EvolKYV: Evolutionary KV Cache Compression for LLM Inference

Bohan Yu'? and Yekun Chai**
1School of Advanced Interdisciplinary Sciences,
University of Chinese Academy of Sciences, Beijing, China
>The Key Laboratory of Cognition and Decision Intelligence for Complex Systems,
Institute of Automation, CAS, Beijing, China
SETH Zurich

yubohan23@mails.ucas.ac.cn

Abstract

Existing key-value (KV) cache compression
methods typically rely on heuristics, such as
uniform cache allocation across layers or static
eviction policies, however, they ignore the crit-
ical interplays among layer-specific feature pat-
terns and task performance, which can lead to
degraded generalization. In this paper, we pro-
pose EvolKYV, an adaptive framework for layer-
wise, task-driven KV cache compression that
jointly optimizes the memory efficiency and
task performance. By reformulating cache allo-
cation as a multi-objective optimization prob-
lem, EvolKYV leverages evolutionary search to
dynamically configure layer budgets while di-
rectly maximizing downstream performance.
Extensive experiments on 11 tasks demon-
strate that our approach outperforms all base-
line methods across a wide range of KV cache
budgets on long-context tasks and surpasses
heuristic baselines by up to 7 percentage points
on GSMS8K. Notably, EvolKV achieves supe-
rior performance over the full KV cache setting
on code completion while utilizing only 1.5%
of the original budget, suggesting the untapped
potential in learned compression strategies for
KV cache budget allocation.

1 Introduction

Key-value (KV) cache (Shi et al., 2024; Cai et al., 2024;
Xiao et al., 2024; Li et al., 2024) has become a corner-
stone of efficient inference in large language models
(LLMs) (OpenAl et al., 2024; Touvron et al., 2023;
Huang et al., 2024; Bai et al., 2023; Lozhkov et al.,
2024), allowing them to reuse previously computed
hidden states and thus reduce redundant computation.
However, the memory footprint of a KV cache scales
linearly with input sequence length, and the quadratic
complexity of self-attention makes long-range inference
prohibitively slow when the full cache is retained.

To address these challenges, existing KV cache com-
pression methods predominantly rely on rule-based
heuristics. Current approaches can be categorized into
three paradigms: (1) fixed-position retention across all

*Corresponding author.

yechai@ethz.ch

layers (Child et al., 2019; Beltagy et al., 2020; Xiao
et al., 2024), (2) uniform layer allocation with attention-
weighted eviction (Li et al., 2024; Ge et al., 2024; Zhang
et al., 2023; Liu et al., 2023b; Oren et al., 2024), and
(3) pyramidal strategies with predefined depth-wise at-
tenuation (Cai et al., 2024; Yang et al., 2024). While
effectively for memory reduction, these heuristics fail
to account for two critical aspects: (1) the varying func-
tional roles of transformer layers in information process-
ing (Wang and Tu, 2020; Zhang et al., 2024; Skean et al.,
2025), (2) the dynamic relationship between cache and
task performance. Relying solely on rule-based allo-
cation of KV cache budgets across layers can lead to
suboptimal retention of task-relevant information.

In response to these limitations, we employ evolu-
tionary algorithms (Holland, 1992; Storn and Price,
1997) to directly search for optimal KV cache alloca-
tion based on the task performance, inspired by (Chai
et al., 2022). We introduce EvolKYV, an evolutionary
framework that adaptively allocates KV cache budgets
across transformer layers, as shown in Figure 1. It for-
mulates per-layer KV cache budgets as optimization
variables, partitions them into groups, and employs an
evolutionary algorithm (Hansen et al., 2003) to itera-
tively search for group-wise configurations that directly
maximize downstream task fitness scores. By integrat-
ing task-driven optimization with layer-specific cache
pruning, EvolKV achieves fine-grained, performance-
aware allocation aligned with the varying contributions
of different layers.

In contrast to rigid heuristics, EvolKV provides a flex-
ible and effective mechanism for layer-wise KV cache
budget allocation guided by downstream task objectives.
First, it formulates layer/group-wise cache budget as
learnable parameters, in which we group layers into op-
timization units for efficient search. Then, we directly
maximize the performance of downstream tasks using
black-box evolutionary optimization methods. By do-
ing so, our approach enables task-aware, granular cache
allocation that automatically adapts to each group or
layer’s functional contribution. Specifically, it can ac-
commodate diverse evaluation criteria, such as accuracy
and F1 score, and discover non-uniform distributions
(i.e., patterns deviated from heuristic fixed-length or
pyramidal patterns) without predefined assumptions.

We conduct comprehensive experiments on Mistral-

1673

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 1673—-1689
November 4-9, 2025 ©2025 Association for Computational Linguistics

7B-Instruct and Llama-3-8B-Instruct, evaluating
EvolKYV across four distinct benchmarks (eleven tasks),
covering long-context retrieval, long-context reasoning,
and mathematical tasks. Our results demonstrate that
task-optimized KV cache allocation yields consistent
improvements: (1) On the Needle-in-a-Haystack
benchmark, EvolKV achieves up to a 13% improvement
over the best baseline. (2) In the RULER benchmark,
EvolKYV delivers up to a 3.6% gain over the strongest
baseline. (3) Across LongBench evaluations, it
consistently outperforms all baseline methods across a
wide range of target KV cache budgets (ranging from
128 to 2048), and remarkably exceeds the full model’s
performance while utilizing only 1.5% of its KV cache
budget. (4) For GSM8K, EvolKV achieves up to a
7 percentage points improvement in accuracy over
the strongest baseline under a 128 KV cache budget,
preserving up to 95.7% of the full-model performance,
while the strongest baseline retains only up to 84.5%
under a 512 KV cache budget.
In conclusion, our key contributions are as follows:

* We propose EvolKYV, the first framework to formu-
late layer-wise KV cache budget allocation as a
black-box optimization problem.

* EvolKV operates on frozen LLMs, supports ar-
bitrary evaluation metrics, without requiring fine-
tuning or architectural modifications.

* Empirical results show that task-aware KV cache
allocations consistently diverge from conventional
heuristics, favoring non-uniform distributions that
depart from fixed or pyramidal rules. EvolKV con-
sistently outperforms strong baselines across long-
context and reasoning tasks, even surpassing full-
model performance under extreme compression.

2 Related Work

KYV Cache Compression The substantial parameter
counts of LLMs present significant challenges for in-
ference. To overcome this difficulty, many efforts have
been made to improve the inference efficiency of LLMs,
such as the methods described in (Zhang et al., 2023;
Sheng et al., 2023; Liu et al., 2023b; Li et al., 2024; Oren
et al., 2024), which evict the KV caches with the lowest
accumulated attention weights. StreamingLLM (Xiao
et al., 2024) identifies the phenomenon of attention sink
by retaining only the initial and most recent KV caches,
thus maintaining a fixed positional alignment in the KV
cache. These methods maintain a uniform KV cache
budget across all layers, disregarding the actual demand
for KV cache in each individual layer. Meanwhile, pre-
vious studies such as (Cai et al., 2024; Yang et al., 2024)
have reported a progressive reduction in the number of
important KV cache across layers, forming a pyramid-
shaped distribution. However, existing methods often
set an attenuation coefficient to control the KV cache
budget in each layer, thus ignoring that the cache budget

actual needed in each layer do not necessarily exhibit a
monotonically decreasing pattern. Instead of rule-based
or heuristic methods, this study aims to compress the
KV cache through an evolutionary, layer-wise optimiza-
tion approach.

Evolutionary Algorithms These are stochastic opti-
mization algorithms inspired by the principles of natural
evolution (Holland, 1992; Vent, 1975; Alam et al., 2020).
It is widely used to address complex optimization and
search problems by iteratively evolving high-quality so-
lutions through the simulation of biological mechanisms
such as selection, crossover (recombination), and muta-
tion (Koza, 1992; Kennedy and Eberhart, 1995; Storn
and Price, 1997; Hansen et al., 2003). In this study, we
leverage evolutionary algorithms in conjunction with
downstream task performance to optimize the configu-
ration of layer-wise KV cache budgets.

3 Evolutionary KV Cache Compression

3.1 Motivation

We observe that the existing methods mainly present the
following categories in the KV cache budget allocation
of layers:

* Fixed Position: Each layer preserves KV caches
at the same position (Child et al., 2019; Beltagy
et al., 2020; Xiao et al., 2024).

* Identical Budget: Each layer retains the same bud-
get of KV caches, but their positions vary across
layers (Zhang et al., 2023; Liu et al., 2023b; Li
et al., 2024).

¢ Pyramidal Allocation: The KV cache budget al-
location follows a pyramidal pattern, decreasing
progressively across layers (Cai et al., 2024; Yang
et al., 2024).

Previous studies (Wang and Tu, 2020; Zhang et al.,
2024; Skean et al., 2025) have shown that different lay-
ers of LLMs vary in their importance and process infor-
mation at different levels of granularity. However, most
existing compression methods overlook such hetero-
geneity and instead adopt rule-based or heuristic strate-
gies for KV cache compression, which often results in
suboptimal inference performance. These observations
highlight the necessity of adapting the KV cache budget
individually for each layer.

3.2 EvolKV

To address the limitations of rule-based or heuristic al-
location strategies, as shown in Figure 1, we introduce
EvolKYV, a dynamic and task-driven evolutionary frame-
work that adaptively allocates the KV cache budget for
each layer by leveraging performance feedback from
downstream tasks. We present a comparison of bud-
get allocations between EvolKV and other methods in
Figure 2a.

1674

Rule Based

Full KV Cache StreamingLLM SnapKV & H20 PyramidKV
Layer L ()) [\\\\\ \k &\\\\
: [N \\ ;\Q N% Q [:] Reserved KV
[\\\\ \\\\ \\\ \\ D Window KV
[NN NN
. [\\& \\\\ Evicted KV
Layer 1 [\\\\ Q&\

X Xo X Xa oo Xm

Divide layers into
J groups

(femees

~/

\
-
]

‘Group J

Group j I

08 ||]
optimize A: r
Group 1 L() I’—'—ﬁ @
AL 4

D Optimal Group (\, Optimizing Group 7° Fitness Score

Frozen Group A Evolutionary Optimizer

optimize . T
A N N Group J
R) NN
1 L L[S
Group J » [\\ Group j
; BNNNN
N) R :
N rou
SNB| = |
AN Optimized Groups / \ /

EvolKV (Ours)

Figure 1: Illustration of the EvolKV framework. Compared to rule-based strategies (top row), EvolKV performs
bottom-up, group-wise KV cache budget optimization using evolutionary search, progressively refining each layer

group based on task-specific fitness feedback.

