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Abstract

Large language models (LLMs) often mislead
users with confident hallucinations. Current
approaches to detect hallucination require
many samples from the LLM generator, which
is computationally infeasible as frontier model
sizes and generation lengths continue to grow.
We present a remarkably simple baseline for
detecting hallucinations in long-form LLM
generations, with performance comparable
to expensive multi-sample approaches while
drawing only a single sample from the LLM
generator. Our key finding is that LLM hidden
states are highly predictive of factuality in
long-form natural language generation and that
this information can be efficiently extracted at
inference time using a lightweight probe. We
benchmark a variety of long-form hallucination
detection methods across open-weight models
up to 405B parameters and demonstrate that our
approach achieves competitive performance
with up to 100x fewer FLOPs. Furthermore,
our probes generalize to out-of-distribution
model outputs, evaluated using hidden states
of smaller open-source models. Our results
demonstrate the promise of hidden state probes
in detecting long-form LLM hallucinations.

1 Introduction

Modern large language model (LLMs) applica-
tions increasingly rely on frontier models produc-
ing tens of thousands of tokens: users generate
codebase-scale edits with specialized coding assis-
tants (OpenAI, 2025a), create multi-page technical
reports with advanced models like GPT-5 (OpenAI,
2025c), or employ reasoning models such as GPT-
5-Thinking (OpenAI, 2025d) and Gemini-2.5-Pro
(DeepMind, 2025) as proof assistants. While these
models generally produce accurate content, they
remain susceptible to hallucinations, particularly
as context lengths and conversation turns increase.

For users to safely leverage these frontier ca-
pabilities while mitigating potential harms, mod-

els could accompany their generations with fine-
grained factuality scores, enabling users to identify
which portions of the output are trustworthy and
which require verification. Detecting hallucinations
in long-form generations, however, presents unique
challenges compared to short-form settings. Unlike
evaluating the likelihood of a single short phrase
being false, long-form texts contain numerous in-
terdependent claims spanning multiple paragraphs
or documents.

Current approaches to long-form hallucination
detection rely primarily on sampling-based meth-
ods, which assess claim confidence through se-
mantic entropy (Kuhn et al., 2023; Farquhar et al.,
2024), self-consistency (Band et al., 2024), or
graph uncertainty (Jiang et al., 2024). While effec-
tive for paragraph-length outputs, these approaches
become computationally prohibitive for frontier
models with hundreds of billions of parameters
generating tens of thousands of tokens, requiring
multiple generation calls to increasingly expensive
reasoning models.

A promising alternative lies in leveraging an
LLM’s internal representations of factuality and
confidence. Recent work has demonstrated that
LLM activations—specifically, their per-token
hidden states—encode information about answer
correctness in short-form settings (Azaria and
Mitchell, 2023; Burns et al., 2023). However,
no prior research has systematically investigated
whether this information could be extracted for
long-form hallucination detection, to assign fine-
grained confidence scores to interdependent claims
in extended generations.

We address this crucial gap by exploring whether
hidden states capture hallucination signals in long-
form generations and whether lightweight probes
trained on these states can enable efficient, claim-
level hallucination detection. Specifically, we train
linear and tree-based probes to map an LLM’s hid-
den state representation of an atomic claim directly
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to its likelihood of hallucination. These Factuality
Probes are inexpensive to train, interpretable by de-
sign, and enable a pipeline for detecting long-form
hallucinations with just a single generation call to
the LLM—dramatically reducing computational
overhead compared to sampling-based methods.

Our empirical evaluations demonstrate that our
approach achieves comparable hallucination de-
tection performance (measured by AUROC) to es-
tablished sampling-based baselines while reducing
computational resources by two orders of magni-
tude. Moreover, we show robust scalability across
models from 3B to 405B parameters, with detection
performance scaling log-linearly in model size. Re-
markably, probes trained on smaller open models
retain strong performance when assessing outputs
from significantly larger, proprietary models, de-
spite the substantial disparity in model sizes. To
summarize, our key contributions are as follows:

1. We introduce linear probes applied to hidden
states as a computationally efficient method
for hallucination detection in long-form gener-
ations, matching the performance of sampling-
based approaches while reducing computational
cost by over 100×.

2. We empirically establish that hidden state
probes exhibit consistent, log-linear improve-
ments in detection performance as model sizes
increase from 3B to 405B parameters.

3. We show that probes trained on smaller open-
weight models generalize reliably across di-
verse domains and to detect hallucinations in
outputs from larger, proprietary models.

Code to reproduce our results can be found at:
https://github.com/JThh/fact-probe.

2 Fine-Grained Hallucination Detection
with Factuality Probes

Frontier LLMs produce tens of thousands of tokens
per output in applications such as editing code-
bases, writing research reports, and answering tech-
nical questions (OpenAI, 2025a,b,c,d). To provide
users with a fine-grained understanding of the re-
liability of such long-form generations, we aim to
accurately report claim-level scores of factuality.
Unlike prior approaches drawing many samples
from the generator LLM, we seek an efficient ap-
proach that scales to modern frontier models.

The core empirical finding that enables our ap-
proach is that LLM hidden states encode rich rep-

resentations of claim-level factuality. Leveraging
this, we propose an approach to report fine-grained
factuality scores at inference time by applying ef-
ficient probes on LLM hidden states. We refer to
these probes as Factuality Probes.

