alignment. It underscores the need

for constraint-aware decoding strategies and more
nuanced reward formulations in controllable gener-
ation.

5 Related Work

Controllable Text Generation CTG tasks in-
volve hard constraints (e.g., text length, keyword
inclusion)(Takase and Okazaki, 2019; Carlsson
et al., 2022) and soft constraints (e.g., sentiment,
topic)(Gu et al., 2022; Lu et al., 2022). Fine-
tuning LLMs with instructional data improves their
constraint-following ability (Weller et al., 2020;
Sanh et al., 2021; Mishra et al., 2022; Jiang et al.,
2024), but evaluations show LLMs often fail to
meet all constraints (Jiang et al., 2023; Qin et al.,
2024; Ren et al., 2025). Despite this, these works
primarily focus on a relatively small number of at-
tributes or conditions, typically from 3 to 5, leaving
a gap in understanding LLM’s performance under
more extreme requirements.

Evaluation of CTG Evaluating LLM’s adher-
ence to constraints is challenging and typically in-
volves automatic and programmatic assessments
using various metrics (Yao et al., 2023; Zhou et al.,
2023c; Chen et al., 2022). Zhou et al. (2023b)
centers on assessing 25 verifiable instructions.
Jiang et al. (2023) progressively integrates fine-
grained constraints to develop multi-level instruc-
tions, thereby enhancing complexity across six dis-
tinct types. Wen et al. (2024) constructs a novel
benchmark by synthesizing and refining data from
the aforementioned benchmarks, with an emphasis
on the combinatorial types of constraints. Zhang
et al. (2024) proposes a comprehensive constraint-
following benchmark over 50 NLP tasks. However,
none of them investigate the effects of extreme
fine-grained attributes.

6 Conclusions and Future Work

We present ULTRABENCH, a benchmark designed
to stress-test LLMs under extremely fine-grained
controllability. Through comprehensive evaluation,
we uncover systematic limitations in current mod-
els’ ability to handle 70+ compositional constraints,
such as position bias and structural failures.
Future work may investigate training-time interven-
tions such as compositional instruction tuning and
constraint-aware decoding. Incorporating richer
supervision signals, including constraint-level re-
wards or curriculum-based training, could improve
model adherence to complex constraint sets.
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Limitations

While ULTRABENCH underscores the challenges
of extremely fine-grained controllable generation,
several caveats remain. First, the current inven-
tory of roughly 29 constraint types is broad but not
exhaustive; nuanced cases such as nested or condi-
tional dependencies are left for future work. Sec-
ond, soft-constraint adherence is judged by another
LLM, which may introduce subtle evaluation bias.
Finally, we benchmark moderate context lengths
only; extending ULTRABENCH to long-context,
multi-turn settings with dynamically evolving con-
straint scenarios remains an open direction.
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A Hard Attributes

To evaluate fine-grained controllability, ULTRA-
BENCH defines 27 verifiable hard constraint types,
grouped into six major categories based on con-
trol intent: (1) language specification, (2) linguistic
style and surface form, (3) length and structural lay-
out, (4) content semantics, (5) content frequency
and distribution, and (6) output formatting and en-
coding. These constraints are automatically applied
and verified during data construction, enabling pre-
cise and reproducible supervision across diverse
dimensions.

Each hard attribute is explicitly checkable via
string-level rules. For instance, structural con-
straints such as exact sentence or paragraph counts
(Number Sentences, Number Paragraphs), or for-
matting constraints like JSON compliance or mark-
down bullet points, can be programmatically vali-
dated. Content-based constraints require models to
insert specific keywords, named entities, or key sen-
tences extracted from the original passage, while
frequency constraints enforce fine-grained control
over token or letter repetition.

By covering both global and local aspects of gen-
eration, including layout, surface form, semantic
content, and output structure, these hard attributes
allow us to systematically evaluate a model’s abil-
ity to follow detailed and interacting generation
instructions. A complete listing and description of
all hard attributes are provided in Table 7.

B Prompts

Prompt for Soft Constraints Extraction. To
construct soft constraints that guide the generation
process at a stylistic and semantic level, we de-
sign a dedicated prompt that instructs a language
model to extract up to five high-level attributes
from a given input text. These attributes include
content theme, situational context, writing style,
tone, and example usage pattern. As shown in
Appendix B, the prompt asks the model to gen-
erate concise instructional sentences for each at-
tribute type, but only when the attribute is clearly
supported by the source text. This selective and
instruction-formatted extraction ensures that the
soft constraints are grounded in the input and suit-
able for controllable generation tasks.