Optimization Objectives of Evolutionary Compres-
sion Evolutionary algorithms generate candidate solu-
tions and evaluate their fitness, iteratively refining the
search strategy based on fitness feedback to progres-
sively guide the population toward better solutions. In
this paper, EvolKV treats performance feedback from
downstream tasks as fitness and leverages evolutionary
algorithms to guide the per-layer KV cache compression.
Specifically, in a language model with L transformer
layers, we denote the KV cache budget of layer ¢ as
k; € N,Vi € {1,...,L}. Given a set of candidate
compression schemes S produced by an evolutionary
algorithm for a downstream task f(-), we aim to identify
the optimal scheme S* that maximizes task performance
while minimizing deviation from the target average KV
cache budget c:

5* = argmax f(S) (1 + A CACHESCORE(S, ¢))
Ses

L

1
» ki<c e))
i=1

where f(S) is the downstream-task performance ob-
tained with compression scheme S € S, and the hyper-
parameter A > 0 balances raw performance against
cache efficiency. Given the wide variety and differing
value ranges of downstream performance metrics (e.g.,
accuracy, F1, ROUGE), we adopt a cache-efficiency
term that is directly weighted against task performance
to ensure comparability. The cache-efficiency term
CACHESCORE(S, ¢) € [0, 1] assigns a lower value to
schemes whose average per-layer cache budget & =

s.t.

|

% ZL %) exceeds the target budget c, while apply-

i=1"
ing a smooth discount to those that stay within the target:

max(O,l—f“_C), ifk>c

c

CACHESCORE(S, ¢) = {1 _ (1 B E) - 2)

where v € (0, 1] is a smoothing factor. Thus, the objec-
tive favors compression schemes that (i) deliver strong
task performance and (ii) keep their average KV cache
budgets close to, or below, the desired budget.

Grouping of KV Cache Budgets To improve op-
timization efficiency, we introduce a group size pa-
rameter n, to partition the KV cache budgets K =
{k1,ko,...,kr} into J = [L/ng| groups, denoted
as G = {g1,92,...,9s}. Each group g; contains a
contiguous subset of cache budgets defined as g; =
{kG—1)mg+1 FG-1)m 420 -+ KminGm,, 0}, VI €
{1,2,...,J}. For simplicity, we assume that the total
number of layers L is divisible by the group size ng,
such that L = J - ng. Under this formulation, candidate
compression schemes S are applied at the group level
and denoted by S;. The optimal scheme selected for
each group, based on downstream task performance,
is denoted by Sj. This group-wise formulation signif-
icantly reduces the search space and facilitates more
stable optimization dynamics during the evolutionary
search process.

Iterations of Evolutionary Compression Our KV
cache budget optimization is conducted in a group-wise
manner, as shown in Algorithm 1, proceeding sequen-
tially from the bottom to the top layers. During the

1675

Algorithm 1 EvolKV — Evolutionary and Group-wise
KV Cache Budget Optimization

Require: Target average KV cache budget c; cache budget efficiency weight
A; smoothing factor ~y; group size ny; the number of model layers L;
max iterations M; CACHESCORE function; downstream task scorer f(-);
evolutionary optimizer A

Ensure: Globally optimal group KV cache budgets G*

: Initialize KV cache budgets K < (c, ..., c) € N

. Partition K into J = [L/ny] groups G = {g1,..., 97}

G* «+— G > initialize group KV cache budgets

! Fhest ¢ —00 > initialize global best fitness

: forj < 1to J do > optimize one group at a time

A.INITIALIZE(g;) > initialize parameters of A

for m <— 1to M do
Obtain candidate group compression schemes S, from A
Evaluate the fitness r of each Sy € Sg:

10: G = G* withg; := S,

11: r < f(G)(1 + ACACHESCORE(Sy, c))

12: > evaluate with g; of G™ replaced by S, others fixed

13: Update Fheg With 7, G* with G if 7 > Fiey

14: Update the evolutionary optimizer A using r and S

15: end for

16: end for

17: retarn G*

RN LEL -

optimization of each group, the KV cache budgets of
previously optimized groups are fixed to their respective
optimal schemes 5%, while the remaining groups retain
their initial values. If a candidate scheme S achieves a
higher fitness score r than the current best, the KV cache
budgets of the current group are updated accordingly.
This process is repeated iteratively until all groups have
been optimized.

KYV Cache Budget Completion To ensure fairness
in evaluation, we complete any KV cache budget opti-
mization result whose total size deviates from the target.
Specifically, we first compute the discrepancy between
the achieved total KV cache budget A = Zle ks
and the target total budget 7' = ¢ - L, denoted as
Acache = T — A. This discrepancy is then proportion-
ally redistributed across layers based on their original
share of A. The completed KV cache budgets B =
{bl, ba,. .. ,bL}, where b; = ’Vkil + % . Acache-l ;1 €
{1,2,...,L}.

4 Experiments

4.1 Experiment Settings

Models We employ two open-source models, Mistral-
7B-Instruct! (Jiang et al., 2023) with 32K context length
and Llama-3-8B-Instruct (Grattafiori et al., 2024) with
8K context length.

Datasets Our proposed EvolKV is evaluated on
four benchmarks: LongBench (Bai et al., 2024),
GSMBS8K (Cobbe et al., 2021), Needle-in-a-Haystack
(NIAH)?, and RULER (Hsieh et al., 2024). In RULER,
we evaluate EvolKV on eleven sub-datasets across
three major tasks: Retrieval (Single NIAH with three
sub-datasets, Multi-keys NIAH with three sub-datasets,

"https://huggingface.co/mistralai/
Mistral-7B-Instruct-v@.2

2https://github.com/gkamradt/LLMTest_
NeedleInAHaystack

Multi-queries NIAH, Multi-values NIAH), Aggregation
(CWE, FWE), and Multi-hop Tracing. For LongBench,
we select sixteen representative sub-datasets spanning
six major task categories: single-document QA (Narra-
tiveQA (Kodisky et al., 2017), Qasper (Dasigi et al.,
2021), MultiFieldQA-en), multi-document QA (Hot-
potQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al.,
2020), MuSiQue (Trivedi et al., 2022)), summarization
(GovReport (Huang et al., 2021), QMSum (Zhong et al.,
2021), MultiNews (Fabbri et al., 2019)), few-shot learn-
ing (TREC (Li and Roth, 2002), TriviaQA (Joshi et al.,
2017), SAMSum (Gliwa et al., 2019)), synthetic rea-
soning (PassageCount, PassageRetrieval-en), and code
completion (LCC (Guo et al., 2023), RepoBench-P (Liu
et al., 2023a)). For detailed introduction of datasets, see
Table 6 in Appendix A.

Baselines and Settings For a fair comparison with
the current strong baselines, we keep the KV cache
budget and all other hyperparameters identical in all
evaluations.

(1) StreamingLLM (Xiao et al., 2024). This method
retains the original KV cache together with those from
the most recent window and initial cache, preserving
the KV cache at fixed positions in every layer.

(2) SnapKV (Li et al., 2024). This method selects rel-
evant KV cache from the preceding sequence based on
the most recent query states (window query states), with
a uniform cache budget applied across all layers. We
employ SnapKV as the base method and apply the KV
cache budgets optimized by EvolKV for downstream
task inference and baseline comparison. Notably, when
the optimized budgets are uniform across all layers, the
resulting configuration reduces to standard SnapKV.

(3) PyramidKV (Cai et al., 2024). A rule-based and
pyramid-shaped strategy that progressively reduces the
KV cache budget from the lower to higher layers.

Experimental Setup We apply Covariance Matrix
Adaptation Evolution Strategy (CMA-ES (Hansen et al.,
2003)) as our evolutionary optimizer. We set the window
size to 32, kernel size to 7 and apply max pooling. For
EvolKYV, we fix the hyperparameters to A = 0.3, v =
0.2, learning rate of CMA-ES o = 0.3 and group size
ng = 8. The population size of CMA-ES is calculated
according to the following empirical formula: 4 + |3 -
In(ng)] (Belkhir et al., 2015).

4.2 Results
4.2.1 Experiments on LongBench

Settings We evaluate EvolKV on LongBench, a com-
prehensive benchmark consisting of six major task cat-
egories designed to assess a model’s capacity for long-
context understanding and reasoning. We first employ
Mistral-7B-Instruct as the backbone model and use F1
score as the optimization objective. KV cache budgets
are optimized using only 30 randomly sampled instances
from NarrativeQA, under a target average cache budget
of ¢ = 128. The resulting allocation, illustrated in Fig-

1676

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Method Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg.
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRE Lec RB-P
Full 26.95 32.99 49.78 44.23 27.51 18.49 33.09 24.51 27.12 71.00 86.23 43.09 291 86.31 57.27 5388 42.84
KV Size = 128
SnapKV 21.89 2128 4276 37.76 21.71 14.71 19.32 21.71 21.28 49.00 83.62 39.99 266 68.05 51.78 4836 35.37
PyramidKV 2040 21.39 4395 38.96 23.80 15.46 19.69 22.36 21.23 51.00 84.77 40.07 256 7220 5236 47.62 36.11
StreamingLLM ~ 17.28 1321 27.11 30.82 21.94 11.87 15.48 19.37 17.98 44.00 80.22 37.32 375 2377 5143 4550 28.82
EvolKV 22.76 2259 44.02 39.47 24.16 15.64 19.90 2193 21.20 52.00 86.83 39.83 235 7481 51.64 47.05 36.64
KV Size = 256
SnapKV 2281 24.18 47.95 3839 2322 1531 2191 23.13 2330 6150 85.90 4137 301 8481 5523 51.16 38.95
PyramidKV 2168 2490 47.59 39.13 23.03 16.74 21.62 23.01 22.83 6250 84.65 4071 313 82.65 5429 50.68 38.70
StreamingLLM 19.43 15.31 27.97 31.57 21.78 11.30 18.04 19.18 19.94 51.00 80.75 39.60 3.65 16.90 5396 47.28 29.85
EvolKV 22.87 2450 48.28 40.26 25.74 17.39 22.33 22.39 23.61 65.50 84.57 40.66 2.85 7935 5410 5120 39.10
KV Size = 512
SnapKV 2468 27.97 48.80 40.32 24.89 16.99 2373 23.57 24.63 67.00 86.12 41.43 247 8806 5637 52.80 40.61
PyramidKV 24.39 27.49 48.78 40.92 24.58 16.16 23.44 2348 24.05 67.00 85.87 41.42 2.86 86.23 5562 51.88 40.26
StreamingLLM 21.39 16.36 30.75 30.89 22.20 10.95 21.53 20.02 23.10 61.50 81.86 41.72 3.14 18.57 55.16 48.65 31.74
EvolKV 24.89 29.00 4978 41.57 26.27 18.34 24.41 23.18 25.00 68.00 87.07 41.64 287 89.74 56.58 52.85 4132
KV Size = 1024
SnapKV 2546 29.15 49.03 41.58 25.30 18.96 26.19 23.99 25.99 69.50 86.63 43.01 284 8921 5741 5325 4172
PyramidKV 25.45 2997 4872 41.02 25.85 18.53 25.27 23.66 25.52 69.00 86.31 42.20 266 86.67 5639 5338 4129
StreamingLLM 22.74 18.51 31.03 33.03 22.57 11.85 24.09 20.75 25.54 64.00 84.71 41.26 3.49 2240 5589 5099 3330
EvolKV 2563 3030 4896 42.84 25.78 1821 26.99 23.79 25.95 7000 86.09 4174 306 89.82 5701 5326 41.84
KV Size = 2048
SnapKV 2629 32.65 49.09 41.70 2739 18.49 2877 2442 2655 70.00 86.27 247 279 87.56 5742 5341 42.20
PyramidKV 25.61 3133 48.89 41.90 26.64 17.65 28.09 23.86 26.52 71.50 86.30 4227 252 8685 5741 53.66 41.94
StreamingLLM ~ 22.28 23.08 3522 33.66 22.90 13.47 26.85 20.95 26.45 66.00 85.68 41.95 240 2575 5713 5217 3475
EvolKV 26.13 3231 4918 42.69 27.63 18.64 29.11 24.10 26.72 71.00 86.25 42.07 285 8781 57.12 53.63 42.33