Representing fine-grained confidence scores
in long-form generations. Our high-level pro-
cedure for providing fine-grained factuality scores
at inference time is shown in Figure 1. First, the
generator LLM generates a single long-form gen-
eration. Next, we apply an (often smaller) auxil-
iary LM to decompose the long-form generation
into atomic claims, and to associate each claim to
a token span in the long-form generation. Then,
we can obtain estimates of the factuality of each
atomic claim using a Factuality Probe, and attribute
this factuality to the corresponding span, providing
users with a visual representation of confidence as
in the green and red paragraph in Figure 1.

Estimating claim-level confidence with Factu-
ality Probes. We obtain claim-level confidence
estimates by passing atomic claims to either the
generator LLM or a smaller LM, extracting hid-
den states, and applying a trained probe on them
to predict the probability of claim-level factuality.
In either case, Factuality Probes are significantly
cheaper than existing sampling-based approaches
for long-form hallucination detection, requiring
only a single .generate() call to the generator
LLM in the entire procedure.

In order to train hidden state Factuality Probes,
we use retrieval as a scalable source of reliable fac-
tuality scores for atomic claims. We next describe
our training and inference algorithms in detail.

2.1 Training Factuality Probes

Factuality Probes are lightweight classifiers that
take as input the hidden states of an LM, and de-
cide whether a single, self-contained statement—an
atomic claim—is true. We train these probes in two
stages (see Algorithm 1).

Stage 1: generate a supervised factuality dataset.
Given a pool of prompts Dprompt, we first query
a generator LM πgen to produce a long-form out-
put z for each prompt. Because long-form outputs
often interleave many facts, we next decompose z
into individual claims with the help of a prompted
auxiliary LM, πaux. For example, if the long-form
generation is on the history of the United States,
an atomic claim could be: “George Washington
was the first president of the United States.” We
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👤: Tell me a bio of Alexander Vovin.

🤖: … Vovin has also worked on the development of Ainu language teaching materialsF and 
has been involved in various projectsT to preserveT and promote Ainu culture.F He is currently 
a professor of Japanese and Korean languages and culturesF at the University of California, 
Davis.F Vovin's work has been recognized with several awards, including the Japan 
Foundation's Prize for Outstanding Contributions to Japanese StudiesT in 2009.T He is a 
fellow of the American Academy of Arts and Sciences? ....

🔬 Probe the atomic claim: 
  h = GetHiddenState(🤖, "Alexander Vovin was a fellow of the American Academy of Arts 
and  Sciences.")
  p̂ = f(h) = 0.4838 ∈ [0,1]
  
📊 Probability of factuality p̂ = 0.4838, Ground truth: False

Figure 1: Factuality Probes enable the fine-grained reporting of confidence in long-form generations. Given
a long-form generation from a frontier LLM, we decompose it into atomic claims, obtain hidden states for each
claim using either the frontier LLM or a smaller LM, and apply a lightweight probe on hidden states to estimate
claim-level factuality. By attributing atomic claims to token spans, we propagate claim-level factuality back to the
long-form generation, providing users with a natural visualization of factuality throughout a long-form generation.

pass each extracted claim c into an encoder LM,
for which we use either the generator LLM πgen
or a cheaper, smaller LM πsmall to obtain hidden
states hc. The impact of different choices for the
encoder and hidden state selection are analyzed in
Section 4.3. Lastly, we obtain a binary label yc
indicating whether the claim is correct (in this case,
yc = 1). The label comes from a strong retrieval-
augmented verifier fret which we treat as an oracle:
yc = fret(c) ∈ {0, 1}. fret refers to the retrieval-
based evaluators of the benchmarks. They verify
the factuality of claims using either document re-
trieval from Wikipedia (Min et al., 2023) or through
a Web Search API (Wei et al., 2024). Collecting all
(hc, yc) pairs yields a training set Dprobe of paired
hidden states and indicators of factuality.

Stage 2: fitting the Factuality Probe. We then
train a simple classifier f that maps a hidden vector
to a probability of factuality: p(y = true|c) =
f(hc; θ). Throughout the paper we consider two
simple instantiations of f :

1. Sparse logistic regression. A linear probe with
an L1 penalty encourages the model to rely on
a small subset of dimensions,

min
θ

1

|C|
∑

c∈C
L
(
yc, f(hc; θ)

)
+ λ∥θ∥1; (1)

L is the logistic loss and λ controls sparsity.

2. XGBoost. A more powerful gradient-boosted
decision tree that can capture nonlinear interac-
tions among hidden state coordinates.

Altogether, this two-stage procedure yields a probe
that is cheap to evaluate yet highly accurate in flag-
ging hallucinated statements generated by LLMs.

2.2 Representing Fine-Grained Factuality at
Inference Time

At inference time, we use a trained Factuality Probe
to provide a user with fine-grained estimates of fac-
tuality in a long-form generation, as in Figure 1.
Overall, inference proceeds similarly to the training
algorithm, with the key difference being our use
of span attribution to propagate claim-level factu-
ality scores back to a contiguous span of tokens in
the long-form generation. The inference time algo-
rithm is detailed in Algorithm 2, and is composed
of five steps.

1. Answer generation. As in standard decoding,
the generator LLM πgen receives a prompt x
and produces a long-form completion z.

2. Claim decomposition with span attribution.
The auxiliary model πaux decomposes z into a
set of pairs {(c, S(c))}, where c is an atomic
claim and S(c) = [s(c), e(c)] denotes the con-
tiguous token span in z that makes the claim.
Spans are enforced to be non-overlapping;
when two claims would otherwise share a token,
the token is deterministically assigned to the
first claim detected. This simple tie-breaking
rule yields clean and interpretable attributions
in practice (cf. Figure 1).
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Algorithm 1: Training Long-Form
Factuality Probes

Given: Generator LM πgen; optional encoder LM
πsmall; auxiliary LM πaux;
retrieval-augmented factuality scorer fret;
input prompts Dprompt = {xi}Ni=1.