Prompt for Soft Attribute Extraction

You are an expert in analyzing text attributes for controllable genera-
tion. Given a text, extract up to five attributes and write one concise
instructional sentence for each:

1. Main Content: Summarize the main topic and phrase it as
an instruction (e.g., ”Write an article about...”).

2. Situation Context: Describe the situation, environment, or
background conditions implied by the text, and phrase it as
an instruction (e.g., ”Assume the text takes place during an
environmental summit.”).

3. Writing Style: Specify the writing style (e.g., ”Use a jour-
nalistic writing style.”).

4. Tone or Emotion: Specify the tone or emotional attitude
(e.g., ”Maintain an optimistic and persuasive tone.”).

5. Example Pattern: If examples are present, describe their
pattern (e.g., ”Provide at least three reasons in bullet
points.”).

Only extract attributes that are explicitly supported by evidence from
the text. Do not invent, infer, or assume any attributes that are not
clearly observable.
If an attribute is not clearly present, skip it.
Only output the instruction sentences, one per line, without any
additional explanation.
Input: {text}

Prompt for Constraint Satisfaction Verification.
To evaluate whether a generated response satisfies
a set of fine-grained constraints, we design a judg-
ment prompt that treats the model as a strict verifier.
Given a generated text and a list of constraints, the
prompt instructs the model to assess each constraint
independently based solely on the surface evidence
in the text. The model must answer ”YES” only
if a constraint is fully and unambiguously satis-
fied, and ”NO” if it is violated, partially satisfied,
or unclear. To ensure clarity and consistency, the
prompt requires one binary judgment per constraint,
with no additional explanation or free-form com-
mentary. This verification prompt enables efficient,
automatic scoring of constraint adherence in dense
controllable generation tasks.

Prompt for Constraint Satisfaction Verifica-
tion

You are a strict evaluator of constraint satisfaction in generated text.
Given a set of constraints and a generated text, determine for each
constraint whether it is fully satisfied by the text. You must base
your judgment only on the content of the text, without guessing or
inferring missing information.
For each constraint, answer strictly ”YES” if it is clearly and fully
satisfied, or ”NO” if it is partially satisfied, unclear, or not satisfied.
In the final line, output {number} lines, each containing only YES or
NO, indicating whether the answer satisfies each constraint. Do not
generate other irrelevant text.
—
Generated Text:
{text}

Constraints:
{constraints}
—
Answer:

Prompt for Stepwise Planning. As part of the
Stepwise Planning baseline, we decompose gen-
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Category Instruction Description of the verifiable constraint

1. Language & Language Code

Language Response Language Entire response must be written in a specified ISO-639-1 language (e.g.,
“en”, “zh”).

2. Linguistic Style & Surface Form

Case All Uppercase Entire response must be in UPPERCASE.
Case All Lowercase Entire response must be in lowercase (no capitals).
Punctuation No Commas Commas are disallowed in the response.
Formatting Quotation Wrapper Wrap the entire response in double quotation marks.
Formatting Title Include a title wrapped in <<double angle brackets>>.
Formatting Bullet Points Provide exactly N markdown bullet items.
Formatting Highlight Sections Highlight at least N phrases using *italic* or **bold**.

3. Length & Structural Layout

Length Number Sentences Response must contain less than / at least N sentences.
Length Number Words Response must contain less than / at least N words.
Length Number Paragraphs Response must contain exactly N paragraphs separated by “\n\n” or ***.
Options Paragraph First Word Produce N paragraphs; the kth starts with a specified word.
Formatting Postscript Required Add a postscript starting with “P.S.” (or similar) at the end.
Formatting Multiple Sections Ensure the response is divided into N named sections.

4. Content Presence & Semantics

Keywords Include Keywords All specified keywords must appear in the response.
Keywords Forbidden Words Specified words must not appear anywhere.
Keywords Named Entities Response must contain named entities of specified types (e.g., PERSON,

ORG).
Keywords Key Sentences Include exactly M sentences from a given sentence set.
Keywords Numeric Value Include a number within a specified range (e.g., 10–20).

5. Content Frequency & Distribution

Keywords Keyword Frequency A keyword must appear less than / at least K times.
Keywords Specific Number A number from the input must appear a specific number of times.
Character Frequency Letter Frequency A given letter must appear less than / at least K times.
Character Frequency Capital Word Frequency ALL-CAPS words must appear less than / at least K times.

6. Output Format & Encoding

Formatting JSON Format Output must be valid JSON, optionally wrapped in markdown code fences.
Options Include Hyperlink Output must include at least one valid HTTP(S) hyperlink.
Options Constrained Ending Output must end with a specified phrase; nothing follows.
Options Ending Question Output must end with a question (e.g., rhetorical or clarifying).
Formatting Placeholders Include at least N bracketed placeholders such as [address] or [date]

in the response.

