@inproceedings{chen-etal-2025-finhear,
title = "{F}in{HEAR}: Human Expertise and Adaptive Risk-Aware Temporal Reasoning for Financial Decision-Making",
author = "Chen, Jiaxiang and
Zou, Mingxi and
Wang, Zhuo and
Wang, Qifan and
Sun, Danny Dongning and
Chi, Zhang and
Xu, Zenglin",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.87/",
pages = "1648--1672",
ISBN = "979-8-89176-335-7",
abstract = "Financial decision-making presents unique challenges for language models, requiring them to handle temporally evolving, risk-sensitive, and event-driven contexts. While large language models (LLMs) demonstrate strong general reasoning abilities, they often overlook key behavioral patterns underlying human financial behavior{---}such as expert reliance under information asymmetry, loss-averse risk adjustment, and temporal adaptation. We propose FinHEAR, a multi-agent framework for Human Expertise and Adaptive Risk-aware reasoning. FinHEAR coordinates multiple LLM-based agents to capture historical trends, interpret current events, and incorporate expert knowledge within a unified, event-aware pipeline. Grounded in behavioral economics, FinHEAR features mechanisms for expert-guided retrieval to reduce information asymmetry, dynamic position sizing to reflect loss aversion, and feedback-driven refinement to enhance temporal consistency. Experiments on a curated real-world financial dataset show that FinHEAR consistently outperforms strong baselines in both trend forecasting and decision-making."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-finhear">
<titleInfo>
<title>FinHEAR: Human Expertise and Adaptive Risk-Aware Temporal Reasoning for Financial Decision-Making</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiaxiang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingxi</namePart>
<namePart type="family">Zou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhuo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qifan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danny</namePart>
<namePart type="given">Dongning</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhang</namePart>
<namePart type="family">Chi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zenglin</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Financial decision-making presents unique challenges for language models, requiring them to handle temporally evolving, risk-sensitive, and event-driven contexts. While large language models (LLMs) demonstrate strong general reasoning abilities, they often overlook key behavioral patterns underlying human financial behavior—such as expert reliance under information asymmetry, loss-averse risk adjustment, and temporal adaptation. We propose FinHEAR, a multi-agent framework for Human Expertise and Adaptive Risk-aware reasoning. FinHEAR coordinates multiple LLM-based agents to capture historical trends, interpret current events, and incorporate expert knowledge within a unified, event-aware pipeline. Grounded in behavioral economics, FinHEAR features mechanisms for expert-guided retrieval to reduce information asymmetry, dynamic position sizing to reflect loss aversion, and feedback-driven refinement to enhance temporal consistency. Experiments on a curated real-world financial dataset show that FinHEAR consistently outperforms strong baselines in both trend forecasting and decision-making.</abstract>
<identifier type="citekey">chen-etal-2025-finhear</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.87/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1648</start>
<end>1672</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FinHEAR: Human Expertise and Adaptive Risk-Aware Temporal Reasoning for Financial Decision-Making
%A Chen, Jiaxiang
%A Zou, Mingxi
%A Wang, Zhuo
%A Wang, Qifan
%A Sun, Danny Dongning
%A Chi, Zhang
%A Xu, Zenglin
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F chen-etal-2025-finhear
%X Financial decision-making presents unique challenges for language models, requiring them to handle temporally evolving, risk-sensitive, and event-driven contexts. While large language models (LLMs) demonstrate strong general reasoning abilities, they often overlook key behavioral patterns underlying human financial behavior—such as expert reliance under information asymmetry, loss-averse risk adjustment, and temporal adaptation. We propose FinHEAR, a multi-agent framework for Human Expertise and Adaptive Risk-aware reasoning. FinHEAR coordinates multiple LLM-based agents to capture historical trends, interpret current events, and incorporate expert knowledge within a unified, event-aware pipeline. Grounded in behavioral economics, FinHEAR features mechanisms for expert-guided retrieval to reduce information asymmetry, dynamic position sizing to reflect loss aversion, and feedback-driven refinement to enhance temporal consistency. Experiments on a curated real-world financial dataset show that FinHEAR consistently outperforms strong baselines in both trend forecasting and decision-making.
%U https://aclanthology.org/2025.findings-emnlp.87/
%P 1648-1672
Markdown (Informal)
[FinHEAR: Human Expertise and Adaptive Risk-Aware Temporal Reasoning for Financial Decision-Making](https://aclanthology.org/2025.findings-emnlp.87/) (Chen et al., Findings 2025)
ACL