Result: A trained factuality probe f :
hc 7→ f(hc) ∈ [0, 1].

/* Stage 1: Generate training dataset */
Dprobe ← {}
for x ∈ Dprompt do

/* Generate completion */
z ∼ πgen(z | x)
/* Extract atomic claims */
C ∼ πaux (· | DecomposePrompt(z))
for c ∈ C do

/* Choose LM for encoding hidden
states based on budget */

πenc ← πgen or πsmall

/* Get hidden representation */
hc = GetHiddenState(πenc, c)
/* Get factuality label */
yc = fret(c) ∈ {0, 1}
/* Add to training data */
Dprobe ← Dprobe ∪ (hc, yc)

end
end
/* Stage 2: Train probe */
f ← supervised training on Dprobe, e.g., minimize

logistic regression loss in Eq. 1.
return f

3. Hidden state extraction. As at training time,
we obtain the hidden state hc for atomic claim
c by encoding c with the generator LLM πgen
or a smaller LM πsmall.

4. Probe evaluation. The factuality probe f maps
each hidden vector to a probability of factuality
p̂c = f(hc) ∈ [0, 1]. Altogether, we obtain a set
of claims and corresponding factuality scores
R = {(c, p̂c) | c ∈ C}.

5. Fine-grained factuality visualization. We use
the spans S(c) = [s(c), e(c)] for visualizing
claim-level factuality. For each claim, we prop-
agate its probe score p̂c back to the supporting
span S(c) = [s(c), e(c)] in the completion z.
For example, in Figure 1, tokens in S(c) are
heatmapped from red-to-green according to p̂c,
producing an interpretable overlay that high-
lights which segments of the output are judged
more or less reliable.

Altogether, Factuality Probes enable an end-to-
end pipeline providing claim-level factuality anno-
tations. In the following sections, we investigate
their accuracy and computational overhead.

Algorithm 2: Inference-Time Scoring of
Long-Form Factuality

Given: Generator LM πgen; optional encoder LM
πsmall; auxiliary LM πaux; trained factuality
probe f ; prompt x.

Result: Set of claims with factuality scores
R = {(c, p̂c)} and supporting spans S.

/* Generate completion */
z ∼ πgen(z | x)
/* Extract claims & supporting spans */
(C,S) ∼ πaux (· | DecomposePrompt(z))

▷ S = {S(c) = [s(c), e(c)] | c ∈ C}
R ← {}
for c ∈ C do

/* Choose LM for encoding hidden states
based on budget */

πenc ← πgen or πsmall

/* Get hidden representation */
hc = GetHiddenState(πenc, c)
/* Predict factuality */
p̂c = f(hc) ∈ [0, 1]
/* Add to results */
R← R∪ (c, p̂c)

end
returnR

3 Experiment Setup

Let k denote the sample size for sampling-based
methods. We define the model producing genera-
tions as πgen and the auxiliary model used for claim
breakdown, filtering, and possibly entailment as-
sessment as πaux. For evaluation, we sample a
minimum of 25 topics from the LongFact objects
dataset (Wei et al., 2024) for training our factuality
probes and 30 entities from the Wikipedia-based
dataset used by Min et al. (2023) for testing all
methods. Detailed sample statistics are provided
in Table 5. Generation lengths for all models were
capped at 512 tokens per entity or object.

3.1 Baselines

We compare Factuality Probes with established
baselines for LLM confidence estimation, includ-
ing sampling– and verbalization-based methods.

Semantic Entropy (SE). Farquhar et al. (2024)
generate long-form text using greedy decoding
with πgen, decompose into atomic claims, and as-
sess uncertainty by generating stochastic questions
asking about each claim using πaux. For each ques-
tion, we collect k high temperature responses from
πgen, compute SE of the response distributions, and
average over the questions to estimate the uncer-
tainty of the given claim.

P (True). We perform claim decomposition and
then prompt πaux to generate questions that would
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Table 1: Fact probe in-domain and out-of-domain per-
formance improves with larger training models and gen-
eralizes across generator LMs (πgen). πgen (f ) denotes
the generator LM on whose activations FP was trained.

In-Domain

πgen (f ) AUROC

Llama 3.2 3B 0.7261±0.0125

Llama 3.1 8B 0.7357±0.0113

Llama 3.1 70B 0.7453±0.0097

Llama 3.1 405B 0.7579±0.0082

OOD (πgen = GPT-4o-Mini)

πgen (f ) AUROC

Llama 3.2 3B 0.6248±0.0135

Llama 3.1 8B 0.6531±0.0142

Llama 3.1 70B 0.6905±0.0161

Llama 3.1 405B 0.7076±0.0114

yield each claim as an answer. πgen produces mul-
tiple alternative answers to these questions, which
are incorporated into a few-shot prompt. The model
then evaluates its original claim against these brain-
stormed alternatives to determine factuality.

SelfCheckGPT. Following Manakul et al.
(2023), we decompose πgen generations into atomic
claims with πaux and prompt πgen to assess each
claim’s correctness in the context of its previously
generated text. This self-checking approach allows
models to verify their own factual assertions with-
out requiring external knowledge sources.

