
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 16363–16394
November 4-9, 2025 ©2025 Association for Computational Linguistics

VisualEDU: A Benchmark for Assessing Coding and Visual Comprehension
through Educational Problem-Solving Video Generation

Hao Chen1, Tianyu Shi2,*, Pengran Huang1, Zeyuan Li1,
Jiahui Pan1, Qianglong Chen3, Lewei He1,*

1School of Artificial Intelligence, South China Normal University,
2University of Toronto, 3Zhejiang University

helewei@m.scnu.edu.cn, tys@cs.toronto.edu

Abstract

Generating logically coherent video from text
(T2V) for reasoning-intensive tasks like math-
ematical problem-solving presents a signifi-
cant challenge for Vision-Language Models
(VLMs). Therefore, we introduce VisualEDU,
a benchmark based on Manim package to rigor-
ously evaluate VLM capabilities in producing
coherent, step-by-step video solutions for edu-
cational purposes, with a framework that inte-
grates meta-prompt learning, visual and code
feedback, and a modular drawing toolkit to en-
hance output quality. Novel metrics for tempo-
ral consistency, logical correctness, and visual
clarity are proposed, and extensive experiments
across nine VLMs reveal that while advanced
proprietary models show promise, all struggle
significantly with increasing task complexity
(e.g., the performances of Claude-3.7-Sonnet
and GPT-4o are below 56% on difficult tasks
), highlighting limitations in code generation,
visual feedback correction and precise tool in-
vocation. VisualEDU offers a robust platform
for systematic T2V assessment in reasoning-
intensive domains and guides future VLM im-
provements in this area. All data related to
VisualEDU is publicly available at https://
github.com/UchihaIchigo/VisualEDU.

1 Introduction

Recent advances in generative AI have sparked
growing interest in bridging the gap between nat-
ural language understanding and visual synthesis,
giving rise to the challenging yet impactful task of
text-to-video (T2V) generation. T2V holds signifi-
cant promise for automated content creation, per-
sonalized education, enhanced accessibility, and
creative expression (Wang et al., 2024b; FADIYA
et al., 2025; Bar-Tal et al., 2024). The goal is to
generate coherent sequences of video frames that
faithfully and vividly depict a given textual prompt.

*Corresponding authors. Emails: helewei@m.scnu.edu.cn,
tys@cs.toronto.edu

Question: The linear function 𝑦 = 𝑎𝑥 + 𝑏 is perpendicular to the line 𝑦 = 3𝑥 − 1,

and their intersection point is (1, 2). Please solve for the values of 𝑎 and 𝑏.

Shot 1#

𝑦 = 3𝑥 − 1

●

Shot 2#

𝑦 = 3𝑥 − 1

●

Shot 3#

𝑦 = 3𝑥 − 1

𝑦 = 𝑎𝑥 + 𝑏

Step 1: Find the slope of the line.

𝑎 × 3 = −1 ⇒ 𝑎 = −
1

3

Step 2: Equation using the intersection coordinates.

2 = −
1

3
× 1 + 𝑏

Step 3: Determine the value of 𝑏.

𝑏 = 2 +
1

3
=
7

3

Shot 4#

●

𝑦 = 3𝑥 − 1
𝑦 = 𝑎𝑥 + 𝑏

Figure 1: Problem-solving video for educational pur-
poses powered by Manim package.

Achieving this involves multiple stages reflect-
ing the complexity of modeling dynamic visual
scenes from language. First, textual prompts are en-
coded via powerful pretrained language or Vision-
Language Models (e.g., CLIP (Radford et al.,
2021), CogVLM (Wang et al., 2024a), DeepSeek-
VL (Joshi, 2025), PaliGemma 2 (Steiner et al.,
2024)) to extract rich semantic representations.
These are used to condition core generative mod-
els, typically latent diffusion models (LDMs) (Kim
et al., 2023), which synthesize temporally coherent
latent sequences. Architectures often include spa-
tiotemporal attention or 3D convolutions (Zhang
et al., 2025; Diba et al., 2023; Blattmann et al.,
2023) to model dependencies across frames. A
video decoder, usually derived from a VAE or a
super-resolution module (Wang et al., 2025), con-
verts latent codes into high-fidelity video frames.
Beyond the mainstream text-to-video pipelines, re-
searchers have also explored alternative strategies
that require no additional training. Methods such as
LCGD (Waseem et al., 2025) incorporate VLM into
the diffusion process to improve semantic align-

16363

https://github.com/UchihaIchigo/VisualEDU
https://github.com/UchihaIchigo/VisualEDU

ment and denoising, while ARTV (Weng et al.,
2024) proposes an auto-regressive framework that
sequentially generates frames to better handle tem-
poral coherence and avoid drifting artifacts.

Despite progress from models like Lumiere (Bar-
Tal et al., 2024), ModelScope (Wang et al., 2023),
and Sora (FADIYA et al., 2025), current T2V sys-
tems face key limitations. Benchmarks such as
T2vbench (Ji et al., 2024), FETV (Liu et al., 2023),
Vbench (Huang et al., 2024b), Editboard (Chen
et al., 2025), Evalcrafter (Liu et al., 2024), and
Ve-bench (Sun et al., 2025) highlight persistent
challenges, including temporal inconsistency, mo-
tion artifacts, object and background instability,
poor alignment with textual descriptions, violations
of fundamental physical principles, and difficul-
ties in rendering textual elements accurately within
videos.

Crucially, current evaluations focus on general
content, overlooking domains that require struc-
tured logic and correctness—such as educational
or instructional videos. Fine-grained control over
camera motion, object trajectories, and symbolic
reasoning has been largely underexplored, as exist-
ing models are primarily trained on unstructured
internet-scale data (FADIYA et al., 2025; Huang
et al., 2024b). To better address these challenges,
we adopt a domain-specific solution—Manim (The
Manim Community Developers, 2024; Sánchez
et al., 2025), an open-source Python library widely
used for creating mathematical animations and ed-
ucational videos through programmatic control.
Manim provides fine-grained specification of vi-
sual elements such as text, shapes, graphs, and
equations, along with their corresponding anima-
tions, timings, and transitions. These capabilities
make Manim particularly well-suited for generat-
ing videos that demand logical correctness, visual
clarity, and consistent symbolic reasoning.

To address these gaps, we introduce VisualEDU,
a benchmark tailored to evaluate VLMs’ ability
to generate logical and readable math problem-
solving videos. Our contributions are fourfold:

• We introduce a novel benchmark designed to
evaluate the coding and visual comprehension
capabilities of VLMs through the task of edu-
cational problem-solving video generation.

• We propose a framework incorporating meta-
prompt learning, Manim tool libraries, and
visual feedback correction to improve struc-
tured video generation.

• Comprehensive evaluation metrics including
Logical Pass Rate, Feedback Effectiveness
and Aesthetic Score are designed for the multi-
granular subtasks in the framework.

• We conduct extensive experiments across 9
VLMs (5 proprietary, 4 open-source), reveal-
ing two key findings: (i) all models degrade
significantly as task complexity increases; (ii)
models behave differently in code generation
and visual feedback correction, exposing fun-
damental limitations in current VLM.

2 Related Works

2.1 VLM and Text-to-Video Agent

Recent T2V methods increasingly incorporate
VLMs to improve temporal coherence, com-
positionality, and control. Dysen-VDM (Fei
et al., 2024) leverages VLMs to construct dy-
namic scene graphs, enhancing temporal reason-
ing. GPT4Motion (Lv et al., 2024) employs GPT-4
to script Blender simulations, enabling physically
grounded video generation. LCGD (Waseem et al.,
2025) injects VLM guidance into diffusion denois-
ing, improving semantic alignment. DriveDreamer-
2 (Zhao et al., 2025) uses VLMs to synthesize struc-
tured driving scenes, while VideoTetris (Tian et al.,
2024) proposes compositional attention mecha-
nisms for multi-entity and long-form video gen-
eration. These approaches surpass early zero-shot
methods like Text2Video-Zero (Khachatryan et al.,
2023), demonstrating the growing role of VLMs in
scalable, controllable T2V systems.

Despite these advances, a critical gap remains in
evaluating VLMs’ ability to generate videos requir-
ing structured reasoning, procedural correctness,
and symbolic clarity.

2.2 Coding and Text-to-Video Benchmarks

Evaluating text-to-video (T2V) models remains a
critical and complex challenge, requiring metrics
beyond pixel-level fidelity or basic classification
scores. Early approaches often relied on proxy met-
rics computed on general-purpose datasets such as
CLIP-based similarity (CLIPScore) (Radford et al.,
2021). However, these metrics fail to capture essen-
tial attributes such as temporal coherence, action
plausibility, and fine-grained text alignment.

To address these limitations, recent works have
proposed specialized and comprehensive T2V

16364

I'm having a problem and want to
ask for help with a video to solve
the problem ：Given the circle
with equation (x-
2)^2+(y+3)^2=16, find its
center and radius.

Give me the problem
and I‘ll generate a
logical way to solve it.

Stage1:User requests

User

Step 1: Identify the general
standard form of the circle.

(x−a)2+(y−b)2=r2

Step 2: Compare the equation
in the problem with the
standard form

……
……

Final Answer:
Center: (2,−3) , Radius: 4

Step analysis

…
…

Tool Pool
Circle()

MathTex ()

Axes()

Dot()

Library

…
…

Template1

Template2

Template3

Template4

Command 1:
Logic for problem solving
Command 2:
Special tools
Command 3:
Suitable templates

Command fusion

Stage2:Analysis & Evolution

Stage5:Visual Feedback

Judge the font
…
…

Determine the
position of the
element

Step 1 Step 2 Step 3

Suggestion 1

Suggestion 2

Suggestion 3

Based on the
suggested, the
code was
improved to
make the video
more
understandable

Step 2

Inspect code error
segments

Stage6:Evaluation

Inspection
of

Integrity

Inspection
of

Correctness

Inspection
of

Aesthetics

V
L
M

Step Execution Rate

Internal Hallucination
Resistance

Upstream Completion

Correctness of
code generation

Effectiveness of
visual suggestion

Aesthetics
Score

Generate the

coding prompt

Step 1

Stage3: Coding

Step 1

Generate the

code as prompted

Run the code to
generate a video
and save the error
message

Step 2

Stage4: Error Feedback

Figure 2: The framework of VisualEDU Benchmark.

benchmarks. VBench (Huang et al., 2024b) eval-
uates multi-dimensional aspects like subject/back-
ground consistency and temporal coherence via
human ratings. FETV (Liu et al., 2023) focuses
on fine-grained fidelity and action correctness us-
ing carefully designed prompts and manual assess-
ments. EvalCrafter (Liu et al., 2024) integrates both
automatic metrics and human preference judgments
to assess motion quality, semantic alignment, and
aesthetics. T2VBench (Ji et al., 2024) introduces a
hierarchical framework with fine-grained temporal
lexicons to systematically evaluate event, visual,
and narrative dynamics. DEVIL (Liao et al., 2024)
complements prior efforts by proposing dynamics-
centered metrics and a dynamics-graded prompt
benchmark, highlighting the critical role of vivid
motion in faithful T2V generation.

While these benchmarks advance general-
purpose T2V evaluation, they remain limited
in domains requiring structured reasoning and
logic, such as educational videos for mathemati-
cal problem-solving—where both semantic fidelity
and procedural correctness are crucial.

3 VisualEDU Framework

We present the full VisualEDU framework (Fig-
ure 2), which consists of three core components:
meta-prompt learning, feedback-enhanced flow,
and a modular drawing tools library, designed to
improve text-to-video generation for educational
and reasoning-centric tasks.

3.1 Drawing Tools Library

To facilitate accurate code generation, we introduce
a structured tool library that provides detailed docu-
mentation and usage guidelines for various Manim
modules. This knowledge base allows the VLM
to evaluate the solution process and selectively re-
trieve appropriate modules to visualize each step.

By grounding code generation in the tool library,
we significantly reduce the likelihood of halluci-
nated or syntactically invalid code. Incorporating
domain-specific knowledge from the library also
improves the code execution success rate, as the re-
trieved templates align closely with task semantics
and animation requirements.

3.2 Meta-Prompting with Tool-Integrated

Our method generates complex video editing
prompts through a structured workflow (Figure 3).
The system first decomposes high-level editing
tasks into smaller, modular subtasks to reduce com-
plexity. For each subtask, it retrieves the most
relevant meta-prompts from a dynamic template li-
brary via semantic matching, optionally leveraging
tool reasoning to refine sub-prompt generation.

Sub-prompts are then sequentially composed
based on logical dependencies, with connective in-
formation inserted to form a coherent final prompt.
A meta-learning feedback loop further enhances
the system: upon successful execution, novel sub-
prompt structures are generalized and integrated
into the template library.

16365

Library

…
…

Template1

Template2

Template3

Template4

…
…

Subtask1

Subtask2

Subtask3

Subtask4

Complex task

Aesthetic
Qualified

Unqualified

Upgrade

Visual feedback
Code generation

Librarian Expert

Librarian
Output

Manim Code
Expert

Programmer
Output

Program
Analysis
Expert

Instruction

Based on the advice given by Programmer Expert and
Librarian Expert, determine if it is correct and obtain the
best output.