Table 7: Reorganized list of 27 verifiable Instruction subclasses grouped into six constraint categories: language
specification, surface form, structure, content semantics, frequency control, and output format.
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eration into two phases: first, the model produces
a high-level structural plan based on the provided
constraints; second, it generates the final text con-
ditioned on this plan. The prompt shown in Ap-
pendix B corresponds to Step 1 only, where the
model is instructed to output a concise outline
that organizes the structural aspects of the target
text—such as paragraph count, bullet point usage,
or placement of quotations. Crucially, the model
is explicitly prohibited from generating any final
output text at this stage. This planning phase is
designed to encourage global structure awareness
before lexical realization.

Prompt for Stepwise Planning (Step 1 Only)

You are a helpful assistant tasked with generating a plan for produc-
ing a text that satisfies a large number of specific constraints.
Your task is to perform Step 1 only: Given the constraints below, gen-
erate a plan that describes how the final output should be structured
to satisfy all constraints. Do not generate the final text.
Focus on:

• How to organize the structure (e.g., paragraph count, bullet
points, quotation placement).

—
Instruction:
{instruction}
—
Write a concise outline that addresses the structural category. Do not
generate any final output text or other irrelevant text.
Step 1: Plan

C Case Study

This case study Figure 8 illustrates how ULTRA-
BENCH evaluates controllable generation under
dense and diverse constraints. The task setup spec-
ifies both soft attributes (topic, style, and tone)
and hard attributes (lexical quotas, structural and
formatting rules, character-level limits, NER re-
quirements, and banned tokens). The generated
response excerpt demonstrates partial success: it
satisfies many lexical and entity constraints, uses
the required stylistic framing, and integrates place-
holders. At the same time, it also exposes failures
such as structural mismatches and potential overuse
or underuse of certain characters. This example
highlights ULTRABENCH’s ability to reveal both
strengths and weaknesses of models in fine-grained
controllability.
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Case Study: Gluten-Free Travel in Italy

Task Setup. We instructed the model to generate a blog post about gluten-free travel experiences
in Italy, framed around genealogy research. The task required a casual tone while satisfying dense
constraints:

• Soft Attributes:

– Write a blog post about gluten-free travel experiences in Italy.
– Assume the text takes place during a vacation involving genealogy research in Italy.
– Use a casual and conversational writing style.
– Maintain an appreciative and lighthearted tone.

• Hard Attributes:

– Lexical constraints: Inclusion of 18 specific keywords (e.g., airplane, steward, senza,
flagged) with frequency requirements

– Structural/formatting constraints: Markdown title, square-bracket placeholders, use of
highlighted section, no bullet points

– Character-level constraints: e.g., ’g’ < 34 times, ’k’ ≥ 6 times, ’z’ ≥ 1 time, ’i’ < 69
times

– NER constraints: Must contain at least one PERSON and one GPE entity, and one
PRODUCT

– Negation constraints: Must not include 13 banned tokens (e.g., “current”, “pull”, “score”)

Generated Response (Excerpt). <<Gluten-Free Adventures: Eating Senza Glutine
While Chasing My Roots in Italy>> \n \n I always thought traveling with a senza
glutine (gluten-free) diet would be tough, especially on a vacation packed with
genealogy research in a small Italian town like Curinga. But with this post,
I would like to report that it has been very easy to eat gluten-free in Italy.
From the moment I stepped off my Alitalia flight, flagged suitcase in hand, I
felt welcome. Ehh... it was typical airplane food. Was the food good? Let’s
just say, the steward did his best, and I didn’t know about it until I heard
the steward speaking to a passenger behind me about the senza glutine option.
\n\n*highlighted section* \n The making of a truly enjoyable gluten-free travel
experience started with my first meal in [restaurant name], where the chef
(PERSON: Chef Marco) personally walked me through their senza glutine menu.
The food was molto tasty, and I felt like royalty! Even the local bakery at
[address] had a special flagged tray for glutine-free goodies. I was blown away
by how seriously they took cross-contamination, making me feel like eating in
Italy wasn’t a challenge, but a pleasure.\n\n Genealogy research in Curinga led
me to relatives I never knew existed, and every meal with them was a celebration
of food, family, and discovery. If you’re worried about traveling with dietary
restrictions, follow my blog for more tips, because Italy is an amazing option
for anyone senza glutine. There’s nothing like enjoying a big plate of pasta and
knowing it’s safe for you. Plus, I even found a gluten-free pizza at [pizzeria
name] that was out of this world! Whether you’re on a vacation or chasing your
roots, let your taste buds explore.

Figure 8: Case study showing successes and failures on a dense, multi-constraint ULTRABENCH task.
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