Table 1: Comparison of KV cache compression methods on Mistral-7B-Instruct across LongBench tasks. EvolKV
outperforms all baseline methods on average across KV cache budgets ranging from 128 to 2048, and even surpasses

the full model on certain tasks such as TriviaQA.

ure 3a, is then extrapolated to target cache budgets of
256, 512, 1024, and 2048 using the method described
in Section 3.2, without further optimization. Following
the same protocol, we conduct experiments on Llama-
3-8B-Instruct, selecting six representative sub-datasets
from LongBench—NarrativeQA, HotpotQA, QMSum,
TREC, PassageRetrieval-en, and LCC—each with five
randomly sampled instances. We perform EvolKV op-
timization with ¢ = 128, and report the corresponding
downstream task metrics applied in optimization in Ta-
ble 6 (Appendix A). The optimized KV cache budgets
are subsequently extended to target average values of
256, 512, and 1024. For ¢ = 2048, we conduct a sepa-
rate optimization to obtain the dedicated cache budget
allocation.

Results Table 1 reports the evaluation results on 16
LongBench sub-datasets using Mistral-7B-Instruct, with
all training samples removed. Across all evaluated KV
cache budgets, EvolKV consistently achieves the high-
est average performance, outperforming all rule-based
baselines. Furthermore, on several sub-datasets, includ-
ing MultiFieldQA-en, 2WikiMultihopQA, MuSiQue,
TriviaQA, and PassageRetrieval-en, EvolKV not only
remains competitive with the uncompressed full model
but even surpasses it at certain KV cache budgets. Ta-
ble 2 presents analogous results on Llama-3-8B-Instruct,
again with training samples excluded. EvolKV demon-
strates superior performance across all KV cache bud-
gets. Remarkably, at a cache budget of 128, EvolKV
outperforms the strongest baseline by 7.69 percentage
points on the TREC subset, highlighting its strong adapt-
ability to diverse downstream tasks.

Analysis We conduct a detailed analysis of EvolKV’s
performance across the six major task categories in the
LongBench, with the results presented in Figure 5 and 6
(Appendix B.1). EvolKV already surpasses all base-
lines under low-budget settings (e.g., ¢ = 128 and 256)

across multiple tasks: on Mistral-7B-Instruct it outper-
forms every baseline in single- and multi-document QA,
and few-shot learning, while on Llama-3-8B-Instruct it
achieves the top scores in few-shot learning and code
completion. When the budget is relaxed to the range
from 512 to 2048, EvolKV’s advantage becomes even
more pronounced: on Mistral it exceeds the best base-
line by up to 1.5 points in multi-document QA and
surpasses the full model by 1.8 points in the synthetic
task at ¢ = 1024, whereas on Llama it surpasses all
baselines in few-shot learning, synthetic, and code tasks,
achieving 1-3 point gains over the full model in code
task. Notably, this advantage persists even under ex-
treme compression, as EvolKV still outperforms the full
model at ¢ = 128 (1.5% of the context length), where
all other baselines fall short.

These results collectively demonstrate EvolKV’s
strong and stable performance across both constrained
and relaxed budget conditions, particularly in long-
context scenarios. In contrast, PyramidKV’s pyramid-
style allocation incurs significant losses on the code
task, and StreamingL.LM trails behind on nearly all
tasks, reinforcing the limitation of static, rule-based
allocation schemes. Notably, The KV cache budgets
optimized by EvolKV at ¢ = 128 generalize smoothly
to larger average cache budgets ranging from 256 to
2048, suggesting that the method captures stable, task-
aligned importance patterns rather than overfitting to a
specific allocation regime. Even when the 30 optimiza-
tion instances are excluded from evaluation, EvolKV
continues to outperform all baselines, suggesting that its
performance improvements stem from more effective
KV cache budget allocation rather than memorization of
training examples. These findings collectively highlight
the superiority of EvolKV’s adaptive and task-aware
strategy over traditional heuristic approaches in real-
world inference scenarios.

1677

Method Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Ave.
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRE Lec RB-P
Full 25.51 31.49 39.80 43.62 35.96 21.39 28.74 23.19 26.79 73.85 90.50 42.89 4.18 68.21 58.89 53.59 41.79
KV Size = 128
SnapKV 21.96 13.51 3085 35.68 29.14 19.21 19.37 21.63 20.14 46.15 88.32 38.28 430 6821 5733 54.85 3556
PyramidKV 22.25 1320 31.54 39.01 27.57 20.18 19.19 21.91 20.71 50.26 87.34 38.53 455 6821 5755 5425 36.02
StreamingLLM 1891 7.79 20.90 33.79 24.85 14.94 16.37 20.41 18.49 46.15 74.40 35.78 475 67.18 5559 5232 32.04
EvolKV 21.18 13.12 33.64 40.70 3242 19.81 17.29 21.26 19.03 57.95 89.30 37.38 5.00 6786 5741 5511 36.78
KV Size = 256
SnapKV 2449 1837 3336 42.95 34.05 20.36 20.62 22.03 2251 5949 89.61 39.22 500 6821 5935 5627 3849
PyramidKV 2414 1575 3415 40.36 29.78 21.22 20.11 21.95 2230 64.62 90.03 39.16 508 6821 5921 5379 38.12
StreamingLLM 8.88 10.80 20.34 34.21 25.62 15.54 19.29 20.30 20.75 53.33 78.75 39.20 483 6636 5829 5450 33.81
EvolKV 22.68 1748 34.09 42.40 3292 19.91 19.34 21.99 21.62 67.18 90.27 39.08 5.06 68.21 59.71 56.70 38.67
KV Size = 512
SnapKV 2526 2245 3684 1284 3613 2053 2238 2244 24.11 6974 90.39 40.40 498 6821 60.20 5558 40.16
PyramidKV 24.97 21.58 36.45 43.36 32.97 19.55 2224 22.64 23.75 68.72 90.31 40.30 5.00 67.95 5872 54.61 39.57
StreamingLLM 21.20 11.02 21.82 3597 26.61 15.23 20.90 20.66 23.66 62.56 84.04 40.27 4.75 66.66 59.74 55.14 35.64
EvolKV 2526 2291 3717 4226 35.99 20.55 21.72 2245 2332 7128 9036 39.45 526 6821 6004 5812 4027
KV Size = 1024
SnapKV 2516 2592 3839 43.48 34.98 20.25 24.05 22.09 25.21 72.82 9043 40.96 508 6821 59.79 56.50 40.83
PyramidKV 24.90 24.82 3875 43.33 34.86 20.16 24.03 22.86 25.36 72.82 90.34 40.69 512 6821 59.05 5387 40.57
StreamingLLM 21.43 15.37 26.18 36.26 28.41 15.56 23.26 21.24 25.46 66.67 86.01 40.59 3.96 68.03 60.11 56.11 37.17
EvolKV 2491 27.31 3741 43.62 36.03 20.09 23.44 23.09 24.70 74.36 90.51 40.55 5.28 68.21 59.90 57.43 41.05
KV Size = 2048
SnapKV 2591 2945 3898 43.64 35.55 21.52 25.83 23.12 26.25 7385 90.56 41.82 499 6821 5955 55.03 4152
PyramidKV 2562 2921 3743 43.55 36.77 2148 2575 22.85 2632 73.85 90.34 41.85 445 6821 5947 5415 4133
StreamingLLM 23.54 2326 30.13 39.28 32.61 17.15 25.05 21.59 26.26 70.77 89.78 41.50 462 6769 60.01 57.17 39.40
EvolKV 25.52 2944 39.60 44.19 36.58 20.91 2578 23.34 26.40 73.85 90.48 41.50 491 6821 5945 5483 41.56

Table 2: Comparison of KV cache compression methods on Llama-3-8B-Instruct across LongBench tasks. EvolKV
outperforms all baselines on average across KV cache budgets from 128 to 2048, and even surpasses the full model

on tasks like RepoBench-P under the 128 budget.

4.2.2 Experiments on GSMSK

Settings We quantify the logical reasoning ability of
EvolKYV under different KV cache budgets on GSM8K.
To eliminate prompt-format bias, all models receive
identical few-shot chain-of-thought examples. For de-
tailed prompt formatting and evaluation setup, we refer
readers to the Qwen implementation®. For EvolKV
optimization, we randomly sample 30 instances from
the GSMS8K training set and perform KV cache budget
optimization at ¢ = 128, using accuracy as the objec-
tive metric. The resulting allocation is subsequently
up-scaled to ¢ = 256 and ¢ = 512, without conducting
additional searches. For Mistral-7B-Instruct, a separate
optimization is performed under the setting ¢ = 256.

Results Figure 3b presents the KV cache budget allo-
cations optimized by EvolKV for Llama-3-8B-Instruct,
and Table 3 reports the corresponding test set accuracies
for both Llama-3-8B-Instruct and Mistral-7B-Instruct.
Across all configurations, EvolKV consistently outper-
forms baseline methods on both models. Specifically,
on Llama-3-8B-Instruct, it achieves substantial improve-
ments over the strongest competitor, with accuracy gains
of at least 7.28, 2.05, and 7.58 at KV cache budgets
of 128, 256, and 512, respectively. Notably, EvolKV
achieves 95.7% of the full-model performance using a
reduced cache budget (¢ = 512), significantly outper-
forming all baselines, whose best result reaches only
84.5%.