Evaluation

Task
completed

Figure 3: Meta-Prompting Flowchart. In Meta-
Prompting, collaboration with experts from multiple
domains ultimately resolves complex tasks.

This closed-loop process enables efficient task
decomposition, improves prompt quality through
adaptive retrieval, and continuously evolves by
learning from successful outcomes, facilitating pre-
cise and scalable video creation.

3.3 Visual-Feedback

To enable VLMs to produce logically coherent and
visually polished educational videos, we propose
a multi-round visual feedback mechanism. The
model provides lightweight suggestions—such as
adjusting element positions, font sizes, and text-
graphic alignment—based on intermediate render-
ings.

These suggestions guide iterative refinement of
the generated Manim code, improving both func-
tional correctness and visual quality. This feedback-
driven process mitigates common issues like ele-
ment overlap, inconsistent scaling, and disorga-
nized layouts, ensuring that final videos achieve
both pedagogical clarity and aesthetic appeal.

4 Data Construction

To facilitate the systematic evaluation of VLMs
in mathematical reasoning, code generation, and
visual communication, we construct VisualEDU,
a multimodal dataset for generating and refining
math visualizations from natural language problem
prompts. The dataset spans diverse mathemati-
cal domains and encodes the full transformation
pipeline from problem comprehension to aesthetic
video rendering.

4.1 Problem-Type Guided Design

VisualEDU categorizes problems into six types:
Functions, Plane Geometry, Analytic Geometry,
Solid Geometry, Probability, and Calculus, each

posing distinct reasoning and visualization chal-
lenges for evaluating VLMs’ symbolic and spatial
abilities. Function problems evaluate the ability of
VLMs to generate dynamic scenes (e.g., Graph, Ar-
row, Transform) representing functional structures.
Geometric problems assess spatial reasoning across
2D and 3D geometries through object placement,
animation timing, and layout coherence. Proba-
bility and calculus problems test the depiction of
uncertainty and continuous change using visual-
izations such as bar charts, point arrays, and area
shading.

4.2 Stage-wise Construction Pipeline

Each VisualEDU sample is constructed through a
structured multi-step pipeline, capturing intermedi-
ate reasoning, code, and visualization artifacts.

Our pipeline follows a structured workflow:
VLMs first derive structured solutions from math
problems, verified against expert-annotated ground
truths. Based on the problem type, they select
appropriate components and retrieve visualization
templates through a meta-learning system. The
models then synthesize executable Manim code,
iteratively correcting errors from initial drafts to
final renders. Rendered videos are segmented into
keyframes, allowing VLMs to diagnose visual lay-
out issues and propose refinements. Finally, the
code is revised according to these diagnostics, and
the resulting videos are evaluated by both human
annotators and VLMs for clarity, visual appeal, and
explanatory effectiveness.

Each data point in VisualEDU includes: original
problem, step-by-step solution, Manim code (ini-
tial and final), rendered videos, keyframes, layout
critiques, and multimodal quality scores.

4.3 Data Statistics

Table 1 shows task distribution across categories
and difficulty levels. Each category includes
balanced samples of varying complexity (Easy,
Medium, Hard), determined by number of steps, re-
quired animation layers, and layout sophistication.
Further breakdowns of code correction frequency,
keyframe count, and scoring variance are provided
in Appendix A.5.

5 Evaluation

In this section, we introduce the evaluation of the
VisualEDU benchmark, including the design prin-
ciples and metrics concerned. Unlike previous

16366

Category
Difficulty level

Overall
Easy Middle Hard

Function Problems 12 11 11 34
Plane Geometry 12 11 11 34

Analytic Geometry 11 11 11 33
Solid Geometry 11 11 11 33

Probability 11 11 11 33
Calculus 11 11 11 33

Total 68 66 66 200

Table 1: Statistics of VisualEDU.

benchmarks, we employ novel metrics to assess
the problem-solving video generation capabilities
of VLMs, with an emphasis on the readability of
video logic.

5.1 Design Principles

To comprehensively assess the video generation ca-
pabilities of VLMs for solving text-based problems,
we evaluate them with the following principles:

• Breadth and Reality: Covering a wide range of
problem types, domains, and difficulty levels
to evaluate generalization and robustness.

• Depth and Logical Coherence: Multiple-
round interaction to ensure the generated
video adapts and refines its explanations based
on additional contextual information or feed-
back. Emphasizing the need for VLMs to
generate videos that clearly articulate the step-
by-step solution to a given problem.

5.2 Metrics

Generating problem-solving videos requires a
multi-dimensional evaluation, particularly when
assessing both the overall structure and the detailed
steps of the solution. To ensure a comprehensive
evaluation, we propose a three-tiered framework
that progressively evaluates the task from macro to
micro, focusing on the following dimensions:

5.2.1 Logical Pass Rate

In the first stage of evaluation, we assess the over-
all performance of the model at a macro level
by verifying whether key indicators necessary for
video generation are successfully achieved. Subse-
quently, we decompose the video generation task
into finer-grained subtasks and evaluate both the
completion and the independence of each subtask.
This ensures that the model not only produces a

coherent final output but also demonstrates the abil-
ity to handle intermediate steps in a structured and
modular manner.
Step Execution Rate. From a macro perspective,
this phase evaluates the coverage of subtasks by
the generated video. To more accurately reflect
system efficiency, we extend the Step Execution
Rate (SER) metric by incorporating retry penal-
ties and enforcing dependency constraints between
subtasks:

SER =

∑nst
i=1wi · ci · qi · p(ri) · Depi∑nst

i=1wi
(1)

where nst is the number of total subtasks; wi

denotes the importance weight of subtask i; ci
is a binary indicator of subtask completion (1 if
completed, 0 otherwise); qi ∈ [0, 1] represents
the quality score of subtask execution; p(ri) =
a− b ln(ri+1) applies a retry penalty, where a de-
notes the initial score and b controls the decay rate
based on the number of retries ri; Depi ∈ {0, 1}
indicates whether all prerequisite subtasks required
for i have been successfully completed.
Internal Hallucination Resistance. In the eval-
uation of the generated videos, a primary focus
is placed on the VLM’s handling of task depen-
dencies. To assess this capability, we introduce
a metric called Internal Hallucination Resistance
(IHR), which is defined as:

IHR =

m∑

i=1

(1− λi · (Bi · (1− si))) · wi (2)

where nst denotes the total number of subtasks; B
is the Boolean set for the dependency; Bi = 1 indi-
cates "hallucination"; si ∈ [0, 1] indicate whether
the preceding dependent task has failed (si = 1)
or succeeded (si = 0). This term is introduced to
disambiguate hallucination sources that stem from
upstream execution errors. A score closer to 1 indi-
cates higher semantic alignment. λi is the penalty
factor for the i-th dependency, where a value of 1
indicates a completely incorrect dependency. wi

represents the weight of the i-th subtask, indicating
its importance in the dependency task.

Combined evaluation of these dimensions deter-
mines whether a task is successfully completed or
contains redundant steps due to incorrect depen-
dencies. We compute the Logical Pass Rate (LPR)
by multiplying the Step Execution Rate (SER) with
Internal Hallucination Resistance (IHR), providing

16367

a quantitative measure of whether the execution of
the plan adheres to the intended task logic.

5.2.2 Feedback Effectiveness
In the second evaluation stage, we perform a de-
tailed and fine-grained analysis of the accuracy of
essential procedural steps. This assessment rig-
orously examines the effectiveness of the visual
feedback recommendations produced by the Vision-
Language Model (VLM), as well as the existence
of any errors in the generated code that could po-
tentially obstruct the successful execution of subse-
quent steps.

We define Feedback Effectiveness (FE) metrics:

FE = α·
|B|∑

v=1

wv·Bv+β·(!Bc)·(1−
|N |∑

c=1

wc·
Nc

Nmax
)

(3)
where Bv ∈ {0, 1} are binary visual evaluation in-
dicators representing issues such as Elements Over-
lap, Inconsistent Font, and Layout Misalignment,
collectively denoted as |B| = {BEO, BIF , BLM}.
Nc ≥ 0 are count-based code error indicators, in-
cluding Syntax Errors and Parameter Errors, de-
noted as |N | = {NSE , NPE}.

The terms wv and wc refer to the normalized
weights assigned to the visual and code compo-
nents, respectively. Balancing coefficients α, β ∈
[0, 1] are used to weight the visual and code contri-
butions, subject to the constraint α + β = 1. Ad-
ditionally, !Bc is a binary indicator that evaluates
to 0 if essential code is missing, and 1 otherwise.
Nmax defines the upper bound for the total number
of code errors allowed.

5.2.3 Aesthetics Score
In the third evaluation stage, we define the overall
aesthetic score based on a weighted combination
of multiple positive and negative visual quality in-
dicators. The Aesthetic Score (AS) is computed
as:

AS =

∑m
i=1wi · Pi +

∑n
j=1 vj · (1−Nj)∑m

i=1wi +
∑n

j=1 vj
(4)

where m and n denote the number of positive
and negative indicators, respectively; Pi and Nj

represent the i-th positive indicator and the j-th
negative indicator, both taking binary values in
{0, 1}; Specifically, wi and vj denote the respec-
tive weights assigned to each Pi and Nj . Positive

indicators focus on desirable properties such as
temporal logic coherence, answer accuracy, and
readability, whereas negative indicators capture de-
ficiencies including overlap, font inconsistency, lay-
out error, and display incompleteness.

6 Experiments

6.1 Baselines

We evaluate 9 current mainstream VLMs, con-
sisting of five proprietary models and four open-
source models (detailed descriptions on these mod-
els can be found in Appendix B.3). The five
proprietary models include Llama-3.2-11B-Vision-
Instruct (Huang et al., 2024a), Llama-3.2-90B-
Vision-Instruct (Huang et al., 2024a), Qwen2.5-
VL-72B-Instruct, Qwen2.5-VL-7B-Instruct (Bai
et al., 2025). For open-source models, we uti-
lize GPT-4o-Mini (OpenAI, 2024a), GPT-4o-11-
20 (OpenAI, 2024b), Grok-2-Vision-1212 (xAI,
2024), Claude-3-7-Sonnet-20250219 (Anthropic,
2025) and Gemini-2.5-Pro-Exp-03-25 (Google
DeepMind, 2025). The performance results across
these models are compared based on the capability
to generate high-quality mathematical video expla-
nations from textual problems.

6.2 Evaluation Settings

To ensure consistency and reproducibility, all mod-
els are accessed via their official APIs with stan-
dardized interactions and minimized inconsisten-
cies. Keyframe images are provided via URLs
rather than embedded as Base64 strings. The tem-
perature is fixed at 0 across all models, with other
parameters kept at default settings to ensure fair
comparisons.

6.3 Main Results

As shown in Table 2, we present the overall perfor-
mance of various VLMs on the VisualEDU bench-
mark. The detailed computation of the metrics
listed in the table can be found in the Appendix B.4.
In the comprehensive performance evaluation, the
proprietary model Claude-3.7-Sonnet achieves the
highest accuracy of 64.9%, outperforming all other
models. Meanwhile, open-source models still
lag significantly behind proprietary ones. We
observe a clear trend that larger models exhibit
stronger capabilities—for example, Llama-3.2-
90B-Vision-Instruct outperforms Llama-3.2-11B-
Vision-Instruct by approximately 10%.

16368

Category
LPR FE AS Overall

SER IHR UC CC VA
Open-weight

Qwen2.5-VL-72B-Instruct 0.5817 0.6820 0.7317 0.4448 0.3800 0.6205 0.5120
Qwen2.5-VL-7B-Instruct 0.3004 0.4665 0.5433 0.2764 0.0750 0.6620 0.3903

Llama-3.2-90B-Vision-Instruct 0.5461 0.7390 0.8467 0.6664 0.2067 0.5160 0.4980
Llama-3.2-11B-Vision-Instruct 0.3720 0.5990 0.7033 0.4882 0.2967 0.5390 0.3951

Proprietary
Claude-3-7-Sonnet-20250219 0.6551 0.798 0.855 0.7164 0.7967 0.7455 0.6493

Gemini-2.5-pro-exp-03-25 0.5422 0.7500 0.9117 0.7364 0.6583 0.8210 0.6207
GPT-4o-11-20 0.6226 0.7685 0.9383 0.8598 0.715 0.6875 0.6149
GPT-4o-mini 0.5772 0.7745 0.8750 0.7294 0.4917 0.6820 0.5953
Grok2-vision 0.5197 0.7480 0.8667 0.7076 0.5983 0.6630 0.5518

Table 2: Performance of various VLMs on the VisualEDU benchmark. Specifically, SER represents the Step
Execution Rate, IHR denotes the Internal Hallucination Resistance, and UC measures Upstream Completion. CC
and VA respectively represent Code Correctness and Visual Accuracy. The final score is computed through a
weighted aggregation of Logic Pass Rate (LPR), Feedback Effectiveness (FE), and the Aesthetic Score (AS).