Graph-based Uncertainty. Following Jiang
et al. (2024), we sample k high-temperature re-
sponses plus one greedily decoded response from
πgen, decompose each into atomic claims, and
merge claims with equivalent meanings into one
node, as evaluated by πaux. We construct a bipartite
graph between responses and claims, and quantify
uncertainty using graph centrality metrics. Specifi-
cally, Self-Consistency (SC) can be considered as
a variant of Jiang et al. (2024) which uses degree
centrality for uncertainty measurement.

Verbalized Confidence. Following Tian et al.
(2023a), we obtain Post-hoc Verbalized Confidence
(PH-VC) by directly asking πgen the likelihood of
its own claim being true. As shown by Jiang et al.
(2024), SC and VC can be combined (i.e., SC+VC)
to outperform each individual algorithm.

4 Experiment

We evaluate factuality prediction methods on
several πgen including the Llama 3 series mod-
els (Llama3.2-3B, Llama3.1-8B, Llama3.1-70B,
Llama3.1-405B) and Gemma2-9B, and utilize GPT-

4o-mini as πaux throughout. We choose Logistic
Regression (LR) and XGBoost as the candidate
classifiers f in our fact probing method. To test
method robustness under data domain shift, we
train probes on LongFact labels and evaluate them
on FActScore labels. Additionally, we test robust-
ness to out-of-distribution (OOD) models by apply-
ing probes trained on the activations of πsmall on
the generations of πgen or πaux, e.g., closed-source
model generations (Min et al., 2023).

We train probes on the model’s hidden states
to predict fact labels, categorizing them as either
supported or not supported. The inputs are the
hidden representations of a single token—either
the first token (FT), last token (LT), or second-last
token (SLT) of a single hidden layer—or the
concatenated hidden representations of 5-layer
groups. All claims, regardless of topic, are pooled
together, and the probe is trained with 3-fold
stratified cross-validation. Overall, the statistics for
training and testing data are presented in Table 5.

4.1 Probes Capture Long-form Factuality
In our experiments, we demonstrate that probing
hidden representations effectively captures signals
predictive of model factuality. Our results re-
veal that probing the final tokens of atomic claims
yields superior performance compared to probing
first or penultimate token positions. Additionally,
our experiments show that using XGBoost as f
marginally outperforms LR classifiers, while im-
plementing layer grouping shows no significant
improvement in probe performance. The implica-
tion is that claim token hidden representations can
reliably predict factuality through either linear map-
pings or boosted tree models. We show further in
Figure 3 that these fact probes not only predict fac-
tuality accurately but also produce well-calibrated
confidence scores, with higher confidence predic-
tions strongly correlating with improved factual
accuracy across most model architectures.

4.2 Probes Generalize Across Domains
For a given model, can we train lightweight probes
to detect factuality that generalize across diverse
claim types? We investigate this by evaluating our
probes under significant domain shift—training on
long-form generations from various topics in Long-
Fact (Wei et al., 2024) and testing on biographical
claims from FactScore (Min et al., 2023).

Our results in Table 1 (top) and Figure 2 demon-
strate that models encode generalizable represen-
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Figure 2: Factuality Probes outperform significantly more expensive sample-based methods such as Semantic
Entropy, P (True), SelfCheckGPT, and perform on par with more costly Graph Uncertainty baselines (Jiang et al.,
2024), such as Self-Consistency plus Verbalized Confidence (SC+VC) and Closeness Centrality (Cc).

Table 2: Probes trained on smaller models generalize
to accurately predict the long-form factuality of genera-
tions from larger models.

πsmall (f ) πgen AUROC

Llama 3.2 3B

Llama 3.2 3B 0.7260±0.0121

Llama 3.1 8B 0.7218±0.0121

Llama 3.1 70B 0.7096±0.0112

Llama 3.1 405B 0.6995±0.0117

Llama 3.1 8B
Llama 3.1 8B 0.7407±0.0118

Llama 3.1 70B 0.7201±0.0111

Llama 3.1 405B 0.7669±0.0107

Llama 3.1 70B Llama 3.1 70B 0.7453±0.0107

Llama 3.1 405B 0.7732±0.0105

tations of factuality that transcend domain bound-
aries. These representations enable simple, effi-
cient probes to perform well despite substantial
differences between training and testing data dis-
tributions. Notably, our fact probes outperform
significantly more expensive sample-based meth-
ods even when those approaches use 5 samples, at
which point their computational costs are more than
10× higher than our approach. We additionally find
that subjectivity filtering as employed in Jiang et al.
(2024) has generally positive effects on probing
performance across different πgen in Figure 5.

4.3 Probes Generalize Across Model Tokens

A natural question is whether probes trained for a
specific model can generalize beyond that model’s
generations to evaluate text from other distributions.
To investigate this cross-model transferability, we
fix our trained probes and assess their performance
under distribution shift by evaluating claims gener-
ated by different models.

In Table 2, we evaluate generations from larger
models πgen using probes trained on their smaller
counterparts (πsmall) within the same model se-

ries (i.e., Llama). The evaluation process feeds
tokens generated by πgen through πsmall, extracting
hidden representations that are then analyzed by
probes trained on the activations of πsmall. Remark-
ably, these πsmall-trained probes generalize robustly
to out-of-distribution generations from πgen; even
probes trained on Llama 3.2-3B well-predict long-
form factuality for outputs generated by Llama 3.1-
405B, despite the substantial disparity in model
sizes. Furthermore, the out-of-distribution perfor-
mance within the same model family remains con-
sistent with the in-distribution performances (when
πsmall = πgen as shown in Table 2).