Analysis KV cache budgets optimized only at ¢ =
128 transfer effectively to larger budgets, indicating that
the evolutionary search captures stable layer-importance
signals rather than overfitting to a single setting. No-
tably, StreamingLLM performs poorly on this task, sug-

3https ://github.com/QwenLM/Qwen/blob/main/
eval/evaluate_chat_gsm8k.py

Llama-3-8B-Instruct Mistral-7B-Instruct
Method

Accuracy Accuracy
Full 67.85 50.80
KV Size = 128
SnapKV 23.58 40.26
PyramidKV 40.71 41.32
StreamingLLM 3.64 2.58
EvolKV 47.99 41.47
KV Size = 256
SnapKV 44.50 44.05
PyramidKV 49.05 43.59
StreamingLLM 341 3.03
EvolKV 51.10 44.81
KV Size =512
SnapKV 56.94 46.02
PyramidKV 57.32 46.02
StreamingLLM 4.02 3.87
EvolKV 64.90 46.70

Table 3: GSMSK results of Llama-3-8B-Instruct and
Mistral-7B-Instruct under different KV cache budgets.

gesting that fixed-position KV cache strategies are sub-
optimal for reasoning-oriented tasks. These results vali-
date our central claim and extend our findings in Long-
Bench: evolutionary, task-aware and layer-wise KV
cache allocation unveils latent layer-specific cache re-
quirements that fixed heuristics miss, yielding superior
reasoning accuracy while retaining substantial memory
savings.

4.2.3 Experiments on NIAH and RULER

We evaluate the long-context retrieval capability of
EvolKV alongside all baselines on NIAH. For opti-
mization, EvolKV applies no more than 35 instances
whose average scores on both Llama-3-8B-Instruct and
Mistral-7B-Instruct are below 60, while the target KV

1678

https://github.com/QwenLM/Qwen/blob/main/eval/evaluate_chat_gsm8k.py
https://github.com/QwenLM/Qwen/blob/main/eval/evaluate_chat_gsm8k.py

Retrieval

Aggregation Multi-hop Tracing Ave

Method
S-NIAH-1 S-NIAH-2 S-NIAH-3 MK-NIAH-1 MK-NIAH-2 MK-NIAH-3 MQ-NIAH MV-NIAH CWE FWE VT
Mistral-7B-Instruct
Full 97.00 51.40 59.00 65.80 80.60 1.20 60.15 75.55 33.34 81.27 23.44 57.16
KV Size = 128
SnapKV 29.40 8.20 0.20 6.00 3.80 0.00 0.05 2.90 4.04 30.53 7.16 8.39
PyramidKV 33.40 9.60 0.00 7.40 4.20 0.00 0.10 3.65 448 32.00 8.08 9.36
StreamingLLM 0.20 0.80 3.00 2.20 0.60 0.00 1.50 1.65 0.18 53.07 0.16 5.76
EvolKV 46.60 6.20 0.00 6.00 8.60 0.00 0.00 1.45 336 31.80 9.80 10.35
KV Size = 1024
SnapKV 94.80 45.20 2.80 33.40 28.80 0.00 9.05 9.20 21.54 58.60 23.44 29.71
PyramidKV 95.60 44.60 2.20 30.60 29.60 0.00 10.15 9.80 13.94 54.13 23.60 28.57
StreamingLLM 220 1.80 5.60 4.00 2.80 0.00 2.40 2.45 0.16 9153 2.80 10.52
EvolKV 94.60 47.00 3.00 40.20 24.80 0.00 10.05 9.50 22.02 5833 23.04 30.23
Llama-3-8B-Instruct
Full 99.40 98.00 97.40 95.20 87.00 95.00 98.95 96.15 97.94 85.20 40.08 90.03
KV Size = 128
SnapKV 75.80 72.40 1.40 29.80 0.40 0.00 20.65 10.55 336 48.00 10.24 24.78
PyramidKV 81.20 69.60 1.40 35.20 0.60 0.00 23.15 10.75 250 46.93 9.48 2553
StreamingLLM 1.60 1.40 2.20 1.80 1.00 0.40 2.30 2.85 172 92.07 2.68 10.00
EvolKV 90.00 79.20 1.80 33.40 0.60 0.00 26.90 10.35 1.88 44.40 8.52 27.00
KV Size = 1024
SnapKV 100.00 93.00 2.20 82.20 27.20 6.00 96.50 58.50 56.70 77.87 51.88 59.28
PyramidKV 100.00 97.40 2.20 82.60 18.20 3.40 96.30 52.90 44.80 73.27 49.84 56.45
StreamingLLM 13.20 12.80 11.80 15.00 11.20 11.00 14.20 13.15 22.04 90.93 17.68 21.18
EvolKV 100.00 95.40 2.80 86.00 34.60 18.40 97.70 75.50 53.94 7747 49.92 62.88

Table 4: Comparison of KV cache compression methods on Mistral-7B-Instruct (top) and Llama-3-8B-Instruct
(bottom) across RULER tasks. EvolKV consistently outperforms all baseline methods across KV cache budgets of
128 and 1024, achieving the highest average performance in both settings.

400 =
—e— StreamingLLM & SnapKV & H20

e PyramidkV
o EvolKV.

§| W
DR -

@
S
S

N
=1
S

Layer KV Cache Budget

1=}
S
—_—

Performance

N

(4]
anon0n
[
B o N e
oBON
NN O 0
b

Target Average KV Cache Budget ¢

1.0

1284 I
256 1 I
5124 I
1024 I

o o o
i > ®

KV Cache Budget Ratio

o
o

|

0 4 8 12 16 20 24 28 32 0 5 10 15 20 25 30 35 40 45 1 4 7 10 13 16 19 22 25 28 31

Layers

(a) Comparison of EvolKV’s layer-
wise KV cache budgets with existing
KV cache compression methods.

Iteration

(b) EvolKYV optimizes layer-wise KV
caches with target averages c
{128,256, 512,1024}.

Layers

(¢) KV cache budget heatmap (com-
€ pared to the maximum of layer KV
cache budget).

Figure 2: KV cache budget allocation of EvolKV—comparison, optimization trajectory, and allocation heatmap.

cache budget c is 128 and the optimization objective is
the recall score. During the evaluation, the KV cache
budget is fixed at 128. Figure 7 (Appendix B.2) presents
the results: compared to the baselines, EvolKV achieves
an improvement of over 4 percentage points on Llama-
3-8B-Instruct and a substantial gain of more than 13
percentage points on Mistral-7B-Instruct. These results
demonstrate that EvolKV effectively explores and lever-
ages the latent layer-wise KV cache allocation of the
model in long-context retrieval.

We further evaluate the KV cache allocations op-
timized in NIAH on the RULER benchmark, using
Mistral-7B-Instruct and Llama-3-8B-Instruct with input
context lengths set to 32K and 8K, respectively. No-
tably, the 1024 KV budget is extrapolated based on
results from 128. As shown in Table 4, EvolKV con-
sistently outperforms all baselines in average scores,
with improvements of up to 0.99 points on Mistral-7B-
Instruct and 3.6 points on Llama-3-8B-Instruct. These
results further demonstrate the strong generalization,

long-context retrieval and reasoning abilities of EvolKYV,
as the optimized KV budget can be effectively trans-
ferred to other benchmark evaluations, suggesting that
EvolKYV reveals the latent layer-wise allocation strategy.

4.3 Analysis

Downstream Task Performance during Optimization
We randomly sample 30 instances from NarrativeQA as
optimization data and conduct KV cache budget opti-
mization experiments on Mistral-7B-Instruct, under tar-
get average cache budgets ¢ = 128, 256, 512, and 1024.
EvolKV can effectively optimize per-layer KV cache
budget for downstream tasks during optimization. The
results (depicted in Figure 2b) show a steady increase in
model performance on the train data as the number of it-
erations grows. This suggests that the original, uniform
per-layer KV cache budget allocation leaves substantial
room for improvement on downstream tasks and that
simple rule-based heuristics are insufficient to identify
an optimal KV cache budget distribution.

1679

60001
5000 |
3
@ 4000
(0]
5 30001
©
O 2000
<

1000

0 4 8 12 16 20 24 28 32

Layers
— c=512
— ¢ =1024

c=128
c=256

—— c=2048

(a) Mistral-7B-Instruct’s layer KV cache budgets opti-
mized in 30 instances of NarrativeQA dataset.

17501

a a A
o N O
o u o
o O o

7501

KV Cache Budget

500 1
2501

0 4 8 12 16 20 24 28 32
Layers
c=256

c=128 — c=512‘

(b) Llama-3-8B-Instruct’s layer KV cache budgets opti-
mized in 30 instances of GSM8K trainset data.

Figure 3: Visualization of Mistral-7B-Instruct’s layer
KV cache budgets in LongBench and Llama-3-8B-
Instruct’ budgets in GSM8K.

Discussion on Optimized Budget Allocation We op-
timize EvolKV on Mistral-7B-Instruct with randomly
selected 30 NarrativeQA instances at ¢ = 128, 256, 512
and 1024. Our experiments reveal that EvolKV discov-
ers totally distinct KV cache allocation patterns com-
pared to heuristic approaches, as shown in Figure 2a.
We observe consistent budget peaks at middle-model
layers, suggesting these layers serve as computation
bottlenecks for contextual inference. This non-intuitive
pattern persists across tasks and budgets, showing that
fixed heuristics inherently fail to capture transformer’s
dynamic layer utilization patterns. The allocation ex-
hibits substantial variation across layers, depending on
the target average cache budget c, as shown in Figure 2c.
Under low-budget conditions (e.g., ¢ = 128), the opti-
mization tends to concentrate cache budget resources
on a small subset of layers. In contrast, higher budgets
result in a more distributed allocation across the model.
These patterns reveal that simple rule-based heuristics
fail to capture the model’s latent cache-size preferences.
Notably, as shown in Figure 2a, task-optimized KV
cache allocations consistently diverge from rule-based
heuristics, favoring non-uniform distributions that de-
viate from fixed or pyramidal rules. The cache-size
requirements do not follow a pyramidal or monotoni-

cally decreasing pattern: several lower layers receive
minimal allocation, while some higher layers are as-
signed significantly larger budgets, underscoring their
greater relevance to downstream performance.