Claude-3.7-Sonnet demonstrates exceptional
performance on SER and IHR metrics, achieving
the highest pass rates in individual subtasks. At
the local indicator level, GPT-4o shows notable
advantages in reducing code errors and improving
meta-template matching, while Claude-3.7-Sonnet
maintains its lead in visual feedback accuracy. Ad-
ditionally, content generated by Gemini-2.5-pro
is more aligned with human aesthetic preferences,
leading to higher visual appeal scores.

Additionally, detailed performance metrics for
all models are reported in Appendix B.4, while
implementation specifics of the video generation
pipeline are provided in Appendix B.2.

6.4 Ablation Analysis

To evaluate the impact of our framework on video
quality, we conduct an ablation study as shown
in Figure 4. Several large models such as Qwen-
2.5 and GPT-4o-mini show a sharp decline in per-
formance in the absence of meta templates or vi-
sual feedback, highlighting the crucial role of these
components in guiding VLMs to generate appro-
priate video content—particularly for complex rea-
soning tasks. For Claude-3.7-Sonnet, introducing
meta-prompting results in a 5% overall accuracy
improvement, while visual feedback contributes
an additional 3% gain. Other models also exhibit
substantial improvements, with combined perfor-
mance increases ranging from 10% to 20% after
incorporating these enhancements. Detailed results
are provided in the Appendix B.4.

0.37

0.23

0.33

0.21

0.47

0.43

0.52

0.40

0.48

0.43

0.30

0.40

0.31

0.53

0.50

0.57

0.47

0.54

0.40

0.27

0.37

0.28

0.50

0.47

0.54

0.44

0.51

0.51

0.38

0.48

0.39

0.61

0.58

0.65

0.55

0.62

Qwen2.5-VL-72B

Qwen2.5-VL-7B

Llama-3.2-90B

Llama-3.2-11B

GPT-4o-11-20

GPT-4o-mini

Claude-3.7-Sonnet

Grok2-vision

Gemini-2.5pro

0.0 0.5 1.0 1.5 2.0 2.5

 MV
 NMV
 MNV
 NMNV

Figure 4: Ablation results. M: with Meta-Prompt, NM:
without Meta-Prompt; V: with Visual Feedback, NV:
without Visual Feedback.

6.5 Error Analysis

6.5.1 Error Analysis by Task Difficulty Level
As shown in Figure 5, we conduct a comparative
analysis of model performance across different dif-
ficulty levels in video generation tasks. The anal-
ysis leads to the following conclusions: text com-
plexity significantly affects the generation of visu-
ally appealing and logically coherent videos. The
Aesthetic Score is found to be negatively corre-
lated with input task complexity, with the most
pronounced performance degradation occurring in
the “hard” difficulty group. The Aesthetic Score
of most models drops significantly in this group,
indicating that current VLMs still face limitations
in handling complex reasoning and generation.

As task complexity increases, VLMs inevitably
require invoking a larger number of Manim tool
modules to complete video generation. Conse-

16369

LPR FE AS Overall

Qwen2.5-VL-72B

Qwen2.5-VL-7B

Llama-3.2-90B

Llama-3.2-11B

GPT-4o-11-20

GPT-4o-mini

Claude-3.7-Sonnet

Grok2-vision

Gemini-2.5pro

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

EasyMiddle Hard EasyMiddle Hard EasyMiddle Hard EasyMiddle Hard

Figure 5: Comparative analysis of different models un-
der various evaluation indicators, including Logic pass
rate (LPR), Feedback Effectiveness (FE), Aesthetics
Score (AS) and Overall.

quently, the models must accurately extract infor-
mation from high-density sources such as task de-
scriptions and keyframe specifications. This leads
to a higher frequency of tool invocation errors,
including incorrect parameter configurations and
calls to nonexistent modules. These issues reflect
the fragility of the current context-to-tool parame-
ter mapping mechanisms in complex tasks.

6.5.2 Error Analysis by Application Scenario
As illustrated in Figure 6, we evaluate task comple-
tion performance across various problem scenarios.
The results reveal that even the best-performing
model, Claude-3.7-Sonnet, achieves only 55% ac-
curacy in tool-intensive scenarios such as 3D ge-
ometry visualization, underscoring its limitations
in practical task representation. Specifically, the
model struggles to accurately interpret task require-
ments, generate content with correct logical and
temporal sequencing, and frequently exhibits high
parameter configuration error rates and insufficient
graphical descriptions.

In other task scenarios, the top-performing mod-
els achieve similar levels of accuracy; however, a
substantial gap remains between proprietary and
open-source models. For example, proprietary
models consistently reach over 60% accuracy in
analytic and plane geometry tasks. In contrast,
open-source models lag significantly behind. Fur-
thermore, probability-related problems, which re-
quire the representation of various scenarios, result
in much lower performance for smaller models,
for example, Llama-3.2-11B only achieves 30%
accuracy.

To summarize, current VLMs encounter signifi-
cant challenges when handling tasks characterized
by high module complexity, rich scenario-based de-

55.1%

70.1%

67.4%

65.0%

68.8%

69.1%

Figure 6: Comparison of the performance of different
models in different scenarios. Percentage values indi-
cate the success rate for each task.

scriptions, and intensive logical reasoning. These
findings point to critical areas for improvement of
VLMs, including robust tool invocation strategies,
enhanced mathematical reasoning and code transla-
tion abilities, and better alignment with real-world
application scenarios.

7 Conclusion

We introduce VisualEDU, a novel benchmark and
dataset designed to evaluate VLMs’ ability to gen-
erate structured educational videos. Alongside,
we propose a specialized framework that inte-
grates meta-prompt learning, feedback enhance-
ment, video evaluation, and a modular drawing
tool library.

Experiments show that while advanced mod-
els demonstrate promise, significant challenges
persist, particularly for open-source VLMs. Key
bottlenecks include handling complex tasks, long-
context reasoning, precise tool invocation, and log-
ical reasoning in mathematical domains. Ablation
studies further confirm the critical role of meta-
templates and visual feedback mechanisms in guid-
ing VLMs during complex reasoning processes.

VisualEDU establishes a new platform for ad-
vancing text-to-video generation and systematically
identifies key challenges for VLMs, including tool
use, mathematical and code reasoning, and real-
world alignment. Future work will explore rein-
forcement learning-enhanced frameworks to im-
prove generalization and adaptability.

16370

Limitations

Our research and resource release is limited to En-
glish, and is limited to generating math problem
solving videos only. In the future, we hope to
be able to generate videos in a variety of disci-
plines and gradually increase the difficulty of the
questions. Our benchmarks need to be evaluated
from a more diverse perspective and compared with
domain-specific models. Additionally, future work
will explore enhancing code generation capabil-
ities via fine-tuning Vision-Language Models to
improve their performance on our benchmark.

Ethics Statement

Misuse of our methods can produce harmful con-
tent that can have dependent side effects on teens’
learning. This work and its assets are strictly for
research purposes and against any harmful appli-
cations. Moderation and filtering mechanisms are
recommended to curb suspicious content. All data
used in this study are collected directly by the au-
thors. The data used in this study have been thor-
oughly inspected to ensure that they contain no per-
sonally identifiable information or offensive con-
tent. Comprehensive human evaluation guidelines
are provided, with explicit instructions to exclude
any data involving illegal or criminal content.

Acknowledgements

This work was conducted as part of the research
on educational applications of multimodal models
within the Algorithm Team at Beijing Detianyuan-
sheng Technology Co., Ltd., an education-focused
startup in China. We sincerely appreciate the sup-
port from our colleagues and their constructive
feedback , which contributed to the development
of this study.

This work was also supported by the National
Nature Science Foundation of China under Grant
52308250, the STI 2030-Major Projects under
grant 2022ZD0208900, and the Guangdong Ba-
sic and Applied Basic Research Foundation under
grant 2023A1515140100.

References
Anthropic. 2025. Claude 3.7 sonnet and claude code.

Accessed: 2025-05-13.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang,
Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi

Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu,
Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang
Lin. 2025. Qwen2.5-vl technical report. Preprint,
arXiv:2502.13923.

Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Her-
rmann, Roni Paiss, Shiran Zada, Ariel Ephrat, Jun-
hwa Hur, Guanghui Liu, Amit Raj, et al. 2024. Lu-
miere: A space-time diffusion model for video gener-
ation. In SIGGRAPH Asia 2024 Conference Papers,
pages 1–11.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim
Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. 2023. Align your latents: High-
resolution video synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
22563–22575.

Yupeng Chen, Penglin Chen, Xiaoyu Zhang, Yixian
Huang, and Qian Xie. 2025. Editboard: Towards a
comprehensive evaluation benchmark for text-based
video editing models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39,
pages 15975–15983.

Ali Diba, Vivek Sharma, Mohammad Arzani, Luc
Van Gool, et al. 2023. Spatio-temporal convolution-
attention video network. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 859–869.

PE FADIYA, SUKRITH LAL PS, and KM SHEENA.
2025. Sora ai: The future of video generation. Au-
thorea Preprints.

Hao Fei, Shengqiong Wu, Wei Ji, Hanwang Zhang, and
Tat-Seng Chua. 2024. Dysen-vdm: Empowering
dynamics-aware text-to-video diffusion with llms. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 7641–
7653.

Google DeepMind. 2025. Gemini 2.5: Our most intelli-
gent ai model. Accessed: 2025-05-13.

Kunal Chawla Huang, Kushal Lakhotia, Kyle Huang,
Lailin Chen, Lakshya Garg, A Lavender, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, et al.
2024a. The llama 3 herd of models. Preprint.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang,
Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al.
2024b. Vbench: Comprehensive benchmark suite
for video generative models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 21807–21818.

Pengliang Ji, Chuyang Xiao, Huilin Tai, and Mingxiao
Huo. 2024. T2vbench: Benchmarking temporal dy-
namics for text-to-video generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5325–5335.

16371

https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2502.13923
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/

Satyadhar Joshi. 2025. A comprehensive review of
deepseek: Performance, architecture and capabilities.

Levon Khachatryan, Andranik Movsisyan, Vahram
Tadevosyan, Roberto Henschel, Zhangyang Wang,
Shant Navasardyan, and Humphrey Shi. 2023.
Text2video-zero: Text-to-image diffusion models are
zero-shot video generators. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 15954–15964.

Seung Wook Kim, Bradley Brown, Kangxue Yin,
Karsten Kreis, Katja Schwarz, Daiqing Li, Robin
Rombach, Antonio Torralba, and Sanja Fidler. 2023.
Neuralfield-ldm: Scene generation with hierarchi-
cal latent diffusion models. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 8496–8506.

Mingxiang Liao, Qixiang Ye, Wangmeng Zuo, Fang
Wan, Tianyu Wang, Yuzhong Zhao, Jingdong Wang,
Xinyu Zhang, et al. 2024. Evaluation of text-to-video
generation models: A dynamics perspective. Ad-
vances in Neural Information Processing Systems,
37:109790–109816.

Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang,
Yong Zhang, Haoxin Chen, Yang Liu, Tieyong Zeng,
Raymond Chan, and Ying Shan. 2024. Evalcrafter:
Benchmarking and evaluating large video generation
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
22139–22149.

Yuanxin Liu, Lei Li, Shuhuai Ren, Rundong Gao,
Shicheng Li, Sishuo Chen, Xu Sun, and Lu Hou.
2023. Fetv: A benchmark for fine-grained evaluation
of open-domain text-to-video generation. Advances
in Neural Information Processing Systems, 36:62352–
62387.

Jiaxi Lv, Yi Huang, Mingfu Yan, Jiancheng Huang,
Jianzhuang Liu, Yifan Liu, Yafei Wen, Xiaoxin
Chen, and Shifeng Chen. 2024. Gpt4motion: Script-
ing physical motions in text-to-video generation via
blender-oriented gpt planning. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 1430–1440.

OpenAI. 2024a. Gpt-4o mini: advancing cost-efficient
intelligence. Accessed: 2025-05-13.

OpenAI. 2024b. Hello gpt-4o. Accessed: 2025-05-13.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PmLR.

Ivonne C Sánchez et al. 2025. Projeto am2: Animações
matemáticas com manim. Paradigma, 46(1).

Andreas Steiner, André Susano Pinto, Michael Tschan-
nen, Daniel Keysers, Xiao Wang, Yonatan Bitton,
Alexey Gritsenko, Matthias Minderer, Anthony Sher-
bondy, Shangbang Long, Siyang Qin, Reeve Ingle,
Emanuele Bugliarello, Sahar Kazemzadeh, Thomas
Mesnard, Ibrahim Alabdulmohsin, Lucas Beyer, and
Xiaohua Zhai. 2024. Paligemma 2: A family of ver-
satile vlms for transfer. Preprint, arXiv:2412.03555.

Shangkun Sun, Xiaoyu Liang, Songlin Fan, Wenxu Gao,
and Wei Gao. 2025. Ve-bench: Subjective-aligned
benchmark suite for text-driven video editing quality
assessment. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pages 7105–
7113.

The Manim Community Developers. 2024. Manim –
Mathematical Animation Framework. https://www.
manim.community/. Accessed: 2024-05-13.

Ye Tian, Ling Yang, Haotian Yang, Yuan Gao, Yufan
Deng, Xintao Wang, Zhaochen Yu, Xin Tao, Pengfei
Wan, Di ZHANG, et al. 2024. Videotetris: Towards
compositional text-to-video generation. Advances in
Neural Information Processing Systems, 37:29489–
29513.