We develop more challenging evaluations by
training FPs on generations from open-weight mod-
els and testing them on claims produced by closed-
source models. As shown in Table 1 (bottom), our
probes make meaningful predictions on generations
from GPT-4o-mini, with improving performance
as the size of the training-time generator πgen in-
creases. We observe similar OOD generalization
performance to other closed-source models, such as
ChatGPT and Perplexity, in Table 3. This suggests
that LLMs encode fairly universal representations
of factuality that transcend specific model architec-
tures, enabling our probes to effectively evaluate
text from diverse generative sources. This general-
ization likely stems from the inherent representa-
tional consistency across language models. Despite
architectural differences, LLMs develop similar in-
ternal representations of factual concepts through
their training on overlapping data distributions.

4.4 Calibrated Fact Probing

We show in Figure 3 that fact probe predictions
p̂c = f(hc) exhibit strong calibration with actual
model factuality across most tested architectures.
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Figure 3: Fact probe predictions are well-calibrated with model factuality. In general, retaining only claims with
fact probe scores (i.e., confidences) over a threshold leads to higher accuracies for all tested models. Larger models
lead to improved calibration; rejection with Llama-3.2 3B fact probes only improves beyond random guessing
with rejection ratio over 0.7, whereas larger models consistently improve across rejection ratios. The FActScore
represents factual accuracies (i.e., the fraction of true claims).

This calibration manifests as a clear correlation be-
tween probe confidence and factual accuracy—as
probe confidence increases (and rejection ratio
rises), the accuracy of retained claims consistently
improves. The factuality probes are well-calibrated
for most models, with the exception of the smaller
Llama-3.2 3B, which shows weaker calibration and
only exceeds random chance performance at high
rejection ratios (> 0.7). The consistent calibration
observed across rejection ratios for larger models
suggests that factuality signals become more dis-
tinctly encoded in hidden representations as model
scale increases, enabling more reliable probing.

5 Discussion

5.1 Costs of Fact Evaluation Methods

Factuality verification methods can vary signif-
icantly in computational and monetary costs.
Retrieval-based methods (e.g., Min et al. (2023)) re-
quire document searches; search-based approaches
(e.g., Wei et al. (2024)) employ web searches;
sampling-based methods (Jiang et al., 2024) de-
mand many model samples with quadratically scal-
ing costs. In contrast, our Factuality Probes require
just a single forward pass per claim, resulting in dra-
matic efficiency gains—approximately two orders
of magnitude fewer FLOPs than graph-based ap-
proaches like Cc@10 on Llama3.1-405B (cf. Fig-
ure 2). Retrieval-based methods also incur substan-
tial API costs1. These efficiency advantages make

1Based on our measurements, LongFact costs approxi-
mately $6.6 per 1,000 claims, with about one-third of the cost
for token generation and two-thirds for search queries.

FPs ideal for real-time factuality assessment with-
out performance degradation or increased latency.

5.2 Linear Probes Are Highly Effective
The remarkable effectiveness of linear probes for
factuality prediction can be attributed to three key
factors. First, the standardized claim formatting
(e.g., always ending in punctuation marks)
provided by πaux establishes a stable foundation,
enabling probes to focus specifically on factuality
signals rather than navigating format variations.
Second, our analysis of final token representations
leverages information bottlenecks where models
necessarily encode their factual confidence before
concluding claims. Third, Factuality Probes
demonstrate exceptional versatility across diverse
claim types—including definitions, behavioral
statements, and propositional claims. This
contrasts with methods such as Semantic Entropy
or P (True), which perform adequately on simple
definitions but struggle with complex factual asser-
tions due to their reliance on answer consistency
to direct questions—an approach poorly suited
for nuanced claims where appropriate questions
are difficult to formulate. By directly accessing
internal model representations, FPs bypass these
limitations, extracting factuality signals across
diverse claim types without requiring intermediate
question formulation (cf. Table 4).

6 Related Work

Short-Form Hallucination Detection. Early hal-
lucination detection research focused primarily on
detecting factual errors in brief model outputs.
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Likelihood-based approaches (Desai and Durrett,
2020; Jiang et al., 2021; Malinin and Gales, 2021)
leveraged model confidence scores but often suf-
fered from overconfidence. Self-consistency meth-
ods (Manakul et al., 2023) addressed this by gener-
ating multiple responses and measuring agreement
across outputs, with variations including semantic
entropy (Farquhar et al., 2024), binary truth estima-
tion (Kadavath et al., 2022), and eigenvalue-based
metrics (Lin et al., 2023b). Verbalized uncertainty
techniques (Lin et al., 2023a; Tian et al., 2023b;
Xiong et al., 2023) emerged as a complementary
strategy, directly prompting models to express con-
fidence levels. Finally, retrieval-augmented meth-
ods (Feldman et al., 2023; Zhang et al., 2023; Peng
et al., 2023) grounded outputs in external knowl-
edge sources but introduced significant computa-
tional overhead. While establishing fundamental
techniques for uncertainty estimation, these meth-
ods were created for single-claim outputs rather
than complex multi-claim narratives.