Effect of Group Size To construct the optimization
dataset, we randomly sample five instances from each of
the six LongBench subsets—NarrativeQA, HotpotQA,
QMSum, TREC, PassageRetrieval-en, and LCC—for
Llama-3-8B-Instruct. For Mistral-7B-Instruct, we sam-
ple 30 instances exclusively from NarrativeQA. We sub-
sequently apply EvolKV to optimize the KV cache bud-
gets for both models under a target average budget of
¢ = 128. During optimization, the group size ny,—i.e.,
the number of layers optimized concurrently—is set to 2,
4, 8, 16, and 32. The corresponding population sizes are
determined using the empirical formula 4+ |3 -In(n,) |,
yielding values of 6, 8, 10, 12, and 14, respectively. As
shown in Figure 4a and detailed results in Table 7 (Ap-
pendix C.1), downstream task performance generally
improves as the group size increases, peaking at n, = 8.
Beyond this point, performance degrades notably. The
inferior results with smaller group sizes likely stem
from overfitting the layer-wise KV cache budget to lim-
ited optimization training data, while excessively large
groups hinder effective budget allocation across layers.
Accordingly, we select n, = 8 as the optimal trade-off
between performance and optimization efficiency.

Robustness Analysis of EvolKV Using Llama-3-
8B-Instruct and a randomly sampled set of 30 Narra-
tiveQA instances, we evaluate the stability of EvolKV
at ¢ = 128. As detailed results reported in Table 8
(Appendix C.2), after three optimization rounds, the
grand average reaches 35.88. The deviation of each
individual average from this overall average is within
0.1 and the standard deviation is 0.078, indicating that
EvolKYV exhibits consistent and stable behavior in all
trials. Additionally, We explore the impact of the selec-
tion of evolution training data on Mistral-7B-Instruct.
Specifically, we randomly sample 30 instances drawn
from six subsets (five items each) across the single-
and multi-document QA categories. In parallel, we se-
lect another 30 instances, again five per subset, from
six subsets (NarrativeQA, HotpotQA, QMSum, TREC,
PassageRetrieval-en, and LCC). The experimental re-
sults are summarized in Table 9 (Appendix C.3), where
only the results obtained after removing the correspond-
ing training data are reported. For the single- and multi-
document QA group, we evaluate configurations with
c = 512 and 1024. While the overall performance is
slightly lower than the main results, the ¢ = 512 set-
ting still outperforms the baselines, and the ¢ = 1024
setting shows only a marginal drop. For the six-subsets
group, we similarly examine ¢ = 1024 and 2048, both
of which yield average scores that exceed the baselines.
These results highlight the robustness of EvolKV and
its strong adaptability across downstream tasks.

1680

@
Py
)

—e— Llama3-8B-Instruct
Mistral-7B-Instruct

Expansion
== Optimization
P ol

w @ @
o g el
o o o

LongBench Avg Score

w
o
o

2 4 8 16 32 : 256 512 1024
Group Size Target Average KV Cache Budget ¢

(a) Comparison results of dif- (b) Comparison of expansion
ferent group sizes. and optimization KV cache.

Figure 4: Effects of layer grouping and KV cache ex-
pansion vs. KV cache optimization on LongBench.

Generalization Analysis of EvolKV We optimize the
layer-wise KV cache budgets of Mistral-7B-Instruct on
a 30-sample subset of NarrativeQA with target aver-
age KV cache budget ¢ = 256,512, and 1024. The re-
sults are shown in Figure 4b and the detailed results are
shown in Table 10 in Appendix C.4. As c increases, di-
rect cache expansion even outperforms direct optimiza-
tion when ¢ = 1024 and 2048. This finding suggests
that when optimizing under strict budget constraints,
EvolKYV is able to effectively reveal the actual budget
required for each layer and is able to try to generalize to
higher target average budgets. Furthermore, we evalu-
ate the KV cache budgets optimized at ¢ = 128 on the
NIAH dataset by applying them to LongBench using
Llama-3-8B-Instruct. The configuration for ¢ = 256 is
derived from the ¢ = 128 allocation using the method
described in Section 3.2. As shown in Table 11 (Ap-
pendix C.5), EvolKYV consistently outperforms baselines
under both KV cache budget settings, indicating its abil-
ity to transfer cache budget allocations across datasets
and demonstrating the ability of generalization.

Experiments on Models from Different Series
We conduct KV cache budget optimization on the
Qwen (Bai et al., 2023) series models at ¢ = 128 using
30 randomly sampled NarrativeQA instances. As shown
in Table 5, with all training data excluded, EvolKV out-
performs all other compression methods in terms of
average score across both single- and multi-document
QA tasks, demonstrating its consistent advantage across
different model series. Notably, PyramidKV performs
significantly worse than EvolKYV, suggesting pyrami-
dal budget allocation is suboptimal and highlighting
EvolKV’s superior adaptability to downstream tasks.

5 Conclusion

We introduce EvolKYV, a task-driven framework that
leverages evolution algorithm to optimize layer-wise KV
cache budgets in LLMs. Unlike rule-based or heuristic
methods, EvolKV directly maximizes downstream per-
formance (e.g., accuracy, F1) without modifying model
parameters and requires only a handful of labeled ex-
amples. Extensive experiments demonstrate that evo-
lutionary, task-aware cache budget allocation uncovers
latent layer-importance patterns overlooked by existing

Single-Document QA Multi-Document QA
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique
Qwen2.5-1.5B-Instruct

Method Avg.

Full 10.89 32.86 47.66 42.66 36.45 20.57 31.85
SnapKV 9.13 1838 3791 37.04 31.52 14.87 2481
PyramidKV 9.23 1740 3585 36.11 31.54 1246 23.77
StreamingLLM 6.99 17.23 2397 28.35 29.82 8.20 19.09
EvolKV 9.34 1849 37.80 37.62 32.98 1425 25.08
Qwen2.5-3B-Instruct
Full 11.33 37.30 49.26 46.68 37.64 21.00 33.87
SnapKV 10.41 2358 3749 39.85 3272 14.65 2645
PyramidKV 8.36 21.01 33.52 32.66 30.19 11.24 22.83
StreamingLLM 8.11 19.98 23.52 32.60 28.95 1026 20.57
EvolKV 9.68 2493 3870 39.58 3343 1377 26.68

Table 5: Comparison of KV cache compression meth-
ods on Qwen models across LongBench single- and
multi-document tasks. EvolKV outperforms all base-
lines on average KV cache budget ¢ = 128.

methods, and delivers state-of-the-art performance un-
der stringent cache constraints and scaling gracefully
to larger target cache budgets. Thus, EvolKV provides
a practical, plug-and-play solution for efficient infer-
ence in downstream tasks. In the future, it would be
valuable to investigate the robustness of KV cache com-
pression under different tokenization schemes, as well
as tokenization-free approaches (Rust et al., 2022; Chai
et al., 2024a,b; Cao et al., 2023).

Limitations

While EvolKV demonstrates strong performance on var-
ious downstream tasks, there is still room to explore
budget allocation at the attention-head level. Future
work will focus on combining downstream task perfor-
mance with attention-head budgets.

References

Tanweer Alam, Shamimul Qamar, Amit Dixit, and Mo-
hamed Benaida. 2020. Genetic algorithm: Reviews,
implementations, and applications.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.
Qwen technical report.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. Longbench: A bilingual, multi-
task benchmark for long context understanding.

Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc
Schoenauer. 2015. Parameter setting for multicore
cma-es withZlarge populations. In Revised Selected

1681

http://arxiv.org/abs/2007.12673
http://arxiv.org/abs/2007.12673
http://arxiv.org/abs/2309.16609
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
https://doi.org/10.1007/978-3-319-31471-6_9
https://doi.org/10.1007/978-3-319-31471-6_9

Papers of the 12th International Conference on Artifi-
cial Evolution - Volume 9554, page 109-122, Berlin,
Heidelberg. Springer-Verlag.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, and Wen Xiao. 2024. Pyramidkv:
Dynamic kv cache compression based on pyramidal
information funneling.

Qi Cao, Takeshi Kojima, Yutaka Matsuo, and Yusuke
Iwasawa. 2023. Unnatural error correction: GPT-
4 can almost perfectly handle unnatural scrambled
text. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing,
pages 8898-8913, Singapore. Association for Com-
putational Linguistics.

Yekun Chai, Yewei Fang, Qiwei Peng, and Xuhong Li.
2024a. Tokenization falling short: On subword ro-
bustness in large language models. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 1582-1599, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

Yekun Chai, Qingyi Liu, Jingwu Xiao, Shuohuan Wang,
Yu Sun, and Hua Wu. 2024b. Autoregressive pre-
training on pixels and texts. In Proceedings of the
2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3106-3125, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Yekun Chai, Shuohuan Wang, Yu Sun, Hao Tian, Hua
Wu, and Haifeng Wang. 2022. Clip-tuning: Towards
derivative-free prompt learning with a mixture of re-
wards. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2022, pages 108-117,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A dataset of
information-seeking questions and answers anchored
in research papers.

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and
Dragomir Radev. 2019. Multi-news: A large-scale

multi-document summarization dataset and abstrac-
tive hierarchical model. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1074-1084, Florence, Italy. Asso-
ciation for Computational Linguistics.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2024. Model tells you
what to discard: Adaptive kv cache compression for
IIms.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. Samsum corpus: A human-
annotated dialogue dataset for abstractive summariza-
tion. In Proceedings of the 2nd Workshop on New
Frontiers in Summarization. Association for Compu-
tational Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, and et al Amy Yang. 2024. The llama 3
herd of models.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Ju-
lian McAuley. 2023. Longcoder: A long-range pre-
trained language model for code completion.

Nikolaus Hansen, Sibylle D. Miiller, and Petros
Koumoutsakos. 2003. Reducing the time complex-
ity of the derandomized evolution strategy with co-
variance matrix adaptation (cma-es). Evolutionary
Computation, 11(1):1-18.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
ga dataset for comprehensive evaluation of reasoning
steps.

John H. Holland. 1992. Adaptation in Natural and Arti-
ficial Systems: An Introductory Analysis with Applica-
tions to Biology, Control, and Artificial Intelligence.
The MIT Press.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024. Ruler: What'’s the real
context size of your long-context language models?