Fan Wang, Chaochao Chen, Weiming Liu, Minye Lei,
Jintao Chen, Yuwen Liu, Xiaolin Zheng, and Jianwei
Yin. 2025. Dr-vae: Debiased and representation-
enhanced variational autoencoder for collaborative
recommendation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 39, pages
12703–12711.

Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya
Zhang, Xiang Wang, and Shiwei Zhang. 2023. Mod-
elscope text-to-video technical report. arXiv preprint
arXiv:2308.06571.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei
Zhao, Song XiXuan, et al. 2024a. Cogvlm: Visual
expert for pretrained language models. Advances in
Neural Information Processing Systems, 37:121475–
121499.

Xiang Wang, Shiwei Zhang, Hangjie Yuan, Zhiwu Qing,
Biao Gong, Yingya Zhang, Yujun Shen, Changxin
Gao, and Nong Sang. 2024b. A recipe for scaling up
text-to-video generation with text-free videos. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6572–6582.

Muhammad Waseem, Muhammad Usman Ghani Khan,
and Syed Khaldoon Khurshid. 2025. Lcgd: Enhanc-
ing text-to-video generation via contextual llm guid-
ance and u-net denoising. IEEE Access.

Wenming Weng, Ruoyu Feng, Yanhui Wang, Qi Dai,
Chunyu Wang, Dacheng Yin, Zhiyuan Zhao, Kai
Qiu, Jianmin Bao, Yuhui Yuan, et al. 2024. Art-v:
Auto-regressive text-to-video generation with diffu-
sion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 7395–7405.

16372

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2412.03555
https://arxiv.org/abs/2412.03555
https://www.manim.community/
https://www.manim.community/

xAI. 2024. Bringing grok to everyone. Accessed: 2025-
05-13.

Xiaorui Zhang, Qijian Xie, Wei Sun, and Ting Wang.
2025. Fall detection method based on spatio-
temporal coordinate attention for high-resolution net-
works. Complex & Intelligent Systems, 11(1):1.

Guosheng Zhao, Xiaofeng Wang, Zheng Zhu, Xinze
Chen, Guan Huang, Xiaoyi Bao, and Xingang Wang.
2025. Drivedreamer-2: Llm-enhanced world models
for diverse driving video generation. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 39, pages 10412–10420.

A Design

A.1 Procedure of VisualEDU

We propose a collaborative multi-agent architec-
ture to automate the end-to-end pipeline for trans-
forming mathematical problems into high-quality
instructional videos. The overall workflow consists
of a structured sequence of stages, wherein agents
interact to progressively construct, refine, and vali-
date visualized mathematical solutions. While each
phase is guided by specialized prompts and agent
roles, the process supports multi-turn interactions
rather than a rigid Planner/Responder framework.
The stages are summarized as follows:

• comprehending the mathematical problem
and generating a step-by-step textual solution;

• selecting appropriate Manim visualization
modules based on the solution structure and
task type;

• optionally retrieving similar problems and ref-
erence solutions to inform the generation pro-
cess;

• synthesizing initial Manim code by integrat-
ing the problem, derived solution, selected
modules, and references;

• iteratively debugging and refining the code to
resolve execution errors;

• performing visual inspection of the generated
output (potentially using multi-modal inputs);

• further optimizing the code based on visual
feedback to enhance the final animation qual-
ity.

Each stage is executed by a specialized agent with
the following core responsibilities:

(1) Solve Agent: Logical Reasoning Genera-
tor. This agent parses the input math problem
into a structured, step-by-step textual explana-
tion through natural language understanding
and symbolic inference. The resulting formal
derivation and supporting narration serve as
the foundational content for the instructional
video and are passed to the next agent.

(2) Scripting & Resource Allocation Agent.
This agent plans the visual rendering by select-
ing suitable Manim modules and reference tem-
plates from the Meta Prompt Library based
on the logical structure provided by the Solve
Agent. It composes a composite instruction
prompt for code generation and maintains the
Meta Prompt Library by updating it with high-
quality exemplars.

(3) Code Generation & Debugging Agent. This
agent uses a VLM to generate executable
Python code from the instruction prompt and
attempts to render the animation. In case of er-
rors, it captures the logs and iteratively refines
the code via revised prompts until successful
rendering is achieved. The resulting video and
code are forwarded for visual evaluation.

(4) Visual Evaluation & Refinement Agent.
This agent assesses the visual quality of the
output with respect to overlap, font consis-
tency, layout coherence, and animation clarity.
It generates structured feedback to improve
code via further VLM interactions. This loop
continues until the video meets predefined
quality thresholds.

(5) Dynamic Update Mechanism. Validated
videos and their associated code snip-
pets—along with contextual metadata such
as problem type and visual goals—are stored
in the Meta Prompt Library. This repository
supports prompt reuse and enhances future
generation quality through cumulative learn-
ing.

This multi-agent system, guided by modular
prompts and visual feedback, enables robust or-
chestration of VLM capabilities for instructional
video generation. The prompts used at each stage
are presented in Appendix B.4.

16373

https://x.ai/blog/grok-1212

A.2 Manim tool pool

To enhance the fidelity of Manim library module
utilization in code synthesized by VLMs, we intro-
duce a methodology employing a JSON-formatted
compendium of extant Manim modules. This struc-
tured resource constrains the VLM’s selection to
canonical library components, thereby mitigating
the propensity for ’hallucination’—the erroneous
generation of non-existent or user-defined mod-
ules—and improving the overall correctness of the
generated code.

1 {
2 "Middle School Mathematics Topics

": {
3 "Numbers and Algebra": {
4 "Understanding Numbers and

Operations": {
5 "Used for constructing

number lines , displaying digits
and basic operation animations

": [
6 "NumberLine (Manim.

mobject.numbers)",
7 "DecimalNumber (Manim.

mobject.numbers)",
8 "Integer (Manim.mobject.

numbers)"
9],

10 "Displaying arithmetic
expressions , formulas and
calculation steps": [

11 "MathTex (Manim.mobject.
tex_mobject)",

12 "Tex (Manim.mobject.
tex_mobject)"

13],
14 "Controlling the dynamic

appearance and transformation
of numbers and formulas": [

15 "Write , FadeIn , Transform
(Manim.animation)"

16]
17 },
18 "Algebraic Expressions and

Operations": {
19 "Used for rendering

fractions , algebraic
expressions and factorization
formulas": [

20 "MathTex / Tex (Manim.
mobject.tex_mobject)"

21],
22 "Demonstrating the

transformation and
simplification process of
expressions": [

23 "Transform ,
ReplacementTransform (Manim.
animation.transform)"

24]
25 },
26 "Equations and Inequalities":

{
27 "Used for displaying

equations , inequalities and

solution steps": [
28 "MathTex / Tex (Manim.

mobject.tex_mobject)"
29],
30 "Constructing coordinate

systems to facilitate visual
problem solving": [

31 "Axes , NumberPlane (Manim
.mobject.coordinate_systems)"

32],
33 "Displaying the graph of an

equation and the intuitive
location of its roots": [

34 "FunctionGraph (Manim.
mobject.graph)",

35 "ParametricFunction (
Manim.mobject.
parametric_function)"

36]
37 }
38 },
39 "Shapes and Geometry": {
40 "Basics of Plane Geometry": {
41 "Constructing basic figures

(points , lines , circles ,
polygons , arcs , angles)": [

42 "Dot , Line , Arrow ,
Polygon , Circle , Arc , Sector ,
Angle (Manim.mobject.geometry)"

43],
44 "Displaying theorem proofs

and formula annotations": [
45 "MathTex / Tex (Manim.

mobject.tex_mobject)"
46],
47 "Demonstrating the drawing

of figures and dynamic proofs":
[

48 "ShowCreation , FadeIn ,
Transform (Manim.animation)"

49]
50 },
51 "Triangles and Quadrilaterals

": {
52 "Drawing triangles and

quadrilaterals": [
53 "Polygon (Manim.mobject.

geometry)"
54],
55 "Annotating interior/

exterior angles , angle
bisectors , etc.": [

56 "Angle (Manim.mobject.
geometry)"

57],
58 "Combining graphics to

illustrate theorem proofs": [
59 "MathTex / Tex (Manim.

mobject.tex_mobject)"
60]
61 },
62 "Circles and Related Concepts

": {
63 "Drawing circles , arcs ,

sectors and demonstrating
tangents , inscribed angles , etc
.": [

64 "Circle , Arc , Sector ,
Angle (Manim.mobject.geometry)"

65],

16374

66 "Displaying circle -related
formulas and proof processes":
[

67 "MathTex / Tex (Manim.
mobject.tex_mobject)"

68]
69 },
70 "Geometric Transformations":

{
71 "Demonstrating

transformations such as
translation , rotation and
reflection": [

72 "Transform , ApplyMethod ,
FadeTransform (Manim.animation)
"

73],
74 "Manipulating multiple

objects simultaneously": [
75 "VGroup (Manim.mobject.

types.vectorized_mobject)"
76]
77 }
78 },
79 "Data and Statistics": {
80 "Data Collection and

Organization": {
81 "Constructing coordinate

backgrounds for statistical
charts": [

82 "NumberLine (Manim.
mobject.numbers)",

83 "Axes , NumberPlane (Manim
.mobject.coordinate_systems)"

84],
85 "Creating bar charts and

histograms": [
86 "Rectangle , VGroup (Manim

.mobject.geometry & Manim.
mobject.types.
vectorized_mobject)"

87],
88 "Annotating statistical

data and formulas": [
89 "MathTex / Tex (Manim.

mobject.tex_mobject)"
90]
91 },
92 "Statistical Measures": {
93 "Dynamically displaying

mean , median and mode": [
94 "DecimalNumber , Integer (

Manim.mobject.numbers)"
95],
96 "Showing formula

derivations and explanations":
[

97 "MathTex / Tex (Manim.
mobject.tex_mobject)"

98]
99 },

100 "Basic Probability": {
101 "Displaying probability

formulas and event
representations": [

102 "MathTex / Tex (Manim.
mobject.tex_mobject)"

103],
104 "Drawing probability

distribution graphs": [

105 "Axes (Manim.mobject.
coordinate_systems)",

106 "FunctionGraph (Manim.
mobject.graph)"

107]
108 }
109 }
110 },
111 "High School Mathematics Topics":

{
112 "Numbers and Expressions (

Algebra Section)": {
113 "Sets and Mappings": {
114 "Displaying set symbols ,

intersections , unions ,
complements , etc.": [

115 "MathTex / Tex (Manim.
mobject.tex_mobject)"

116],
117 "Drawing Venn diagrams (if

necessary)": [
118 "SVGMobject (Manim.

mobject.svg)"
119],
120 "Demonstrating dynamic

changes in relationships
between sets": [

121 "FadeIn , Transform (Manim
.animation)"

122]
123 },
124 "Polynomials and

Factorization": {
125 "Displaying polynomial

expressions and factorization
formulas": [

126 "MathTex / Tex (Manim.
mobject.tex_mobject)"

127],
128 "Demonstrating

factorization and
simplification processes": [

129 "Transform ,
ReplacementTransform (Manim.
animation.transform)"

130]
131 },
132 "Equations and Inequalities":

{
133 "Showing equation solving

and inequality proofs": [
134 "MathTex / Tex (Manim.

mobject.tex_mobject)"
135],
136 "Drawing function graphs to

intuitively display roots and
regions": [

137 "Axes , NumberPlane (Manim
.mobject.coordinate_systems)",

138 "FunctionGraph (Manim.
mobject.graph)"

139]
140 }
141 },
142 "Functions and Analytic

Geometry": {
143 "Concepts of Functions and

Graphs": {
144 "Constructing coordinate

backgrounds for function graphs

16375

": [
145 "Axes , NumberPlane (Manim

.mobject.coordinate_systems)"
146],
147 "Drawing standard function

graphs and parametric curves":
[

148 "FunctionGraph (Manim.
mobject.graph)",

149 "ParametricFunction (
Manim.mobject.
parametric_function)"

150],
151 "Annotating function

expressions and transformation
processes": [

152 "MathTex / Tex (Manim.
mobject.tex_mobject)"

153]
154 },
155 "Composite Functions and

Inverse Functions": {
156 "Demonstrating the

construction and inversion of
functions": [

157 "Transform (Manim.
animation)",

158 "FunctionGraph",
159 "MathTex / Tex"
160]
161 },
162 "Sequences": {
163 "Displaying sequence terms ,

general terms and summation
formulas": [

164 "NumberLine (Manim.
mobject.numbers)",

165 "DecimalNumber (Manim.
mobject.numbers)",

166 "MathTex / Tex (Manim.
mobject.tex_mobject)"

167],
168 "Dynamically demonstrating

recursive processes": [
169 "Transform , Write (Manim.

animation)"
170]
171 },
172 "Analytic Geometry": {
173 "Drawing Cartesian

coordinate systems": [
174 "Axes , NumberPlane (Manim

.mobject.coordinate_systems)"
175],
176 "Constructing figures such

as lines , circles , ellipses and
parabolas": [

177 "Line , Dot , Circle ,
Polygon (Manim.mobject.geometry
)"