Hallucination Detection in Long-Form Genera-
tions. Detecting hallucinations in long-form out-
puts presents unique challenges as generations con-
tain intermingled factual and non-factual claims
across multiple sentences and paragraphs. Ap-
proaches to this problem generally follow two de-
composition strategies. At the sentence level, self-
consistency techniques have been extended (Man-
akul et al., 2023; Band et al., 2024) to evaluate
uncertainty by comparing multiple generated alter-
natives for each sentence. Atomic claim decom-
position breaks long responses into minimal verifi-
able assertions and evaluates precision across these
atomic units (Min et al., 2023). This paradigm has
been expanded beyond biographical content (Wei
et al., 2024; Zhao et al., 2024), establishing broader
benchmarks across diverse domains. Building
on atomic decomposition, recent approaches com-
bine self-consistency with conformal prediction
for claim-level uncertainty estimation (Mohri and
Hashimoto, 2024), while others extract uncertainty
scores directly from model internals (Duan et al.,
2023; Band et al., 2024). Graph-based uncertainty
metrics have been introduced to represent relation-
ships between generated responses and their con-
stituent claims as bipartite graphs, using central-
ity measures to quantify claim reliability (Jiang
et al., 2024). Despite these advances, most existing
methods require drawing multiple samples, creat-
ing substantial computational overhead that our

probe-based approach addresses.

Latent-Space Probing of LLMs for Hal-
lucination Detection. Recent research has
demonstrated that LLM hidden states encode rich
signals about output factuality, offering a promis-
ing avenue for hallucination detection. Specific
directions in the latent space corresponding to
"truthfulness" in model outputs have been identi-
fied (Marks and Tegmark, 2023). Probes trained
on hidden states have been shown to effectively
predict factuality when supervised with accuracy
labels (Azaria and Mitchell, 2023; Liu et al., 2024;
Ji et al., 2024). More recently, these methods have
been extended to achieve fine-grained factuality
prediction at the word level (He et al., 2024).
Unsupervised approaches have also emerged, with
Su et al. (2024) introducing real-time detection
using contextualized embeddings from different
Transformer layers, and Zablocki and Gajewska
(2024) providing some analysis of hallucination
risks through internal state examination, though
most remain limited—restricted to binary ques-
tions (Burns et al., 2023), requiring accuracy
labels for tuning (Zou et al., 2023), or demanding
multiple costly generations for training (Chen
et al., 2024; Kossen et al., 2024) all on short-form
generations. Unlike these methods, our approach
efficiently processes complex long-form text with a
single forward pass for each paragraph and atomic
claim, and generalizes across both domains and
model architectures—addressing key limitations
in previous probing techniques.

7 Conclusion

We introduce Factuality Probes, a method that
leverages LLM hidden representations to effi-
ciently assess the factuality of generated claims.
Our lightweight linear probes achieve comparable
or superior performance to current approaches
while requiring up to 100× fewer computational
resources, making real-time factuality assessment
practical. These probes generalize effectively
across both subject domains and model architec-
tures, even evaluating claims from closed-source
models when trained on open-weight architectures.
Efficient factuality assessment methods like ours
will be essential for responsible AI deployment.
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Appendix
A Limitations

We discuss several limitations of our factuality probing approach that we aspire to address in future work.

Use of auxiliary model for claim breakdown and refinement. As is common with many approaches
to assessing factuality (Section 3.1), our fact probe also relies on this critical preprocessing step. The
quality and consistency of claim decomposition directly impacts probe performance, and variations in how
the auxiliary model segments and refines claims may affect factuality assessments. While this dependency
is shared across factuality assessment methods, it represents a computational bottleneck and potential
source of inconsistency in our pipeline (cf. Table 4).

Factual dependencies in long-form generation claims. We do not currently leverage the contextual
relationships between claims when predicting factuality. Long-form text often contains interdependent
claims where the factuality of one assertion may influence the likelihood of another being correct. Our
token-level approach, while computationally efficient, treats each claim independently and does not model
these higher-order dependencies that could potentially enhance factuality prediction.

B Potential Risks

While our research aims to promote safer and more responsible LLM deployment, we acknowledge
potential risks associated with factuality probing techniques. Notably, malicious actors could exploit these
insights to deliberately compromise generator LM calibration, potentially increasing model confidence in
false outputs (Han et al., 2024). Such vulnerabilities highlight the importance of responsible disclosure
and implementation of safeguards when deploying such factuality assessment tools.

C Additional Results

C.1 Generalization to Closed-source Models
Table 3 demonstrates our Factuality Probes’ strong generalization capabilities to closed-source models.
Probes trained on smaller, open-weight models achieve promising AUROC scores when detecting halluci-
nations in outputs from proprietary models. Consistently across training models, performance is strongest
on InstructGPT, followed by ChatGPT, with PerplexityAI showing the lowest scores. Notably, the 3B
Llama model’s probes rival those of the 70B variant, suggesting efficient lightweight probing solutions
remain viable even for evaluating closed-source models.

C.2 Reversed Out-of-Domain Data Test
We reverse our training and testing paradigm by training fact probes on biographical claims annotated
with FActScore labels, then evaluating their performance on the more topically diverse claims measured
with LongFact. We show in Figure 4 that reversing the datasets makes the fact probes generalize worse.

C.3 Probe with Subjectivity Filtering
Following the procedure outlined in Jiang et al. (2024), we apply subjectivity filtering to our test claims.
As shown in Figure 5, this filtering generally improves probing performance across models.

C.4 Probing on Different Token Positions
To better understand how probing different token positions affects performance, we train fact probes
on the activations of the first, last, and second-to-last output tokens. As shown in Appendix C.4, our
results validate the claim that probing the final tokens is highly effective, which we explain intuitively in
Section 5.2.

16220



Table 3: Fact Probes generalize their use across LLMs. AUROC scores for probes trained on open-weight models
and evaluated on closed-source models. Evaluation data is taken from human-annotated examples published in Min
et al. (2023).