Hui Huang, Bing Xu, Xinnian Liang, Kehai Chen,
Muyun Yang, Tiejun Zhao, and Conghui Zhu. 2024.
Multi-view fusion for instruction mining of large lan-
guage model. Information Fusion, 110:102480.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

1682

http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2406.02069
http://arxiv.org/abs/2406.02069
http://arxiv.org/abs/2406.02069
https://doi.org/10.18653/v1/2023.emnlp-main.550
https://doi.org/10.18653/v1/2023.emnlp-main.550
https://doi.org/10.18653/v1/2023.emnlp-main.550
https://doi.org/10.18653/v1/2024.findings-emnlp.86
https://doi.org/10.18653/v1/2024.findings-emnlp.86
https://doi.org/10.18653/v1/2024.emnlp-main.182
https://doi.org/10.18653/v1/2024.emnlp-main.182
https://doi.org/10.18653/v1/2022.findings-emnlp.8
https://doi.org/10.18653/v1/2022.findings-emnlp.8
https://doi.org/10.18653/v1/2022.findings-emnlp.8
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2105.03011
http://arxiv.org/abs/2105.03011
http://arxiv.org/abs/2105.03011
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
http://arxiv.org/abs/2310.01801
http://arxiv.org/abs/2310.01801
http://arxiv.org/abs/2310.01801
https://doi.org/10.18653/v1/d19-5409
https://doi.org/10.18653/v1/d19-5409
https://doi.org/10.18653/v1/d19-5409
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2306.14893
http://arxiv.org/abs/2306.14893
https://doi.org/10.1162/106365603321828970
https://doi.org/10.1162/106365603321828970
https://doi.org/10.1162/106365603321828970
http://arxiv.org/abs/2011.01060
http://arxiv.org/abs/2011.01060
http://arxiv.org/abs/2011.01060
https://doi.org/10.7551/mitpress/1090.001.0001
https://doi.org/10.7551/mitpress/1090.001.0001
https://doi.org/10.7551/mitpress/1090.001.0001
http://arxiv.org/abs/2404.06654
http://arxiv.org/abs/2404.06654
https://doi.org/https://doi.org/10.1016/j.inffus.2024.102480
https://doi.org/https://doi.org/10.1016/j.inffus.2024.102480
http://arxiv.org/abs/2104.02112
http://arxiv.org/abs/2104.02112
http://arxiv.org/abs/2310.06825

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611, Vancouver,
Canada. Association for Computational Linguistics.

J. Kennedy and R. Eberhart. 1995. Particle swarm opti-
mization. In Proceedings of ICNN’95 - International
Conference on Neural Networks, volume 4, pages
1942-1948 vol 4.

John R. Koza. 1992. Genetic programming: on the pro-
gramming of computers by means of natural selection.
MIT Press, Cambridge, MA, USA.

Tomas Kocisky, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gdbor Melis, and Ed-
ward Grefenstette. 2017. The narrativeqa reading
comprehension challenge.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
Llm knows what you are looking for before genera-
tion.

Tianyang Liu, Canwen Xu, and Julian McAuley. 2023a.
Repobench: Benchmarking repository-level code
auto-completion systems.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2023b. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for Ilm kv cache compression at test time.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, and et al Mohammad Bavarian. 2024. Gpt-4
technical report.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi,
and Roy Schwartz. 2024. Transformers are multi-
state RNNs. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1872418741, Miami, Florida, USA. As-
sociation for Computational Linguistics.

Phillip Rust, Jonas F Lotz, Emanuele Bugliarello, Eliz-
abeth Salesky, Miryam de Lhoneux, and Desmond
Elliott. 2022. Language modelling with pixels. arXiv
preprint arXiv:2207.06991.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Daniel Y. Fu, Zhigiang Xie,
Beidi Chen, Clark W. Barrett, Joseph Gonzalez, Percy
Liang, Christopher Ré, Ion Stoica, and Ce Zhang.
2023. High-throughput generative inference of large
language models with a single gpu. In International
Conference on Machine Learning.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and
Hai Zhao. 2024. Keep the cost down: A review on
methods to optimize llm’ s kv-cache consumption.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel,
Jalal Naghiyev, Yann LeCun, and Ravid Shwartz-Ziv.
2025. Layer by layer: Uncovering hidden representa-
tions in language models.

Rainer Storn and Kenneth Price. 1997. Differential
evolution — a simple and efficient heuristic for global
optimization over continuous spaces. J. of Global
Optimization, 11(4):341-359.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, and et al Lukas Blecher. 2023.
Llama 2: Open foundation and fine-tuned chat mod-
els.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Musique: Multihop
questions via single-hop question composition.

W. Vent. 1975. Rechenberg, ingo, evolutionsstrategie —
optimierung technischer systeme nach prinzipien der
biologischen evolution. 170 s. mit 36 abb. frommann-
holzboog-verlag. stuttgart 1973. broschiert. Feddes
Repertorium, 86(5):337-337.

Wenxuan Wang and Zhaopeng Tu. 2020. Rethinking
the value of transformer components.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming
language models with attention sinks.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm
inference.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing.

Yang Zhang, Yanfei Dong, and Kenji Kawaguchi. 2024.
Investigating layer importance in large language mod-
els.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, Zhangyang
Wang, and Beidi Chen. 2023. Hyo: Heavy-hitter ora-
cle for efficient generative inference of large language
models.

1683

https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
http://arxiv.org/abs/1712.07040
http://arxiv.org/abs/1712.07040
https://aclanthology.org/C02-1150/
https://aclanthology.org/C02-1150/
http://arxiv.org/abs/2404.14469
http://arxiv.org/abs/2404.14469
http://arxiv.org/abs/2404.14469
http://arxiv.org/abs/2306.03091
http://arxiv.org/abs/2306.03091
http://arxiv.org/abs/2305.17118
http://arxiv.org/abs/2305.17118
http://arxiv.org/abs/2305.17118
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2024.emnlp-main.1043
https://doi.org/10.18653/v1/2024.emnlp-main.1043
https://api.semanticscholar.org/CorpusID:257495837
https://api.semanticscholar.org/CorpusID:257495837
http://arxiv.org/abs/2407.18003
http://arxiv.org/abs/2407.18003
http://arxiv.org/abs/2502.02013
http://arxiv.org/abs/2502.02013
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2108.00573
http://arxiv.org/abs/2108.00573
https://doi.org/https://doi.org/10.1002/fedr.19750860506
https://doi.org/https://doi.org/10.1002/fedr.19750860506
https://doi.org/https://doi.org/10.1002/fedr.19750860506
https://doi.org/https://doi.org/10.1002/fedr.19750860506
http://arxiv.org/abs/2011.03803
http://arxiv.org/abs/2011.03803
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/1809.09600
http://arxiv.org/abs/2409.14381
http://arxiv.org/abs/2409.14381
http://arxiv.org/abs/2306.14048
http://arxiv.org/abs/2306.14048
http://arxiv.org/abs/2306.14048

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir
Radev. 2021. Qmsum: A new benchmark for query-
based multi-domain meeting summarization.

A Datasets

In this study, we apply LongBench (Bai et al., 2024),
GSMSK (Cobbe et al., 2021), Needle-in—a—Haystack4
and RULER (Hsieh et al., 2024) to evaluate EvolKV.
LongBench is a bilingual, multitask benchmark contain-
ing 21 datasets across six categories: single-document
QA, multi-document QA, summarization, few-shot
learning, synthetic tasks, and code completion. GSM8K
(Grade School Math 8K) is a dataset comprising 8,792
high-quality grade school-level math word problems,
including 7,473 for training and 1,319 for testing. The
Needle-In-A-Haystack test is an evaluation method that
measures a language model’s ability to retrieve spe-
cific information ("needle") embedded within extensive,
potentially distracting textual contexts ("haystack").
RULER is a long-context benchmark that is substan-
tially more complex than NIAH, comprising four ma-
jor tasks: retrieval, aggregation, multi-hop tracing, and
question answering. Compared with NIAH, which
mainly focuses on single retrieval accuracy, RULER
emphasizes reasoning over long sequences and tests a
model’s ability to handle compositional challenges such
as integrating multiple retrieved pieces of evidence, fol-
lowing reasoning chains across documents, and synthe-
sizing information over extended contexts. In this paper,
we do not evaluate the question answering task, as one
of its source datasets overlaps with LongBench. The
detailed dataset information is presented in Table 6.

B Visualization results

B.1 Performance Results Across the Six Major
Task Categories in LongBench

In this section, we present the performance of EvolKV
and other baselines across the six major task categories
in LongBench. As shown in Figure 5, EvolKV con-
sistently outperforms all baselines in terms of aver-
age scores across the six categories. Figure 6 also
demonstrates that EvolKV maintains an overall advan-
tage across various task types. EvolKV consistently
demonstrates superior performance across major task
categories. Under both low and high KV cache budget
settings, it maintains a leading position across various
task types and even surpasses baseline methods under
extremely constrained budgets in tasks such as synthetic,
few-shot learning, and code. Notably, most of these
results are based on the expanded KV cache budgets,
indicating that EvolKV effectively discovers layer-wise
cache allocation patterns tailored to downstream tasks,
thereby highlighting its evolutionary and task-aware
advantages.

*https://github.com/gkamradt/LLMTest_
NeedleInAHaystack

B.2 Performance Results on NIAH

We evaluate EvolKV against other rule-based methods
on NIAH at ¢ = 128, as shown in Figure 7. EvolKV
consistently surpasses all baselines, achieving improve-
ments of up to 13% over the strongest competitor. In
contrast, StreamingL.LM exhibits weak performance on
long-context retrieval, highlighting the inherent limi-
tations of fixed-position methods and their tendency
to lose critical contextual information. Notably, on
Mistral-7B-Instruct with a 32K context length, SnapKV
and PyramidKV already degrade significantly at 8K,
whereas EvolKV maintains robust and superior retrieval
ability across longer contexts.

C Detailed Results of Analysis

C.1 Comparison Results of Different Group sizes

Table 7 presents the detailed downstream task perfor-
mance across different group sizes. The overall perfor-
mance peaks at n, = 8, which motivates our choice
of setting the group size to 8 in practical experiments.
Meanwhile, we argue that with only 30 training sam-
ples for optimization, overly small group sizes may
cause EvolKV to overfit the limited data when allo-
cating per-layer budgets, while overly large group sizes
force EvolKV to handle too many layers simultaneously,
making it difficult to perform fine-grained and effective
allocation. Given that the models used in our exper-
iments all have 32 layers, setting the group size to 8
serves as an optimal choice.

C.2 Optimization Results Across Three Rounds

We present in Table 8 the results of three optimization
runs using EvolKV on the Llama-3-8B-Instruct model,
conducted on 30 randomly sampled instances from the
NarrativeQA dataset. The overall average score is 35.88,
with a variance of 0.078, demonstrating the stable opti-
mization performance of EvolKV.

C.3 Comparison Results of Different Selection of
Training Data for Optimization

We present in Table 9 the results of EvolKV opti-
mized with different training data configurations. The
training data consists of two settings: the single-multi
doc set, comprising 30 examples sampled from the
single- and multi-document QA categories, and the six-
subsets set, constructed from samples drawn from six
datasets—NarrativeQA, HotpotQA, QMSum, TREC,
PassageRetrieval-en, and LCC. The optimized results
suggest that EvolKV holds a performance advantage, in-
dicating its potential to maintain effective results across
diverse downstream training data and demonstrating its
strong adaptability.