178],
179 "Displaying equations and

proofs of lines and circles": [
180 "MathTex / Tex (Manim.

mobject.tex_mobject)",
181 "FunctionGraph ,

ParametricFunction"
182]
183 }
184 },

185 "Trigonometric Functions and
Plane Vectors": {

186 "Trigonometric Functions": {
187 "Constructing coordinate

backgrounds for trigonometric
graphs": [

188 "Axes , NumberPlane (Manim
.mobject.coordinate_systems)"

189],
190 "Drawing graphs of sine ,

cosine and tangent functions":
[

191 "FunctionGraph ,
ParametricFunction (Manim.
mobject.graph & Manim.mobject.
parametric_function)"

192],
193 "Annotating angles and

auxiliary proofs": [
194 "Angle (Manim.mobject.

geometry)",
195 "MathTex / Tex (Manim.

mobject.tex_mobject)"
196]
197 },
198 "Plane Vectors": {
199 "Drawing vectors and their

operations": [
200 "Vector (Manim.mobject.

vector_space)"
201],
202 "Displaying vector formulas

and computation processes": [
203 "MathTex / Tex (Manim.

mobject.tex_mobject)"
204],
205 "Dynamically demonstrating

vector addition and
decomposition": [

206 "Transform , FadeIn (Manim
.animation)"

207]
208 }
209 },
210 "Solid Geometry and Spatial

Vectors": {
211 "Spatial Geometry": {
212 "Constructing 3D scenes and

coordinate backgrounds": [
213 "ThreeDScene (Manim.scene

.three_dimensions)",
214 "ThreeDAxes (Manim.

mobject.three_dimensions)"
215],
216 "Drawing 3D surfaces (such

as spheres and cones)": [
217 "Surface ,

ParametricSurface (Manim.
mobject.surface)"

218],
219 "Displaying spatial vectors

and operations": [
220 "Vector (suitable for 3D,

Manim.mobject.vector_space)",
221 "MathTex / Tex (Manim.

mobject.tex_mobject)"
222]
223 }
224 },
225 "Probability and Statistics": {

16376

226 "Permutations , Combinations
and Probability Theory": {

227 "Displaying permutation ,
combination and probability
formulas": [

228 "MathTex / Tex (Manim.
mobject.tex_mobject)"

229],
230 "Grouping objects for

display": [
231 "VGroup (Manim.mobject.

types.vectorized_mobject)"
232],
233 "Drawing probability

distribution graphs": [
234 "Axes (Manim.mobject.

coordinate_systems)",
235 "FunctionGraph (Manim.

mobject.graph)"
236]
237 },
238 "Basics of Statistics": {
239 "Displaying data

distributions , mean , median ,
etc.": [

240 "NumberLine ,
DecimalNumber (Manim.mobject.
numbers)"

241],
242 "Showing statistical

formulas and calculation steps"
: [

243 "MathTex / Tex (Manim.
mobject.tex_mobject)"

244]
245 }
246 },
247 "Calculus": {
248 "Limits and Continuity": {
249 "Constructing coordinate

backgrounds for function graphs
and demonstrating limit

processes": [
250 "Axes , NumberPlane (Manim

.mobject.coordinate_systems)",
251 "FunctionGraph ,

ParametricFunction (Manim.
mobject.graph & Manim.mobject.
parametric_function)"

252],
253 "Displaying limit

definitions and expressions": [
254 "MathTex / Tex (Manim.

mobject.tex_mobject)"
255]
256 },
257 "Derivatives and

Differentiation": {
258 "Displaying function graphs

and tangent lines": [
259 "Axes , FunctionGraph (

Manim.mobject.
coordinate_systems & Manim.
mobject.graph)",

260 "TangentLine (Manim.
mobject.geometry , via
get_tangent_line method)"

261],
262 "Showing derivative

formulas and geometric

interpretations": [
263 "MathTex / Tex (Manim.

mobject.tex_mobject)",
264 "Vector , Arrow (Manim.

mobject.vector_space & Manim.
mobject.geometry)"

265]
266 },
267 "Integrals": {
268 "Displaying integral

regions and function graphs": [
269 "Axes , FunctionGraph (

Manim.mobject.
coordinate_systems & Manim.
mobject.graph)"

270],
271 "Dynamically demonstrating

definite integral regions": [
272 "VMobject (used for area

filling , customizable Area
class)"

273],
274 "Displaying integral

formulas and the fundamental
theorem": [

275 "MathTex / Tex (Manim.
mobject.tex_mobject)"

276]
277 }
278 }
279 }
280 }

Listing 1: Manim moudle json

A.3 Seed-Guided Multi-Stage Question
Generation

The proposed new question generation mechanism
builds a multi-stage production architecture de-
signed to systematically evolve seed questions into
diverse and quality-assured variants:

• Target Definition-Agent: The seed question
and high-level generation directives (e.g., de-
sired variation count, general difficulty trajec-
tory, key knowledge points) will be received.
While preserving the pedagogical intent of the
seed question, specific, actionable generation
targets—including the precise number of new
questions, explicit difficulty controls, and de-
fined knowledge point constraints—will be
established. Its core function is to translate
overarching generation goals into quantifiable
parameters and constraints that guide the sub-
sequent evolution process.

• Prompt-Driven Generation-Agent: It is re-
sponsible for receiving the seed question and
the established generation targets, and subse-
quently invoking a LLM using carefully con-
structed prompts. These prompts are designed

16377

to elicit new question variations that align with
the seed question’s content and the predefined
targets for diversity, difficulty, and knowledge
point coverage. The main role of this agent is
to leverage the generative power of VLMs to
produce a raw corpus of candidate new ques-
tions.

• Initial Filtration-Agent: The raw set of gen-
erated questions will be received, and this cor-
pus will be systematically filtered based on
a series of automated checks. These checks
include ensuring grammatical correctness, as-
sessing novelty through duplication detection
(against the seed question and other gener-
ated questions), and verifying adherence to the
specified knowledge point tags or constraints.
The framework acts as a preliminary quality
gate to eliminate syntactically flawed, redun-
dant, or irrelevant question candidates.

• Quality Assurance-Agent (Optional): The
filtered set of candidate questions will be re-
ceived, and these questions will undergo a
final quality assessment. This can involve an
automated evaluation by a dedicated model to
assess aspects like clarity, pedagogical sound-
ness, and estimated difficulty, or it can entail
preparing the questions for, and incorporating
feedback from, a human review process. The
evaluation process ensures that the finally se-
lected new questions are of high quality, are
unambiguous, and meet the specific pedagogi-
cal requirements, thus ensuring the integrity
of the generated educational material.

This phrasing attempts to capture the more for-
mal, passive-voice, and function-oriented style of
your example.

A.4 Different Scenarios Standards for
Mathematical Solution Videos

To ensure clarity, professionalism, and consistency
across educational videos for six core types of
mathematical problems, this appendix defines a
comprehensive quality standard for video produc-
tion. The criteria are structured around four core
dimensions: visual aesthetics, logical coherence,
accuracy, and readability, aiming to enhance the
effectiveness and learning experience of instruc-
tional videos.

A.4.1 General Standards (Applicable to All
Problem Types)

The following standards apply to all categories of
mathematical solution videos to ensure baseline
quality and consistency.

Visual Aesthetics

• Video format: Aspect ratio should be 16:9
with a minimum resolution of 1080p.

• Background: Use a clean blackboard or
whiteboard-style background to minimize dis-
tractions.

• Fonts and sizes: A unified, legible font
(e.g., Noto Serif SC, Microsoft YaHei, or
handwritten-style fonts) should be used. Math-
ematical expressions must use font sizes no
smaller than 24pt.

• Layout and highlighting: Solution steps
should be clearly segmented. Key information
(e.g., known conditions, target quantities, con-
clusions) should be highlighted using color
where appropriate.

Logical Coherence

• Reasoning flow: Solutions should progress
logically from known information to the final
result.

• Step transitions: Each step should include
connective language (e.g., “therefore,” “it fol-
lows that”) to clarify logical progression.

• Diagram-text alignment: Visual elements
(e.g., figures, equations) must appear in sync
with verbal or written explanations.

Accuracy

• Mathematical rigor: All formulas, symbols,
definitions, and terminology must comply
with standard curricula and official guidelines.

• Error-free content: Videos must be free from
grammatical, computational, or graphical er-
rors.

• Diagram annotations: Geometric diagrams
must be clearly and correctly labeled (e.g.,
points, lines, angles, units).

Readability

16378

Figure 7: The framework of instructional question diversification from seed templates. The four-agent system
evolves a simple circle problem (standard form) into a more complex one (general form) by defining transformation
targets, generating candidates with an LLM, and then filtering and validating, while preserving the core geometric
properties (center, radius).

• Visual pacing: Use clear split-screen layouts
or controlled camera movements to guide at-
tention.

• Narration pace: Recommended speech rate
is 140–160 characters per minute in Mandarin.

• Content flow: Handwriting or typing should
appear gradually and smoothly to ensure learn-
ers can follow along.

A.4.2 Task-Specific Requirements
In addition to the general standards, each problem
type requires specific content elements and produc-
tion considerations.

Function Problems (e.g., monotonicity, ex-
trema, roots) Required Elements:

• Explicit function expressions.

• Domain and range analysis.

• Sketches or graphs illustrating function trends.

• Derivative or inequality-based analysis.

• Highlighted monotonic intervals and extrema.

• Written summary of conclusions (e.g., “the
function is increasing on. . . ”).

Special Notes: Use animation to illustrate mono-
tonicity changes and formation of extrema where
possible.

Analytic Geometry (e.g., lines, circles, ellipses,
parabolas) Required Elements:

• Standard equations of geometric objects.

• Accurate Cartesian coordinate systems.

• Labeled key elements: intersections, symmet-
ric points, lines.

• Algebraic calculations (e.g., distance formula,
slope analysis).

Special Notes: Ensure diagrams reflect true spatial
relations, not merely symbolic illustrations; dual
verification via algebraic and geometric reasoning
is encouraged.

Plane Geometry (e.g., angles, similarity, con-
gruence, auxiliary lines) Required Elements:

• Complete, annotated geometric diagrams.

• Clear rationale for auxiliary constructions.

• Highlighted use of theorems (e.g., congruence
conditions, angle bisector).

16379

• Step-by-step synchronization between dia-
gram updates and explanations.

Special Notes: Use dynamic geometry software
(e.g., GeoGebra) to animate constructions and
transformations.

Solid Geometry (e.g., surface area, volume,
spatial angles) Required Elements:

• 3-view drawings or perspective diagrams of
3D structures.

• Clear labeling of key points, lines, and sur-
faces.

• Height, projection, and perpendicularity anal-
ysis.

• Demonstration of added lines or planes for
construction.

Special Notes: Use 3D modeling tools (e.g.,
SketchUp) with rotation to visualize objects from
multiple perspectives. Cross-sections may be
needed for angle analysis.

Probability (e.g., classical models, conditional
probability, expectation) Required Elements:

• Clear definition of the sample space.

• Proper notation and explanation of events.

• Detailed application of probability formulas.

• Visual aids (e.g., tree diagrams, tables) for
complex cases.

• Verbal interpretation of probabilistic concepts.

Special Notes: Use animation to simulate random
events (e.g., dice rolls); emphasize logical justifica-
tion of probability values.

Calculus (e.g., limits, derivatives, integrals)
Required Elements:

• Detailed derivation steps for limits, deriva-
tives, and integrals.

• Graph-based analysis (e.g., inflection points,
asymptotes).

• Annotated steps for differentiation/integration
with brief justifications.

• Interpretation of results in geometric or physi-
cal terms (e.g., derivatives as velocity).

Special Notes: Use animation to show tangent
slope changes, area accumulation, etc.; reinforce
intuitive understanding of core concepts.

A.5 Details of Data Statistics
Table 3 quantifies the task complexity at each diffi-
culty level in the VISUALEDU benchmark.

Difficulty Level
Token

Iterate
Avg Med Range

Easy 15184 15344 12869 - 19475 0.6
Middle 19173 17986 14169 - 24457 1.5
Hard 24543 24487 18195 - 36472 2.4

Table 3: Details of Difficulty Level.

B Experiments Details

B.1 Calculation Details
The recorded results are summarized in Table ??.
We report several subtask-specific indicators:

• Preceding Task Execution Rate (PTER): In-
dicates whether the preceding dependent sub-
task produced any output.

• Hallucination Rate (HR): Measures whether
the current subtask output exhibits halluci-
nated content.

• Average Human Rating (AHR): Human-
annotated quality score for the subtask output.

• Code Execution Rate (CER): Denotes
whether the generated code is executable.

• Code Defect Rate (CDR): Counts the num-
ber of errors due to incorrect parameters or
syntax.

• Visual Suggestion Effectiveness Rate
(VSER): Reflects whether the VLM provided
valid guidance based on video keyframes to
improve code.

• Aesthetic Subcomponent Rate (ASR):
Boolean indicators evaluating visual aspects
of the final video, including garbled charac-
ters, element overlap, inconsistent font size,
layout misalignment, incomplete display, and
logical coherence.