Training πgen (f ) Testing πgen AUROC

Llama 3.1-8B
InstructGPT 0.732± 0.008

ChatGPT 0.698± 0.008
PerplexityAI 0.628± 0.010

Llama 3.2-3B
InstructGPT 0.692± 0.008

ChatGPT 0.689± 0.008
PerplexityAI 0.623± 0.010

Llama 3.1-70B
InstructGPT 0.701± 0.008

ChatGPT 0.650± 0.008
PerplexityAI 0.605± 0.011

Gemma 2-9B
InstructGPT 0.612± 0.009

ChatGPT 0.604± 0.008
PerplexityAI 0.551± 0.011
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Figure 4: Reversing training and testing dataset can cause worse probe generalization (πgen is Llama3.1-8B).
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D Experiment Details

We set the maximum number of new tokens to 512 for all LLMs, and sample under the temperature of 0.7
using top-k sampling with k = 50.

Factual Evaluation and Claim Processing Pipeline. Evaluating factuality in long-form generations
requires decomposing complex texts into atomic claims that can be individually verified. Current
approaches differ in how they process and evaluate these claims. FActScore (Min et al., 2023) focus
primarily on precision—the ratio of supported claims to all evaluated claims—without accounting for
recall. As noted by its authors, this approach may favor models that generate fewer facts or abstain from
making claims, potentially missing important information expected by users. LongFact (Wei et al., 2024)
address this limitation by evaluating both precision and recall, providing a more balanced assessment of
factual completeness. It employs web search-based verification and handles a broader range of topics
beyond the biographical focus of FActScore.

The processing pipeline for factuality assessment typically includes several essential steps, as illustrated
in Table 4. First, the long-form generation is broken down into atomic claims that represent the smallest
self-contained factual assertions. These claims then undergo refinement to ensure they are well-formed
and contain all necessary context (e.g., replacing pronouns with their referents). Following refinement,
claims may be filtered for relevance and subjectivity to focus evaluation on verifiable factual content. Next,
depending on the assessment methodology, the pipeline may include question generation, high-temperature
sampling, or entailment checking to determine claim factuality.

Our Factuality Probes approach maintains the critical initial steps of claim breakdown and refinement
but streamlines the evaluation process by eliminating the need for additional sampling, question generation,
or explicit entailment checking. Instead, we directly leverage the model’s internal representations to
assess factuality, substantially reducing computational requirements while maintaining strong evaluation
performance (cf. Figure 2).

Processing Step SE G-Unc. SelfCheckGPT P (True) Fact Probe

Long-form Gen. Mt Mt Mt Mt Mt
Claim Breakdown Ma Ma Ma Ma Ma
Claim Revision Ma Ma Ma Ma Ma
Irrel. Filtering Ma Ma Ma Ma Ma
Subj. Filtering N/A Ma N/A N/A N/A
Claim Merging N/A Ma N/A N/A N/A
Question Gen. Ma N/A N/A Ma N/A
HT Sampling Mt Mt N/A Mt N/A
Entail./Equiv. Check Ma Ma Mt Mt N/A

Table 4: FP has the least claim processing steps. The supportedness scoring is uniformly applied to all approaches
after possible claim revision, and relevance or subjectivity filtering. Graph Uncertainty (G. Unc) methods include
SC+VC and Cc.

Hyperparameters. For our fact probing experiments, the logistic regression model employed L1
regularization with the liblinear solver and a configurable regularization strength (C) which we set as
0.5 throughout. For XGBoost, we used 1000 estimators, learning rate of 0.1, and maximum tree depth
of 6, configured for binary classification with AUC as the evaluation metric. XGBoost was accelerated
using GPU computation where applicable to handle the large-scale hidden state analysis efficiently. For
both models, we used the standard implementations as provided in the scikit-learn (Pedregosa et al.,
2011) and xgboost (Chen and Guestrin, 2016) PyPI libraries, with parameter configurations as mentioned
above.

Layer Group Size. We employ 5-layer groups when concatenating hidden state representations to
validate their effectiveness across most models. For Llama-3.1 405B, we reduce this to 3-layer groups
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to manage memory consumption while maintaining convergence efficiency. This adjustment balances
computational feasibility with model performance for our largest architecture.

Sparse Probes. We show the clamped neuron activations in Table 6. We demonstrate the performance
comparisons between probes trained only on sparse activation values (in Table 6) and those trained on
full-neuron activations with a high l1 penalty.

Computing FLOPs. To compare the computational efficiency of different factuality prediction methods,
we calculate the floating-point operations (FLOPs) required by each method. Concretely, fact probing
require only a single forward pass per claim, while methods like P (True) require multiple passes. Sample-
based methods scale with the sampling size k, with costs growing quadratically (in the worst case) at
different rates depending on the algorithm. For instance, sampling-based methods like SE incur costs
proportional to k2, while graph-based approaches scale with k(k + 1).

Sampling for SE. We randomly sampled 20% of the test claims without replacement to evaluate SE
from those used to test fact probes. This was mainly due to the prohibitively high costs of SE, which is
quadratic to the number of claims.