C.4 Comparison Results of KV Cache Budgets
Expansion and Optimization

Table 10 compares the performance of two approaches:
expanding KV cache budgets using the method de-
scribed in Section 3.2 versus directly optimizing at the

1684

http://arxiv.org/abs/2104.05938
http://arxiv.org/abs/2104.05938
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Datasets Source Avg len Metric Language #Sample
Single-Document QA
NarrativeQA Literature, Film 18,409 F1 English 200
Qasper Science 3,619 F1 English 200
MultiFieldQA-en Multi-field 4,559 F1 English 150
Multi-Document QA
HotpotQA Wikipedia 9,151 F1 English 200
2WikiMultihopQA Wikipedia 4,887 F1 English 200
MuSiQue Wikipedia 11,214 F1 English 200
Summarization
5 GovReport Government report 8,734 ROUGE-L English 200
g QMSum Meeting 10,614 ROUGE-L English 200
o0 MultiNews News 2,113 ROUGE-L English 200
S Few-shot Learning
TREC Web question 5,177 Accuracy (CLS) English 200
TriviaQA Wikipedia, Web 8,209 F1 English 200
SAMSum Dialogue 6,258 ROUGE-L English 200
Synthetic Reasoning
PassageCount Wikipedia 11,141 Accuracy (EM) English 200
PassageRetrieval-en Wikipedia 9,289 Accuracy (EM) English 200
Code Completion
LCC GitHub 1,235 Edit Sim Python/C#/Java 500
RepoBench-P GitHub repository 4,206 Edit Sim Python/Java 500
Retrieval
Single NIAH
S-NIAH-1 - - Recall-based Accuracy English 500
S-NIAH-2 - - Recall-based Accuracy English 500
S-NIAH-3 - - Recall-based Accuracy English 500
" Multi-keys NIAH
L.H MK-NIAH-1 - - Recall-based Accuracy English 500
> MK-NIAH-2 - - Recall-based Accuracy English 500
® MK-NIAH-3 - - Recall-based Accuracy English 500
Multi-queries NIAH (MQ-NIAH) - - Recall-based Accuracy English 500
Multi-values NIAH (MV-NIAH) - - Recall-based Accuracy English 500
Aggregation
Common Words Extraction (CWE) - - Recall-based Accuracy English 500
Frequent Words Extraction (FWE) - - Recall-based Accuracy English 500
Multi-hop Tracing
VT - - Recall-based Accuracy English 500
Needle-in-a-Haystack PaulGrahamEssays - Recall English -
GSM8K Grade-school math word problems 239 Accuracy English 1319

Table 6: Datasets introduction. "Accuracy (CLS)" denotes classification accuracy; "Accuracy (EM)" denotes
exact-match accuracy. "Recall-based Accuracy" denotes the proportion of reference strings that appear in the model

output.

corresponding target average budget. It can be observed
that when ¢ > 512, the expansion-based method consis-
tently outperforms direct optimization. This motivates
our preference for using the expansion strategy to obtain
target budgets rather than performing direct optimiza-
tion. These results also demonstrate the simplicity of
EvolKV’s optimization process—KYV cache budget al-
locations optimized under low-budget settings can be
directly extended to higher budgets without re-tuning,
and even outperform directly optimized high-budget re-
sults in some tasks. This suggests that the low-budget
phase enables more thorough exploration of task-aware
per-layer KV cache allocation.

C.5 Transfer Results of KV Cache Budget
Optimization to Other Datasets

Table 11 presents the evaluation results on the Long-
Bench benchmark by directly applying the KV cache
budget scheme optimized on the Needle-in-a-Haystack
(NIAH) dataset using the Llama-3-8B-Instruct model.

Notably, even without further adaptation, EvolKV con-
sistently achieves the highest average performance
across downstream tasks under low-budget constraints
(c = 128 and 256), demonstrating its robust general-
ization capability in transferring optimized budget al-
locations from a single dataset to diverse task settings.
Furthermore, the budget configuration at ¢ = 256 is
derived by directly expanding the allocation optimized
under ¢ = 128, further reinforcing the scalability of
EvolKV’s budget allocation results, as discussed in Sec-
tion C.4. This not only emphasizes the method’s effi-
ciency in low-resource settings but also highlights its
potential for progressive extension to higher budgets
without retraining, offering a compelling advantage in
practical deployment scenarios.

C.6 Experiments on Specialized Task
Optimization

To evaluate the specialized task optimization perfor-
mance of EvolKV, we perform KV cache budget opti-

1685

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRE Lcc RB-P

Llama-3-8B-Instruct
EvolKV-n,2 20.64 1522 3471 38.48 30.07 18.84 18.40 21.36 19.49 4850 88.52 37.14 4.58 69.00 56.99 54.18 36.01
EvolKV-ng4 2227 15.04 33.35 40.59 31.77 19.59 18.29 21.88 20.05 54.00 89.33 37.47 4.48 68.75 57.02 54.40 36.77
EvolKV-n,8 21.40 13.12 33.64 41.30 32.42 19.81 17.29 21.35 19.03 58.00 89.30 37.38 5.00 68.67 57.49 55.11 36.89
EvolKV-n,16 21.62 13.31 34.26 41.64 31.76 18.37 17.07 21.22 19.20 4850 88.30 36.81 4.65 68.75 57.13 54.87 36.09
EvolKV-n 32 19.74 13.62 32.13 38.62 28.77 16.78 17.25 21.26 18.87 51.50 87.85 37.01 4.86 69.00 55.32 52.71 35.33
Mistral-7B-Instruct
EvolKV-n,2 20.33 22.09 45.64 38.19 23.01 15.82 19.65 21.66 21.10 49.00 85.17 40.34 2.71 69.14 52.35 47.67 35.87
EvolKV-ng4 21.26 20.21 41.92 36.61 21.10 15.66 18.80 21.75 20.79 46.00 84.86 40.57 2.19 7224 50.88 47.60 35.15
EvolKV-n,8 22.72 22.59 44.02 39.47 24.16 15.64 19.90 21.93 21.20 52.00 86.83 39.83 2.35 74.81 51.64 47.05 36.63
EvolKV-n,16 23.57 22.09 43.32 38.61 24.07 16.31 20.42 22.09 21.63 58.00 84.70 39.16 2.89 55.50 54.11 48.00 35.90
EvolKV-n,32 20.97 20.09 43.24 37.00 22.19 14.95 19.01 21.99 20.85 45.50 86.49 39.11 3.77 67.37 50.64 47.08 35.02

Method Avg.

Table 7: Comparison results of different group size (n4). We use the empirical formula 4 + 3 - In(n,)] to obtain
the population size.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRE Lcc RB-P

21.96 12.24 35.47 37.92 29.68 20.87 18.76 22.06 20.16 45.00 88.72 38.40 3.98 68.27 56.96 55.19 35.98
22.40 11.88 33.04 39.96 29.27 19.97 18.93 21.83 19.78 43.50 87.53 38.42 4.50 69.00 58.39 55.39 35.86
21.34 12.42 3236 36.06 29.60 19.18 19.01 21.37 19.99 4450 88.20 38.42 4.35 68.60 57.10 60.11 35.79

Avg.

Table 8: On Llama-3-8B-Instruct, 30 randomly selected instances from the NarrativeQA dataset are used to perform
EvolKYV layer-wise KV cache budget optimization at ¢ = 128 three times to evaluate stability.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRE Lcc RB-P

Single-Multi Doc

KV Size = 512
SnapKV 24.44 28.14 48.09 40.16 25.09 16.45 23.73 23.57 24.63 67.00 86.12 41.43 2.47 88.06 56.37 52.80 40.53
PyramidKV ~ 23.20 27.83 48.15 40.77 25.08 15.78 23.44 23.48 24.05 67.00 85.87 41.42 2.86 86.23 55.62 51.88 40.17
StreamingLLM 21.16 16.48 30.25 30.83 22.64 10.34 21.53 20.02 23.10 61.50 81.86 41.72 3.14 18.57 55.16 48.65 31.68
EvolKV 23.72 2798 48.41 40.69 26.02 17.13 23.87 23.64 2462 68.50 86.52 42.30 2.93 83.06 56.99 52.44 40.55

KV Size = 1024
SnapKV 25.23 29.45 4854 41.45 25.51 18.04 26.19 23.99 25.99 69.50 86.63 43.01 2.84 89.21 57.41 53.25 41.64
PyramidKV 24.27 30.26 48.09 40.88 26.39 17.88 25.27 23.66 25.52 69.00 86.31 42.20 2.66 86.67 56.39 53.38 41.18
StreamingLLM 22.25 18.70 30.38 33.01 23.02 11.69 24.09 20.75 25.54 64.00 84.71 41.26 3.49 2240 55.89 50.99 33.26
EvolKV 24.89 29.91 48.84 41.28 26.03 18.58 25.94 24.20 25.92 70.00 86.14 41.90 2.66 87.93 57.23 53.64 41.57

Six-Subsets

KV Size = 1024
SnapKV 25.49 29.15 49.03 40.59 25.30 18.96 26.19 23.86 25.99 69.23 86.63 43.01 2.84 88.94 57.24 53.25 41.61
PyramidKV ~ 24.22 2997 48.72 40.03 25.85 18.53 25.27 23.51 25.52 69.23 86.31 42.20 2.66 86.33 56.20 53.38 41.12
StreamingLLM 22.22 1851 31.03 32.79 22.57 11.85 24.09 20.65 25.54 64.10 84.71 41.26 3.49 21.44 55.71 50.99 33.18
EvolKV 24.74 30.53 49.44 40.15 25.58 19.60 26.12 23.61 26.16 70.26 86.53 42.06 2.52 88.27 57.58 53.37 41.66

KV Size = 2048
SnapKV 25.73 32.65 49.09 40.78 27.39 18.49 28.77 24.34 26.55 69.74 86.27 42.47 2.79 87.24 57.24 5341 42.06
PyramidKV 22.14 23.08 35.22 3294 22.90 13.47 26.85 20.85 26.45 66.15 85.68 41.95 2.40 24.87 56.95 52.17 34.63
StreamingLLM 25.32 31.33 48.89 40.92 26.64 17.65 28.09 23.70 26.52 70.77 86.30 42.27 2.52 86.51 57.24 53.66 41.77
EvolKV 25.28 32.73 48.83 40.94 27.67 18.97 28.93 24.17 26.94 69.74 86.27 42.12 2.64 86.94 57.25 53.65 42.07

Method Avg.