Each metric corresponds to one or more stages
in the VisualEDU framework:

• Solving Approach, Tool Localization, and
Meta-Prompt Match assess the quality of
logical reasoning, visualization tool selection,
and prompt design.

16380

• Code Generation, Visual Feedback, and De-
bugging Process capture performance in code
synthesis, refinement via multimodal feed-
back, and error correction.

We further record four specific execution checks:

• Initial Code: Whether the code runs upon
first generation.

• Initial w Debugging: Whether debugging al-
lows initially failed code to run.

• Visual Feedback: Whether visual-guided
code is executable.

• Visual w Debugging: Whether visually re-
vised code runs after debugging.

Additional statistics include:

• Parameters Errors and Syntax Errors:
Count of errors in code logic and syntax.

• Code Missing: Binary flag indicating missing
code output.

• Total Iteration: Total number of retry cycles
for debugging.

During evaluation, we compute six aggregated
metrics: SER, IHR, UC, Visual Accuracy, Code
Correctness, and Aesthetic Score. Their detailed
computation is provided as follows:

Step Execution Rate (SER). We assign weights
of 0.1, 0.05, 0.05, 0.3, 0.2, and 0.3 to the six compo-
nents: Solving Approach, Tool Localization, Meta-
Prompt Match, Code Generation, Visual Feedback,
and Debugging Process, respectively. The higher
weights assigned to Code Generation, Visual Feed-
back, and Debugging reflect their critical roles in
determining downstream quality. Notably, the ini-
tial code output from the VLM strongly conditions
the effectiveness of subsequent visual rendering
and error correction steps. Each component is
scored based on human evaluation. We define the
initial score a = 1 and the decay factor b = 0.5, en-
suring that p(ri) ∈ [0, 1], where the retry count ri
corresponds to the iteration count of the code error
rate. All non-debugging components are single-
pass and thus assume a retry count of zero. The
term Depi reflects checkpoint independence. Sub-
stituting these into the SER formula yields the final
score.

Internal Hallucination Resistance (IHR). Let
Bi be binary indicators of hallucination across six
stages, with corresponding weights 0.1, 0.1, 0.1,
0.3, 0.2, and 0.2. Let si ∈ {0, 1} indicate whether
the preceding task failed (1 if failed). These are
derived from the Preceding Task Execution Rate.
We set λi = 1 to zero out the positive score if
hallucination occurs. IHR is then computed as per
the defined formulation.

Feedback Effectiveness (FE). This score incor-
porates both visual and code outputs. Visual Sug-
gestion Effectiveness Rate and Code Defect Rate
contribute key values. Let Bc denote code miss-
ing, with Nmax = 5. Let N represent {Syntax
Errors, Incorrect Parameters}, and B denote binary
values from the visual suggestion indicators. We
set α = 0.4, β = 0.6, with normalized weights
wv = 0.333, and wc = {0.4, 0.6}. The Feedback
Effectiveness is derived accordingly.

Aesthetic Score (AS). We assign weights of 0.1,
0.2, 0.2, 0.2, 0.2, and 0.1 to: Logical Coherence
(positive indicator), and the following negative vi-
sual factors—Garbled Characters, Elements Over-
lap, Inconsistent Font, Layout Misalignment, and
Incomplete Display. These are aggregated to obtain
the final aesthetic score.

B.2 Data details
As referenced in Tables 5 to 13, this section details
the review data for the top-performing models eval-
uated on the VisualEDU benchmark, specifically
GPT-4o-11-20, Gemini-2.5-pro, and Claude-3.7-
Sonnet. The evaluation is conducted at both macro
and micro levels. At the macro level, we assess
the Step Execution Rate (SER). SER effectively
quantifies the VLM’s execution competence within
the proposed framework, reflecting its ability to
complete each step with minimal retries and strong
alignment to expected behavior. At the micro level,
the Internal Hallucination Resistance (IHR) evalu-
ate the model’s ability to avoid hallucinations. Up-
stream Completion (UC): examining the model’s
capability in identifying and processing inter-task
dependencies.

Feedback Effectiveness is evaluated based on
fine-grained error patterns. It consists of two key
components: Code Correctness, which measures
the model’s ability to handle different categories
of code-related errors; and Visual Accuracy, which
captures whether the VLM provides effective guid-
ance based on the visual keyframes extracted from

16381

Metric
Qwen2.5
-VL-72B

Qwen2.5
-VL-7B

Llama-
3.2-90B

Llama-
3.2-11B

GPT-4o
-11-20

GPT-4o
-mini

Claude-3.7
-Sonnet

Grok2-
vision

Gemini-
2.5-pro

Preceding Task Execution Rate (PTER)
Solving Approach 1 1 1 1 1 1 1 1 1
Tool Localization 1 1 1 1 1 1 1 1 1
Meta-prompt Match 1 1 1 1 1 1 1 1 1
Code generation 1 1 1 1 1 1 1 1 1
Visual Feedback 0.6950 0.3250 0.8200 0.5900 0.9100 0.8350 0.8250 0.8400 0.9000
Debugging Process 0.5000 0.3050 0.7200 0.5200 0.9050 0.7900 0.7400 0.7600 0.8350

Hallucination Rate (HR)
Solving Approach 0.0676 0 0 0 0 0 0 0 0
Tool Localization 0.0476 0.1948 0.3077 0.3723 0.1374 0.1658 0 0 0
Meta-prompt Match 0.0473 0 0.1000 0.1680 0 0 0 0 0
Code Generation 0.3850 0.8100 0.3300 0.5488 0.4650 0.4100 0.3200 0.3950 0.5250
Visual Feedback 0.2754 0.1077 0.2680 0.2797 0.1209 0.1875 0.1667 0.3781 0.1400
Debugging Process 0.1575 0.6684 0.1364 0.4634 0.1950 0.1692 0.0179 0.0061 0.2450

Average Human Rating (AHR)
Solving Approach 0.8270 0.7960 0.8450 0.7960 0.8885 0.7885 0.8975 0.8885 0.8975
Tool Localization 0.7255 0.5170 0.6935 0.4790 0.6935 0.8485 0.8660 0.7395 0.6975
Meta-prompt Match 0.8645 0.9940 0.7050 0.58775 0.9950 0.8168 0.8480 0.7560 0.7248
Code Generation 0.5005 0.4910 0.5665 0.3825 0.5365 0.4975 0.6529 0.4883 0.5692
Visual Feedback 0.4338 0.2359 0.2464 0.2831 0.5253 0.4256 0.4577 0.2319 0.3879
Debugging Process 0.9231 0.3115 0.8500 0.5855 0.8175 0.9118 0.9313 0.7897 0.7809

Code Execution Rate (CER)
Initial Code 0.5800 0.3050 0.7750 0.4950 0.6650 0.6900 0.6650 0.6500 0.4450
Initial w Debugging 0.6950 0.3250 0.8200 0.5900 0.9100 0.8434 0.8250 0.8400 0.9000
Visual Feedback 0.4575 0.3000 0.7050 0.4700 0.8850 0.7900 0.7300 0.7550 0.8300
Visual w Debugging 0.5000 0.3050 0.7200 0.5200 0.9050 0.7980 0.7400 0.7600 0.8350

Code Defect Rate (CDR)
Parameters Errors 0.0759 1.3167 0.0511 0 0.4824 0.1667 0.0150 0 0
Syntax Errors 0.3267 1.6759 0.8429 1.8720 0.4500 0.4057 0.2650 0.8450 1.0302
Code Missing 0.2961 0.1212 0.1711 0.1628 0.0055 0.1092 0.1900 0.2200 0.1809
Total Iteration 0.3265 2.0408 0.8725 1.8842 0.9300 1.4873 0.3800 1.0302 1.1500

Visual Suggestion Effectiveness Rate (VSER)
Elements Overlap 0.2446 0.0313 0.05455 0.2881 0.6319 0.4847 1 0.4063 0.3613
Inconsistent Font 0.5827 0.1406 0.1576 0.3475 0.8736 0.7055 0.8623 0.8375 0.7906
Layout Misalignment 0.8130 0.5313 0.5394 0.8729 0.8517 0.6196 1 1 0.9162

Aesthetic Subcomponent Rate (ASR)
Garbled Characters 0.0916 0.0758 0.0457 0.0678 0.2912 0.2254 0.0100 0.2600 0.0750
Elements Overlap 0.8029 0.8769 0.9329 0.7373 0.5000 0.4970 0.5706 0.3681 0.1813
Inconsistent Font 0.8029 0.7846 0.7927 0.6949 0.2637 0.0778 0.0412 0.0123 0.0824
Layout Misalignment 0.4891 0.6000 0.4939 0.6780 0.3736 0.4611 0.3059 0.5092 0.2198
Incomplete Display 0.4234 0.7692 0.6037 0.8729 0.2912 0.3174 0.3118 0.5399 0.2912
Logical Coherence 0.8540 0.5539 0.7195 0.4576 0.8242 0.7246 0.8941 0.7423 0.8901

Table 4: Multi-Model Capability Evaluation Detail

16382

Category
LPR FE

AS Overall
SER IHR UC CC VA

Overall 0.6551 0.7980 0.8550 0.7164 0.7967 0.7455 0.6493

Easy 0.6968 0.8284 0.8905 0.7749 0.8657 0.7940 0.7009
Middle 0.6516 0.8149 0.8657 0.7397 0.7960 0.6955 0.6344
Hard 0.6163 0.7500 0.8081 0.6333 0.7273 0.7470 0.6121

Function Problems
Easy 0.8085 0.8917 0.9444 0.9167 1.0000 0.7167 0.7569

Middle 0.6805 0.8364 0.8788 0.7964 0.9091 0.6727 0.6538
Hard 0.6703 0.8182 0.8182 0.7164 0.8182 0.7636 0.6765

Plane Geometry
Easy 0.7432 0.8909 0.9394 0.9782 1.0000 0.8727 0.7849

Middle 0.6251 0.6917 0.7222 0.5000 0.5833 0.8000 0.6120
Hard 0.6350 0.7909 0.8788 0.7055 0.7273 0.7091 0.6153

Analytic Geometry
Easy 0.6847 0.8091 0.8788 0.7164 0.9091 0.8182 0.7849

Middle 0.6925 0.8909 0.9091 0.8073 1.0000 0.6636 0.6120
Hard 0.5925 0.6455 0.6970 0.4545 0.6364 0.6909 0.5383

Solid Geometry
Easy 0.6104 0.7273 0.7879 0.5127 0.5455 0.7455 0.5761

Middle 0.5325 0.6818 0.7879 0.5927 0.4848 0.6818 0.5292
Hard 0.4947 0.5364 0.6364 0.3527 0.3636 0.7455 0.4795

Probability
Easy 0.6061 0.7727 0.8788 0.7055 0.8182 0.8182 0.6631

Middle 0.6961 0.8818 0.9394 0.8873 0.8182 0.7091 0.6911
Hard 0.6548 0.8545 0.9091 0.7964 0.9091 0.8273 0.7004

Calculus
Easy 0.7180 0.8727 0.9091 0.8073 0.9091 0.8000 0.7273

Middle 0.6851 0.9182 0.9697 0.8764 1.0000 0.6364 0.6612
Hard 0.6505 0.8545 0.9091 0.7745 0.9091 0.7455 0.6628

Struct (Meta/Visual Conditions)
NMNV 0.5551 0.6480 0.7650 0.8164 0.6567 0.6255 0.5493
MNV 0.6151 0.7280 0.8250 0.7764 0.7167 0.7055 0.6093
NMV 0.5851 0.6880 0.7950 0.7964 0.6867 0.6655 0.5793
MV 0.6551 0.7980 0.8550 0.7164 0.7967 0.7455 0.6493

Table 5: Performance of Claude-3-7-sonnet-20250219 based on VisualEDU’s various tests and metrics.