Training Samples (rated by Jiang et al. (2024))

Model Number of Claims Number of Topics

Llama3.2-3B 1,531 25
Llama3.1-8B 3,374 50
Llama3.1-70B 4,204 75
Llama3.1-405B 4,469 40
Gemma2-9B 1,508 25

Test Samples (rated by Min et al. (2023))

Model Number of Claims Number of Entities

Llama3.2-3B 1,867 30
Llama3.1-8B 1,732 30
Llama3.1-70B 2,028 30
Llama3.1-405B 2,138 30
Gemma2-9B 1,587 30
GPT-4o-Mini (OOD) 1,386 30

Table 5: Number of training and testing samples for evaluating fact probe generalization across subject domains.
Notes: The number of topics vary across LLMs since they tend to (consistently) respond in very different token lengths, even
though instructed with the same amount of maximum output sequence tokens. More claims are required for probes on larger
LLMs to take better effect empirically.

Computational Budgets. Converting to hardware requirements, our experiments consumed approxi-
mately 440 GPU hours on A100 nodes from OATML lab machine and cloud machines from third-party
vendors, amounting to approximately 2× 1020 FLOPs (cf. Figure 2, multiplied with the number of test
entities).

Reproducibility. All reported test metrics (i.e., AUROC) include bootstrapped results with standard
errors on a 95% confidence interval to ensure statistical reliability of our comparisons.
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E Steering LLMs for Better Factuality

Prior works such as (Goh, 2016; Olah et al., 2020; Elhage et al., 2021; Nanda et al., 2023) seek to find the
internal workings of neural networks by interpreting individual neurons and their interactions in deciding
model behavior. Olah et al. (2020) suggest that neural networks develop legible internal representations of
features, which can be connected to form interpretable circuits. These features are causally meaningful
variables that can be leveraged to steer the model, much like steering vectors. Meanwhile, it has been
demonstrated that model behaviors can be steered by adding a vector to the model hidden states (Li et al.,
2024; Turner et al., 2024), derived by calculating the differences in activation averages between specific
model behavioral classes, similar to the activation clamping approach we will employ.

E.1 Finding Factuality Neurons
We identify a subset of neurons predominantly responsible for encoding common factuality (Table 6). We
locate neuron activations such that supported and unsupported claims can be linearly separated by some
threshold. And using only sparse neuron activations we can train probes performing comparably well
with full-neuron probes (Figure 7).
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Figure 7: Probes trained only on selected neuron activations (or sparse probes) have comparable validation AUROC
as compared with full-neuron probes trained with high sparsity constraints (or full probes).

By clamping neuron activations to the tail range of their “supported” class activation values (Table 6),
we can causally reduce hallucinations in model outputs. As demonstrated in Table 7, this neuron-level
steering approach significantly improves factuality across all evaluated LLMs on diverse topics. This
presents valuable opportunities for enhancing LLM factuality through activation steering during inference,
without requiring additional prompting or fine-tuning.
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Table 6: Activation statistics for factuality neuron clamping. We select neurons based on linear weights of probes
trained on grouped hidden states by layers, and the ‘Dimension‘ field is counted based on concatenated hidden
dimensions.

Model Layer Neuron Dimension Avg. Act. Avg. Act. Clamping
(Supported) (Not Supported) Value

Llama
3.2-3B

9 103 103 0.329 ± 0.204 0.205 ± 0.193 0.737
13 103 12391 0.476 ± 0.362 0.289 ± 0.319 1.200
13 859 13147 0.095 ± 0.320 -0.017 ± 0.310 0.736
13 1534 13822 0.262 ± 0.307 0.429 ± 0.287 -0.351
13 1947 14235 -0.820 ± 0.228 -0.735 ± 0.226 -1.277

Gemma
2-9B

27 169 10921 -0.077 ± 2.746 -1.151 ± 2.596 5.415
27 2841 13593 -0.949 ± 2.887 -1.278 ± 3.010 4.825
28 852 15188 0.984 ± 2.940 -0.078 ± 2.750 6.864
28 1913 16249 1.574 ± 3.664 0.019 ± 3.723 8.902
28 2612 16948 -0.064 ± 3.140 1.314 ± 3.160 -6.344

Llama
3.1-8B

14 133 12421 0.323 ± 0.202 0.214 ± 0.188 0.727
14 709 12997 -0.311 ± 0.231 -0.196 ± 0.214 -0.773
14 1162 13450 -0.301 ± 0.177 -0.356 ± 0.165 -0.054
15 2485 18869 0.821 ± 0.200 0.729 ± 0.210 1.222
15 2629 19013 -0.367 ± 0.254 -0.267 ± 0.252 -0.875

Llama
3.1-70B

77 4030 28606 3.229 ± 0.925 2.885 ± 0.958 5.080
77 6890 31466 -1.355 ± 0.766 -1.099 ± 0.822 -2.887
78 1071 33839 -0.065 ± 1.357 0.370 ± 1.494 -2.779
78 4030 36798 3.549 ± 0.981 3.203 ± 1.007 5.511
78 4994 37762 1.190 ± 0.866 0.921 ± 0.856 2.922

Table 7: Steering factuality neurons significantly improves LLM correctness. Evaluated on biographies of 10
random entities from WikiPedia rated by FactScore, or 10 random topics from LongFact. Statistical significance:
paired t-test, t(5) = 4.76, p < 0.01.

Model Metric Before After Improvement (%)

Llama 3.2-3B
FactScore 0.286 0.316 +10.5%

LongFact F1 0.538 0.553 +2.8%

Llama 3.1-8B
FactScore 0.599 0.664 +10.9%

LongFact F1 0.588 0.622 +5.8%

Llama 3.1-70B FactScore 0.568 0.609 +7.2%

Gemma 2-9B FactScore 0.606 0.627 +3.5%

16226