Table 9: Comparison results of different selection of training data for EvolKV optimization. We report the results
that removed training data.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method Avg.
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRE Lcc RB-P
KV Size = 256
EvolKV.ex 22.12 24.50 48.28 40.26 25.74 17.39 22.33 22.39 23.61 65.50 84.57 40.66 2.85 79.35 54.10 51.20 39.05
EvolKV.opt 24.53 24.14 47.14 40.04 24.54 17.23 21.62 22.85 23.09 65.50 86.50 40.88 3.69 81.17 54.85 51.59 39.34
KV Size = 512

EvolKVex 24.99 29.00 49.78 41.57 26.27 18.34 24.41 23.18 25.00 68.00 87.07 41.64 2.87 89.74 56.58 52.85 41.33
EvolKV.opt 25.69 27.59 48.79 41.16 25.97 17.16 22.65 22.90 2421 6750 86.27 42.16 3.55 82.77 56.04 51.99 40.40
KV Size = 1024
EvolKV.ex 25.51 30.30 48.96 42.84 25.78 18.21 26.99 23.79 25.95 70.00 86.09 41.74 3.06 89.82 57.01 53.26 41.83
EvolKV.opt 26.29 29.48 49.15 40.36 26.61 17.22 24.15 23.84 2470 67.00 86.45 42.69 3.29 85.31 57.06 53.16 41.05

Table 10: Comparison results of optimization and expansion. ".ex" denotes using the budget allocation optimized
at ¢ = 128 to expand to target average KV cache budgets c; ".opt" denotes using EvolKV optimization at the
corresponding c.

1686

44
42
42
) 40 40
g <
o o
O 38 (9]
0 0
() Q 38
36 <)
© ©
o o
> 34 >
< ---- Full < 36 ---- Full
32 —&— SnapKV —&— SnapKV
—4&— PyramidkV —&— PyramidKV
30 —e— StreamingLLM 34 —e— StreamingLLM
-4- EvolkV -4- EvolkV
128 256 512 1024 i 2048 128 256 512 1024 . 2048
KV Size KV Size
(a) Average performance comparison across six major task (b) Average performance comparison across six major
categories in LongBench between baseline methods and task categories in LongBench between baseline methods

our proposed EvolKV on Mistral-7B-Instruct.

and our proposed EvolKV on Llama-3-8B-Instruct.

Figure 5: Average performance comparison across six major task categories in LongBench between baseline
methods and our proposed EvolKV on Llama-3-8B-Instruct and Mistral-7B-Instruct.

Single-Document QA Multi-Document QA

Summarization Few-shot Learning Synthetic Code

Method Avg.
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRE Lcc RB-P .
KV Size = 128
SnapKV 22.12 13.51 30.85 35.98 29.14 19.21 19.37 21.67 20.14 45.50 88.32 38.28 4.30 69.00 57.39 54.85 35.60
PyramidKV 2242 1320 31.54 39.24 27.57 20.18 19.19 21.92 20.71 50.00 87.34 38.53 4.55 69.00 57.57 54.25 36.08
StreamingLLM 18.96 ~ 7.79 20.90 33.13 24.85 14.94 16.37 20.45 18.49 45.50 74.40 35.78 4.75 68.00 55.65 52.32 32.02
EvolKV 22.78 13.02 36.17 38.33 31.08 19.89 18.22 21.57 19.92 48.00 88.98 37.39 5.08 69.00 56.26 55.65 36.33
KV Size = 256
SnapKV 24.60 18.37 33.36 43.01 34.05 20.36 20.62 22.07 22.51 60.00 89.61 39.22 5.00 69.00 59.47 56.27 38.60
PyramidKV 2420 15.75 34.15 4048 29.78 21.22 20.11 22.00 22.30 65.00 90.03 39.16 5.08 69.00 59.33 53.79 38.21
StreamingLLM 18.90 10.80 20.34 33.54 25.62 15.54 19.29 20.31 20.75 53.00 78.75 39.20 4.83 67.20 58.39 54.50 33.81
EvolKV 22.89 18.27 35.60 41.76 33.48 20.54 20.47 22.68 2238 63.50 89.09 39.03 4.51 69.00 59.66 56.52 38.71

Table 11: Evaluation of Llama-3-8B-Instruct using KV cache budgets optimized on the Needle-in-a-Haystack from

LongBench.

Single-Document QA

Method Avg.

Multi-Document QA

NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique

Avg. tention (Dao et al., 2022) with a target average KV cache

Mistral-7B-Instruct

budget ¢ = 128. As shown in Figure 8a, compared to

SnapKV 2003 2141 4L67 2774 3648 2LS3 1443 2415 other KV cache compression methods, EvolKV exhibits
PyramidKV 1891 21,67 4317 2792 37.65 2347 1512 2541 . L. . K
StreamingLLM 1693 1347 2670 19.03 2991 2151 114 2095 negligible variation in inference time (prefill + decod-
EvolKV 21.56 2149 4261 2855 36.79 24.22 16.37 25.79 . . . I
Liama-3-8B-Instruct ing) across different generation lengths. Additionally, as
SnapKV 2148 1380 3125 22.18 34.71 27.96 19.10 27.26 . :
PyramidKV 2140 1355 3248 2248 38.05 2675 19.63 28.14 shown in Figure 8b, the peak memory usage of EvolKV
StreamingLLM 18.06 7.81 2145 15.77 3213 23.84 14.62 23.53 1 1
N NP ol A ol s S A o across different context lengths is comparable to that of

other compression methods, while significantly reduc-

Table 12: Specialized task optimization results of ing memory consumption compared to the full cache.
EvolKV across LongBench single- and multi-document
tasks. EvolKV outperforms all baselines on average KV

cache budget ¢ = 128.

mization on both single-document and multi-document
QA tasks, using 30 randomly sampled instances for
each setting, with 10 instances per sub-task. As shown
in Table 12, after removing all training data, EvolKV
achieves the highest average scores at ¢ = 128 on both
tasks, surpassing all baselines and demonstrating its

strong adaptability to downstream tasks.

C.7 Evaluation of Inference Time and Memory

Cost

We compare the inference time and peak memory usage
of EvolKV against baseline methods on Mistral-7B-
Instruct, using the NIAH context materials and FlashAt-

1687

Average Performance: Single-Document QA Average Performance: Multi-Document QA Average Performance: Summarization

30 e 28
28 26
[0} Q Q
o o o
3 3 3
%) %) * 24
g g% g
S ---- Full —— ¢ C2
z 250 —=— SnapkV Z24 z
25 —— PyramidKV 20
—e— StreamingLLM
20.0 -+- Evolkv = 18
128256 512 1024 2048 128256 512 1024 2048 128256 512 1024 2048
KV Size KV Size KV Size
Average Performance: Few-shot Learning Average Performance: Synthetic Average Performance: Code
66 45 * 55
40
64 54
: g
3 62 3 g 53
9] 030 5o
60 o> o
© © ©
c 25 o
g g g
I <5 <4
50
56 15
\// 49
54 10
128256 512 1024 2048 128256 512 1024 2048 128256 512 1024 2048
KV Size KV Size KV Size

(a) Comparison between baseline methods and our proposed EvolKV on Mistral-7B-Instruct across six major task categories in
LongBench.

Average Performance: Single-Document QA Average Performance: Multi-Document QA Average Performance: Summarization
32.5 34
o 26
30.0
_= 25
27.5 32
g ’ g g 24
250 / & 30 R 23
[[[
>22.5 o 222
@© @© ©
s ---- Full i s
¢ 200 Q28 g
Z —s— SnapKV z z2
17.5 —— PyramidKV 20
150 —e— StreamingLLM 26
' -+- EvolkV 19
12.5
128256 512 1024 2048 128256 512 1024 2048 128256 512 1024 2048
KV Size KV Size KV Size
Average Performance: Few-shot Learning 6.8 Average Performance: Synthetic Average Performance: Code
59
67.5
65.0 58

o

N

wn
v
~

w
o
)

Average Score
w w
o o A
© o
Average Score
w w
w o

Average Score
(=)
o
o

57.5
55.0
52.5 35.6 54
128256 512 1024 2048 128256 512 1024 2048 128256 512 1024 2048
KV Size KV Size KV Size

(b) Comparison between baseline methods and our proposed EvolKV on Llama-3-8B-Instruct across six major task categories in
LongBench.

Figure 6: Performance comparison of baselines and EvolKV on Mistral-7B-Instruct and Llama-3-8B-Instruct
across six LongBench task categories.

1688

Llama3-8B-Instruct
FullKV Average Score 100.00

&

Depth Percent
SEE2ZEEEES
"I

#f’o%““@“f@a*#@%&“»@“&“fff.f:a““ SELSE S
[oken Limi

StreamingLLM Average Score 32.15

Depth Percent
SEESEEEEES

@“fa"«““a‘“@%&v"l«*@““ﬁw&ﬁﬁr““d’ﬁ(ﬁ.»t,»°°£4°°ﬁ¢°°@°°@@“?e““&i&"“«»‘“@“«e““&“

oken Limit

SnapKYV Average Score 90.77

Depth Percent
SEEZEEEEES

@“f~»““@““e»“"#“o““ﬁ#&“f@““&“&@“.xﬁ“.w?““.«»““a%“iw“ih°°4v°°¢“°o°°a‘“e°°&“@“°«e°°«w°‘@°«e°°«w‘°&"
Token Limit

PyramidKV Average Score 88.45

Depth Percent
SEESEEEEES

»s%““f«““a‘%%°°$’l«°°@““ﬁw°°ﬁﬁr““&".w‘“o““.»f»°°{4°°ﬁ@°°$°&*@““ﬁe*&ie“o""@“«@“«@o*

Token Limif

EvolKV Average Score 94.75

s“o“"~3@@2@0““&“1@?“&1“%"&@“s*;w?’“.e‘:@““{4“2»‘1%““e‘“o%“a&“@““«@%*«@“«@“«@&“
joken Limi

Mistral-7B-Instruct
FullKV Average Score 99.86

Depth Percent
9

8E3ITEBRES

Token Limit

StreamingLLM Average Score 27.32

00.
B T T T T XTI T

DA A

Token Limit

SnapKYV Average Score 79.95

e

PyramidKV Average Score 79.93

et et tiasianaianinnaai

SO S
S

CEIPEEP PP SISO

Token Limit

EvolKV Average Score 93.31

CEEFSEFESEEL RGNS

Figure 7: Evaluation of Llama-3-8B-Instruct and Mistral-7B-Instruct on NIAH at a KV cache budget of 128.

400 1 --e- Fulkv Pad
-#%- SnapKV ,,",
3507 -+ Pyramidkv
-4~ StreamingLLM ,/'
3007 4 Evokv
-
0 800 1600 2400 3200 4000

Generation Length

(a) Comparison results of inference time.

501 -*- Fullkv »
-#%- SnapKV //’
454 -4~ PyramidKV /’
— -4~ StreamingLLM 7
3 401 -#- Evolkv /
Z‘ - III
o 35 /
: 5
s 30 1 e
S 25
$
20 1 ‘ e
______________ T
154 g-ooiits ; B &
1k 2k 4K 8k 16k 32k

Context Length

(b) Comparison results of peak memory usage.

Figure 8: Comparison of inference time and peak memory usage between baseline methods and EvolKV.

1689