16383

Category
LPR FE

AS Overall
SER IHR UC CC VA

Overall 0.5422 0.7500 0.9117 0.7364 0.6583 0.8210 0.6207

Easy 0.6055 0.8254 0.9353 0.8179 0.7015 0.7910 0.6602
Middle 0.5669 0.7791 0.9552 0.7982 0.6915 0.8313 0.6430
Hard 0.4528 0.6439 0.8434 0.5909 0.5808 0.8409 0.5581

Function Problems
Easy 0.6348 0.8500 0.9167 0.8033 0.6667 0.7667 0.6664

Middle 0.5972 0.7636 0.9091 0.6727 0.8485 0.8818 0.6518
Hard 0.4190 0.5727 0.7576 0.4582 0.6667 0.8455 0.5142

Plane Geometry
Easy 0.5910 0.7909 0.9394 0.8436 0.6667 0.8545 0.6744

Middle 0.6220 0.8667 1.0000 0.9300 0.7222 0.8167 0.6925
Hard 0.5218 0.6818 0.9091 0.7418 0.6364 0.8727 0.6155

Analytic Geometry
Easy 0.6007 0.7818 0.9394 0.8436 0.6667 0.9091 0.6744

Middle 0.5562 0.7909 1.0000 0.8436 0.8182 0.8091 0.6925
Hard 0.4486 0.6000 1.0000 0.6000 0.6364 0.9455 0.5732

Solid Geometry
Easy 0.5150 0.7364 0.9697 0.7673 0.5152 0.6727 0.5479

Middle 0.4062 0.6000 0.8788 0.5636 0.2424 0.8455 0.5197
Hard 0.2493 0.4364 0.5455 0.2073 0.1212 0.7727 0.3983

Probability
Easy 0.6767 0.8273 0.8788 0.8073 0.7879 0.8455 0.7228

Middle 0.6227 0.8364 1.0000 0.9345 0.8788 0.7455 0.6626
Hard 0.5449 0.7727 0.8485 0.6836 0.6970 0.8545 0.6356

Calculus
Easy 0.6122 0.9636 0.9697 0.8436 0.9091 0.7000 0.6548

Middle 0.5922 0.8091 0.9394 0.8327 0.6364 0.8909 0.6938
Hard 0.5328 0.8000 1.0000 0.8545 0.7273 0.7545 0.6115

Struct (Meta/Visual Conditions)
NMNV 0.4322 0.5900 0.8117 0.8364 0.5183 0.6910 0.5107
MNV 0.4922 0.6700 0.8717 0.7964 0.5783 0.7710 0.5707
NMV 0.4622 0.6300 0.8417 0.8164 0.5483 0.7310 0.5407
MV 0.5422 0.7500 0.9117 0.7364 0.6583 0.8210 0.6207

Table 6: Performance of Gemini-2.5-pro-exp-03-25 based on VisualEDU’s various tests and metrics.

16384

Category
LPR FE

AS Overall
SER IHR UC CC VA

Overall 0.6226 0.7685 0.9383 0.8598 0.7150 0.6875 0.6149

Easy 0.7130 0.8567 0.9851 0.9451 0.7861 0.7030 0.6904
Middle 0.5867 0.7269 0.9204 0.8251 0.7065 0.6985 0.5893
Hard 0.5673 0.7212 0.9091 0.8085 0.6515 0.6606 0.5641

Function Problems
Easy 0.7379 0.8583 1.0000 0.9633 0.7778 0.6333 0.6695

Middle 0.6097 0.7727 1.0000 0.8655 0.8788 0.6545 0.5742
Hard 0.4804 0.5727 0.8788 0.7091 0.6364 0.7273 0.5042

Plane Geometry
Easy 0.8205 0.9273 1.0000 0.9782 0.9091 0.8727 0.8349

Middle 0.5211 0.6250 0.7778 0.6133 0.5000 0.8417 0.5981
Hard 0.5974 0.7000 0.9394 0.8291 0.6364 0.6364 0.5566

Analytic Geometry
Easy 0.6714 0.8091 0.9394 0.8655 0.6970 0.8000 0.8349

Middle 0.5491 0.6091 0.8788 0.7964 0.5455 0.6364 0.5981
Hard 0.5026 0.6091 0.7576 0.6364 0.4848 0.6727 0.5162

Solid Geometry
Easy 0.6262 0.8727 0.9697 0.8982 0.7273 0.4818 0.5632

Middle 0.5579 0.7636 1.0000 0.9455 0.8182 0.5818 0.5406
Hard 0.4979 0.7545 0.8788 0.7636 0.6667 0.6727 0.5506

Probability
Easy 0.7153 0.7818 1.0000 0.9855 0.7879 0.6909 0.6614

Middle 0.5861 0.6455 0.8788 0.7927 0.7273 0.8091 0.6138
Hard 0.6744 0.9182 1.0000 1.0000 0.6970 0.5727 0.6397

Calculus
Easy 0.7046 0.8909 1.0000 0.9782 0.8182 0.7455 0.7193

Middle 0.7023 0.9545 1.0000 0.9564 0.7879 0.6545 0.6951
Hard 0.6509 0.7727 1.0000 0.9127 0.7879 0.6818 0.6177

Struct (Meta/Visual Conditions)
NMNV 0.4926 0.5885 0.8183 0.9598 0.5750 0.5375 0.4849
MNV 0.5526 0.6685 0.8783 0.9198 0.6350 0.6175 0.5449
NMV 0.5226 0.6285 0.8483 0.9398 0.6050 0.5775 0.5149
MV 0.6226 0.7685 0.9383 0.8598 0.7150 0.6875 0.6149

Table 7: Performance of GPT-4o-11-20 based on VisualEDU’s various tests and metrics.

16385

Category
LPR FE

AS Overall
SER IHR UC CC VA

Overall 0.5772 0.7745 0.8750 0.7294 0.4917 0.6820 0.5953

Easy 0.6052 0.7701 0.8955 0.7654 0.4726 0.7045 0.6123
Middle 0.5855 0.7955 0.8856 0.7445 0.5174 0.6791 0.6075
Hard 0.5404 0.7576 0.8434 0.6776 0.4848 0.6621 0.5655

Function Problems
Easy 0.6456 0.8667 0.8889 0.7500 0.2222 0.8917 0.7253

Middle 0.6496 0.9091 0.9394 0.9018 0.3333 0.7727 0.7084
Hard 0.6921 1.0000 1.0000 1.0000 0.3636 0.7273 0.7370

Plane Geometry
Easy 0.6950 0.9364 1.0000 0.9927 0.4242 0.7818 0.7388

Middle 0.6206 0.8833 0.9167 0.8333 0.3889 0.7000 0.6605
Hard 0.5365 0.7636 0.8182 0.7200 0.5152 0.6636 0.5758

Analytic Geometry
Easy 0.5376 0.7545 0.8182 0.7127 0.5758 0.7364 0.7388

Middle 0.5496 0.7273 0.8182 0.7200 0.5455 0.6545 0.6605
Hard 0.4750 0.7000 0.7879 0.5927 0.4242 0.6455 0.5080

Solid Geometry
Easy 0.5060 0.7000 0.9091 0.7855 0.2424 0.3909 0.4241

Middle 0.5330 0.7727 0.9394 0.8436 0.6061 0.5091 0.5011
Hard 0.3343 0.5273 0.6364 0.3309 0.3636 0.6000 0.3833

Probability
Easy 0.7406 0.6364 1.0000 1.0000 0.9394 0.7000 0.6152

Middle 0.5462 0.6273 0.8182 0.7164 0.5758 0.7455 0.5720
Hard 0.5733 0.6545 0.9394 0.8764 0.5455 0.5636 0.5130

Calculus
Easy 0.5026 0.7182 0.7576 0.3527 0.4545 0.7091 0.5594

Middle 0.6106 0.8455 0.8788 0.4436 0.6667 0.6909 0.6311
Hard 0.6314 0.9000 0.8788 0.5455 0.6970 0.7727 0.6759

Struct (Meta/Visual Conditions)
NMNV 0.4372 0.5845 0.7450 0.8294 0.3517 0.5220 0.4553
MNV 0.4972 0.6645 0.8050 0.7894 0.4117 0.6020 0.5153
NMV 0.4672 0.6245 0.7750 0.8094 0.3817 0.5620 0.4853
MV 0.5772 0.7745 0.8750 0.7294 0.4917 0.6820 0.5953

Table 8: Performance of GPT-4o-mini based on VisualEDU’s various tests and metrics.

16386

Category
LPR FE

AS Overall
SER IHR UC CC VA

Overall 0.5197 0.7480 0.8667 0.7076 0.5983 0.6630 0.5518

Easy 0.5448 0.7761 0.8856 0.7809 0.6368 0.6821 0.5842
Middle 0.5415 0.7881 0.8955 0.7158 0.6169 0.6388 0.5634
Hard 0.4722 0.6788 0.8182 0.6248 0.5404 0.6682 0.5070

Function Problems
Easy 0.5543 0.6833 0.8333 0.7400 0.6667 0.8000 0.6105

Middle 0.5667 0.7000 0.8182 0.4545 0.5152 0.7818 0.5975
Hard 0.5626 0.6091 0.7879 0.6145 0.6061 0.8182 0.5687

Plane Geometry
Easy 0.5181 0.7273 0.9091 0.7418 0.7879 0.6727 0.5501

Middle 0.5735 0.8750 0.9444 0.8767 0.7500 0.7833 0.6683
Hard 0.4233 0.6818 0.8788 0.6509 0.6061 0.7273 0.5066

Analytic Geometry
Easy 0.6161 0.8273 0.9394 0.9091 0.7576 0.5818 0.5501

Middle 0.5730 0.8545 0.9697 0.8764 0.8788 0.4182 0.6683
Hard 0.5891 0.8455 0.9091 0.8182 0.8182 0.6818 0.6158

Solid Geometry
Easy 0.4703 0.7455 0.9091 0.7636 0.3030 0.5818 0.4970

Middle 0.3580 0.5182 0.7576 0.4691 0.2424 0.5273 0.3617
Hard 0.3844 0.6091 0.7576 0.5600 0.1818 0.6000 0.4310

Probability
Easy 0.6669 0.9727 1.0000 0.9891 0.7576 0.7273 0.7164

Middle 0.5731 0.8909 0.9697 0.7855 0.6667 0.7091 0.6283
Hard 0.4016 0.5909 0.7879 0.4691 0.5455 0.6000 0.4184

Calculus
Easy 0.4425 0.7091 0.7273 0.5455 0.5455 0.7182 0.5386

Middle 0.6017 0.8818 0.9091 0.8182 0.6364 0.6000 0.6038
Hard 0.4718 0.7364 0.7879 0.6364 0.4848 0.5818 0.5014

Struct (Meta/Visual Conditions)
NMNV 0.3897 0.5680 0.7467 0.8076 0.4583 0.5130 0.4218
MNV 0.4497 0.6480 0.8067 0.7676 0.5183 0.5930 0.4818
NMV 0.4197 0.6080 0.7767 0.7876 0.4883 0.5530 0.4518
MV 0.5197 0.7480 0.8667 0.7076 0.5983 0.6630 0.5518

Table 9: Performance of Grok2-vision based on VisualEDU’s various tests and metrics.

16387

Category
LPR FE

AS Overall
SER IHR UC CC VA

Overall 0.5817 0.6820 0.7317 0.4448 0.3800 0.6205 0.5120

Easy 0.6290 0.7209 0.7811 0.5075 0.4577 0.6284 0.5496
Middle 0.5825 0.6881 0.7313 0.4507 0.4080 0.6224 0.5126
Hard 0.5330 0.6364 0.6818 0.3752 0.2727 0.6106 0.4734

Function Problems
Easy 0.6970 0.7667 0.8611 0.4933 0.6667 0.6500 0.6007

Middle 0.6140 0.6818 0.7273 0.5455 0.3333 0.6818 0.5632
Hard 0.6352 0.7636 0.8182 0.5455 0.4242 0.5182 0.5194

Plane Geometry
Easy 0.5677 0.6364 0.6667 0.3636 0.3636 0.5727 0.4574

Middle 0.5311 0.5167 0.6111 0.1567 0.4722 0.4750 0.3504
Hard 0.4952 0.4182 0.4545 0.0909 0.1818 0.7000 0.4044

Analytic Geometry
Easy 0.6889 0.8000 0.8182 0.5455 0.6061 0.6636 0.4574

Middle 0.5902 0.8273 0.7879 0.4436 0.4242 0.6091 0.3504
Hard 0.5276 0.6818 0.7273 0.2727 0.3333 0.5455 0.4636

Solid Geometry
Easy 0.5149 0.5000 0.6667 0.3891 0.2424 0.5273 0.3872

Middle 0.4820 0.4818 0.6061 0.2327 0.3030 0.5909 0.3822
Hard 0.4313 0.4545 0.5152 0.1709 0.1515 0.6636 0.3897

Probability
Easy 0.6643 0.8455 0.8485 0.6182 0.4545 0.6818 0.6358

Middle 0.6047 0.7273 0.7576 0.5345 0.3939 0.7273 0.5773
Hard 0.5459 0.7455 0.8182 0.6255 0.2727 0.6000 0.5278

Calculus
Easy 0.6348 0.7727 0.8182 0.6364 0.3939 0.6727 0.6018

Middle 0.6776 0.9091 0.9091 0.8182 0.5152 0.6636 0.6623
Hard 0.5627 0.7545 0.7576 0.5455 0.2727 0.6364 0.5354

Struct (Meta/Visual Conditions)
NMNV 0.4417 0.4920 0.6017 0.5448 0.2400 0.4605 0.3720
MNV 0.5017 0.5720 0.6617 0.5048 0.3000 0.5405 0.4320
NMV 0.4717 0.5320 0.6317 0.5248 0.2700 0.5005 0.4020
MV 0.5817 0.6820 0.7317 0.4448 0.3800 0.6205 0.5120

Table 10: Performance of Qwen2.5-VL-72B-Instruct based on VisualEDU’s various tests and metrics.

16388

Category
LPR FE

AS Overall
SER IHR UC CC VA

Overall 0.3004 0.4665 0.5433 0.2764 0.0750 0.6620 0.3903

Easy 0.3638 0.5433 0.6070 0.3379 0.1144 0.6269 0.4194
Middle 0.2902 0.4463 0.5323 0.2931 0.0796 0.6746 0.3859
Hard 0.2465 0.4091 0.4899 0.1970 0.0303 0.6848 0.3654

Function Problems
Easy 0.4208 0.6500 0.6667 0.3333 0.1944 0.6333 0.4721

Middle 0.2984 0.4818 0.5152 0.2618 0.1212 0.7636 0.4277
Hard 0.2806 0.4455 0.5152 0.1818 0.0606 0.6818 0.3908

Plane Geometry
Easy 0.3388 0.5273 0.5455 0.2727 0.1212 0.6909 0.4340

Middle 0.3316 0.4833 0.6111 0.3967 0.1111 0.6083 0.3862
Hard 0.2689 0.4182 0.5152 0.2727 0.0303 0.6909 0.3759

Analytic Geometry
Easy 0.4220 0.6091 0.6667 0.4545 0.1212 0.5273 0.4340

Middle 0.2477 0.3636 0.4545 0.1818 0.0303 0.7091 0.3862
Hard 0.2341 0.4182 0.4242 0.0909 0.0000 0.7273 0.3713

Solid Geometry
Easy 0.3587 0.4364 0.6667 0.4218 0.0606 0.4182 0.3001

Middle 0.2938 0.4455 0.5758 0.3636 0.1212 0.5455 0.3386
Hard 0.2874 0.4091 0.5758 0.2727 0.0606 0.5455 0.3242

Probability
Easy 0.2620 0.4091 0.4545 0.1818 0.0303 0.8182 0.4212

Middle 0.3189 0.5000 0.5758 0.3636 0.0303 0.6727 0.4148
Hard 0.1318 0.3000 0.3333 0.0000 0.0000 0.8000 0.3398

Calculus
Easy 0.3753 0.6182 0.6364 0.3636 0.1515 0.6727 0.4659

Middle 0.2473 0.4000 0.4545 0.1818 0.0606 0.7545 0.3903
Hard 0.2762 0.4636 0.5758 0.3636 0.0303 0.6636 0.3902

Struct (Meta/Visual Conditions)
NMNV 0.1604 0.2765 0.4133 0.3764 0.0260 0.5020 0.2503
MNV 0.2204 0.3565 0.4733 0.3364 0.0450 0.5820 0.3103
NMV 0.1904 0.3165 0.4433 0.3564 0.0650 0.5420 0.2803
MV 0.3004 0.4665 0.5433 0.2764 0.0750 0.6620 0.3903

Table 11: Performance of Qwen2.5-VL-7B-Instruct based on VisualEDU’s various tests and metrics.

16389

Category
LPR FE

AS Overall
SER IHR UC CC VA

Overall 0.5461 0.7390 0.8467 0.6664 0.2067 0.5160 0.4980

Easy 0.5788 0.7657 0.8706 0.7063 0.2289 0.5522 0.5384
Middle 0.5414 0.7463 0.8408 0.6615 0.1891 0.5358 0.5054
Hard 0.5178 0.7045 0.8283 0.6309 0.2020 0.4591 0.4495

Function Problems
Easy 0.6210 0.8083 0.9167 0.5000 0.0833 0.5500 0.5528

Middle 0.6608 0.9273 1.0000 0.8073 0.2121 0.5727 0.6300
Hard 0.6598 0.7364 0.9091 0.7273 0.2121 0.5909 0.5525

Plane Geometry
Easy 0.5544 0.7455 0.8788 0.8182 0.1818 0.5727 0.5410

Middle 0.3838 0.5583 0.6389 0.4167 0.1111 0.6750 0.4506
Hard 0.3876 0.5000 0.5758 0.3636 0.2121 0.6818 0.4429

Analytic Geometry
Easy 0.7156 0.9364 0.9697 0.9091 0.5152 0.5727 0.5410

Middle 0.6477 0.8273 0.8788 0.6364 0.2727 0.5182 0.4506
Hard 0.5630 0.7636 0.8788 0.5127 0.2121 0.3909 0.4410

Solid Geometry
Easy 0.4577 0.6091 0.7879 0.5818 0.2424 0.3182 0.3418

Middle 0.3822 0.6545 0.7576 0.5855 0.1818 0.3818 0.3602
Hard 0.4020 0.6636 0.7879 0.5782 0.2121 0.2909 0.3286

Probability
Easy 0.6203 0.7818 0.9091 0.8109 0.1515 0.6000 0.5701

Middle 0.5688 0.7091 0.9091 0.8182 0.1515 0.5091 0.4978
Hard 0.5597 0.7909 0.9697 0.8873 0.1515 0.3545 0.4497

Calculus
Easy 0.5003 0.7091 0.7576 0.6364 0.2121 0.7000 0.5678

Middle 0.6194 0.8182 0.8788 0.7273 0.2121 0.5455 0.5585
Hard 0.5344 0.7727 0.8485 0.7164 0.2121 0.4455 0.4821

Struct (Meta/Visual Conditions)
NMNV 0.4061 0.5490 0.7167 0.7664 0.0667 0.3560 0.3580
MNV 0.4661 0.6290 0.7767 0.7264 0.1267 0.4360 0.4180
NMV 0.4361 0.5890 0.7467 0.7464 0.0967 0.3960 0.3880
MV 0.5461 0.7390 0.8467 0.6664 0.2067 0.5160 0.4980

Table 12: Performance of Llama-3.2-90B-Vision-Instruct based on VisualEDU’s various tests and metrics.

16390

Category
LPR FE

AS Overall
SER IHR UC CC VA

Overall 0.3720 0.5990 0.7033 0.4882 0.2967 0.5390 0.3951

Easy 0.4406 0.6716 0.7811 0.5857 0.4080 0.5090 0.4246
Middle 0.3040 0.5522 0.6119 0.3516 0.2338 0.5881 0.3689
Hard 0.3714 0.5727 0.7172 0.5279 0.2475 0.5197 0.3917

Function Problems
Easy 0.5875 0.7667 0.9167 0.7300 0.5000 0.5333 0.5248

Middle 0.4887 0.6364 0.7879 0.5927 0.5152 0.6091 0.4836
Hard 0.2995 0.3273 0.5758 0.3636 0.1212 0.6545 0.3662

Plane Geometry
Easy 0.3754 0.6909 0.6970 0.4691 0.4848 0.6455 0.4558

Middle 0.2079 0.4750 0.4167 0.0833 0.0833 0.7417 0.3698
Hard 0.4168 0.7182 0.7879 0.5273 0.2727 0.4273 0.3925

Analytic Geometry
Easy 0.3423 0.6364 0.6364 0.3309 0.2121 0.6182 0.4558

Middle 0.2464 0.5364 0.5455 0.2618 0.1212 0.6091 0.3698
Hard 0.3808 0.6273 0.6970 0.5455 0.1818 0.6091 0.4494

Solid Geometry
Easy 0.4458 0.6273 0.8182 0.6836 0.6970 0.3273 0.3431

Middle 0.3164 0.5182 0.6667 0.4218 0.4545 0.4182 0.2962
Hard 0.3127 0.4000 0.6364 0.4545 0.4545 0.4818 0.3090

Probability
Easy 0.4184 0.6273 0.8485 0.6509 0.2424 0.2818 0.3069

Middle 0.3050 0.6091 0.7273 0.5018 0.1818 0.5000 0.3505
Hard 0.3671 0.6455 0.7576 0.6145 0.2727 0.4364 0.3839

Calculus
Easy 0.4611 0.6727 0.7576 0.6364 0.3030 0.6455 0.5024

Middle 0.2682 0.5455 0.5455 0.2727 0.0606 0.6364 0.3689
Hard 0.4517 0.7182 0.8485 0.6618 0.1818 0.5091 0.4495

Struct (Meta/Visual Conditions)
NMNV 0.2320 0.4090 0.5733 0.5882 0.1567 0.3790 0.2551
MNV 0.2920 0.4890 0.6333 0.5482 0.2167 0.4590 0.3151
NMV 0.2620 0.4490 0.6033 0.4882 0.2967 0.4190 0.2851
MV 0.3720 0.5990 0.7033 0.4882 0.2967 0.5390 0.3951

Table 13: Performance of Llama-3.2-11B-Vision-Instruct based on VisualEDU’s various tests and metrics.

16391

the video. Together, these indicators reflect the
system’s robustness and reliability in multimodal
reasoning tasks.

In essence, this section outlines a comprehensive
evaluation framework for assessing the planning ca-
pabilities of VLMs, distinguishing between macro-
level logical correctness and micro-level execution
fidelity through a series of specific quantitative met-
rics.

B.3 Version for Tested VLMs

To ensure the reproducibility of our results, we
report the exact versions of all VLMs evaluated in
our experiments.

• GPT-4o: GPT-4o-2024-11-20

• GPT-4o-mini: GPT-4o-mini

• Claude-3.7: Claude-3-7-sonnet-20250219

• Gork-2: grok-2-vision-1212

• Gemini-2.5: Gemini-2.5-pro-exp-03-25

• Qwen-2.5: Qwen2.5-VL-72B-Instruct

• Qwen-2.5: Qwen2.5-VL-7B-Instruct

• Llama-3.2: meta/Llama-3.2-90B-Vision-
Instruct

• Llama-3.2: meta/Llama3.2-11b-vision-
instruct

B.4 Agent Prompt

Generate solution from problem

Provide a detailed, step−by−step
solution process for the following math
problem in English.
Example:
Math Problem: Find the vertex of the
function f(x) = x2−4x+3 and draw its
graph.
Solution Process:
1.Derive the Function: First, we
compute the derivative of f(x), which
is f ′(x) = 2x− 4.
2.Find the Zero of the Derivative: Set
f ′(x) = 0 to solve for x, yielding x = 2.
This indicates that the function has an
extremum at x = 2.
3.Compute the y-Coordinate of the
Vertex: Substitute x = 2 into the
original function to get f(2) = 22 −
4 ∗ 2 + 3 = −1. Thus, the vertex is at
(2,−1).
4.Determine the Type of the Vertex:
Since the coefficient of the quadratic
term is positive, the vertex represents
the minimum point of the function, i.e.,
the lowest point on the graph.
Math Problem: {math_problem}
Solution Process:

Figure 8: System prompt for generating solution from
problem.

16392

Generate Manim moudle from problem

Input:
Problem: {math_problem}
Solution Process: {math_solution}
I need to convert the above solution
process into a visualized Manim video.
Please identify the required internal
Manim modules from the JSON formatted
file below, and output them.
JSON content: {Manim_moudle}
Output:
Required internal Manim modules:

Figure 9: System prompt for generate Manim moudle
from problem.

Generate Similarity from problem

Example:
Input Question: Question.
Instruction: Please select the problem
with the most similar key solution
steps and approach to the given
problem, and estimate the degree of
similarity by outputting a numerical
result directly.
Comparison Problems: [Question1,
Question2, ... QuestionN]
Output (in the following format): 1,
50%.
Application:
Input Question: {math_problem}
Instruction: Please select the problem
with the most similar key solution
steps and approach to the given
problem, and estimate the degree of
similarity by outputting a numerical
result directly.
Comparison Problems: ’{compare}’
(Only output the number and percentage,
without any textual explanation.)
Output (if none, output 0, 0%):

Figure 10: System prompt for generate Similarity from
problem.

Generate Manim code from solution meta

For generating Manim code, please
refer to the following code format.
Combine it with the selected internal
Manim modules to create a Manim
visualization video for the above
solution process.
Example Process:
Example Input Problem: {similar_Q}
Example Input Solution Process:
{similar_A}
Example Output Manim Code: {similar_C}
Application:
Math Problem: {problem}
Solution Process: {solution}
Selected Manim Internal Modules:
{Manim_moudle}
Finally, output only the Manim code
(only output the code portion):

Figure 11: System prompt for generate Manim code
from solution meta.

Correct error code

Modify the original Manim code based
on the error feedback and output the
corrected version.
Input Original Code: {math_code}.
Error Message: {err}
Finally, output only the modified
complete Manim code (only output the
code portion):

Figure 12: System prompt for correct error code.

16393

Visualize suggestion

{[
{"type": "text", "text": Determine
whether there is overlapping content
in the image},
{"type": "image_url", "image_url":
{"url": image_url}}
],
[
{"type": "text", "text": Please check
it carefully once again and reflect.}
]},
{[
{"type": "text", "text": Determine
whether the font sizes in the image
are uniform},
{"type": "image_url", "image_url":
{"url": image_url}}
],
[
{"type": "text", "text": Please check
it carefully once again and reflect.}
]},
{[
{"type": "text", "text": Determine
whether the overall layout satisfies
that the text only appears on the left
half of the screen, and the analysis
image only appears on the right half
of the screen. If not, please suggest
moving the location and scaling the
size},
{"type": "image_url", "image_url":
{"url": image_url}}
],
[
{"type": "text", "text": Please check
it carefully once again and reflect.}
]}

Figure 13: System prompt for visualize suggestion.

visualize feedback

Modify the original Manim code based
on the visual input suggestions and
output the updated version.
Visual Input Suggestion: {suggestion}
Original Code: {code}
Adjust the text length in Text() and
MathTex() to improve text overlap, and
adjust the scale(), use to_corner()
parameters to improve image layout and
font size
Finally, output only the complete
modified Manim code (only output the
code portion):

Figure 14: System prompt for visualize feedback.

16394

