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Abstract

Jailbreak attacks pose persistent threats to large
language models (LLMs). Current safety align-
ment methods have attempted to address these
issues, but they experience two significant limi-
tations: insufficient safety alignment depth and
unrobust internal defense mechanisms. These
limitations make them vulnerable to adversar-
ial attacks such as prefilling and refusal di-
rection manipulation. We introduce DeepRe-
fusal, a robust safety alignment framework that
overcomes these issues. DeepRefusal forces
the model to dynamically rebuild its refusal
mechanisms from jailbreak states. This is
achieved by probabilistically ablating the re-
fusal direction across layers and token depths
during fine-tuning. Our method not only de-
fends against prefilling and refusal direction
attacks but also demonstrates strong resilience
against other unseen jailbreak strategies. Ex-
tensive evaluations on four open-source LLM
families and six representative attacks show
that DeepRefusal reduces attack success rates
by approximately 95%, while maintaining
model capabilities with minimal performance
degradation. Our code is available at:
https://github.com/YuanBoXie/DeepRefusal.

1 Introduction

Large Language Models (LLMs) (Achiam et al.,
2023; Mistral AI, 2024; Team et al., 2024;
Grattafiori et al., 2024) have demonstrated impres-
sive performance across various natural language
tasks, but ensuring them behave safely and reliably
remains a significant challenge(Liu et al., 2024b).
Saftey alignment efforts, such as refusal training,
have endowed LLMs with the ability to provide re-
fusal responses to inappropriate and toxic prompts,
as shown in Figure 1a. However, these safeguards
frequently fail when confronted with adversarial
Jailbreak attacks that disguise harmful requests to
induce LLMs to circumvent refusal behaviors and
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trap in Jailbreak states (Wei et al., 2023; Zou et al.,
2023b; Chao et al., 2023), as shown in Figure 1b.

At present, numerous defense strategies have
been proposed to defend against jailbreak attacks.
Adversarial training (Mazeika et al., 2024) tries to
enhance refusal robustness of LLMs against such
attacks by training on jailbreak samples. Circuit-
Breaker (Zou et al., 2024) suppresses harmful ac-
tivations within the model’s hidden states (Figure
1c) to bolster resilience. However, our experiments
show that existing defense strategies, even state-
of-the-art ones, can be easily bypassed by prefill-
ing attacks and refusal direction attacks, and are
susceptible to transfer attacks. Specifically, we
find that existing defenses remain predominantly
surface-level and exhibit two significant limitations.
(1) Insufficient Safety Alignment Depth: Current
safety alignment methods focus on suppressing tox-
icity within the initial few response tokens, while
overlooking the harmfulness of subsequent tokens.
As a result, the inherent safeguard of LLMs can
be bypassed by manipulating the initial response
tokens (i.e, prefilling attack) (Qi et al., 2025; Zhou
et al., 2024a; Vega et al., 2024). (2) Unrobust In-
ternal Defense Mechanisms: The shallow internal
defense mechanisms demonstrate limited resilience
to advancing jailbreak methodologies. Attackers
can iteratively refine input prompts to jailbreak
LLMs. Additionally, simple techniques such as
refusal direction ablation (Arditi et al., 2024) can
readily circumvent defenses1.

To mitigate the above limitations inherent in cur-
rent safety alignment methods, we present DeepRe-
fusal, an innovative framework designed for deep
and robust safety alignment. Unlike traditional
approaches that focus merely on surface-level fine-
tuning, DeepRefusal introduces adversarial pres-
sure directly into the model’s representation space

1Jailbreaking by fine-tuning is not within the scope of
this paper. Here are some orthogonal work: (Qi et al., 2024;
Tamirisa et al., 2025; Huang et al., 2024).
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Figure 1: Conceptual diagram of jailbreak and safety mechanisms at the representation level: (a) Safety alignment
prevents the model from answering harmful requests by activating the concept of refusal. (b) Jailbreak attacks
bypass the refusal behavior of the model through carefully designed prompts. (c) CircuitBreaker (Zou et al.,
2024) suppresses harmfulness within the hidden states (still vulnerable to attacks targeting token depth or internal
refusal mechanisms). (d) DeepRefusal simulates jailbreak scenario at the representation level, forcing the model to
reactivate the refusal behavior, which fundamentally enhances the robustness of the model’s refusal mechanism.

during the fine-tuning process, as illustrated in Fig-
ure 1d. By probabilistically ablating refusal di-
rections across multiple layers and token depths,
DeepRefusal effectively simulates potential jail-
break scenarios internally. The refusal direction is
a direction in the model’s internal representation
space that is strongly associated with producing
refusal responses. This unique approach compels
the model to develop a more robust refusal mecha-
nism, ensuring it can resist harmful outputs at every
token depth and layer depth, thereby enhancing its
safety alignment capabilities significantly.

Our contributions are summarized as follows:

• We identify two key technical challenges in
robust safety alignment and show that at-
tacks along the refusal direction are a transfer-
able, under-addressed threat to state-of-the-art
safety alignment methods.

• We design DeepRefusal, a framework that
trains LLMs to rebuild safety mechanisms
from jailbreak states by simulating adversar-
ial conditions across various token and layer
depths, bridging the gap between surface-level
alignment and robust internal defense

• Through extensive experiments, we demon-
strate that DeepRefusal significantly improve
alignment robustness, reducing attack success
rates by approximately 95%, while effectively
defending against prefilling attacks, refusal di-
rection attacks, and showing strong robustness
to other unseen jailbreak attacks.

2 Related Works

Jailbreak Attacks on LLMs. While LLMs demon-
strate impressive performance, they remain vulner-
able to adversarial inputs that bypass safety con-
straints. Early works explored manually crafted
prompts to elicit harmful outputs (Wei et al.,
2023; Mazeika et al., 2024), while more recent ap-
proaches have employed automated methods. GCG
attacks generate adversarial suffixes via gradient-
based optimization (Zou et al., 2023b), and CodeAt-
tack exploits insufficient alignment in code do-
mains (Ren et al., 2024). AutoDAN employs ge-
netic operations to evolve jailbreak prompts (Liu
et al., 2024a), and PAIR uses attacker–victim loops
to iteratively refine jailbreak prompts (Chao et al.,
2023). Prefilling attacks manipulate early token
activations to influence model outputs (Vega et al.,
2024). Recent studies have revealed that refusal
direction (Arditi et al., 2024) can be used for jail-
break. Our experiments confirm that these refusal
direction attacks, achieve high success rates and
exhibit strong transferability within fine-tuned mod-
els. Furthermore, we find that current state-of-the-
art defense techniques fail to defend against such
attacks, highlighting the need for representation-
level robustness.

LLM Safety Alignment. Research into LLM
safety alignment has yielded several defensive
strategies against adversarial attacks. For instance,
R2D2 (Mazeika et al., 2024) and CAT (Xhonneux
et al., 2024) utilize adversarial training, incorporat-
ing optimized prompts or input-level perturbations
to strengthen model resilience. Meanwhile, La-
tent Adversarial Training (LAT) (Sheshadri et al.,
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2024; Casper et al., 2025) focuses on enhancing the
model’s resistance to harmful outputs by targeting
its internal residual stream. However, these ap-
proaches often demand substantial computational
resources. Additionally, a method proposed in (Qi
et al., 2025) aims to achieve deep safety align-
ment via data augmentation, yet it proves less ef-
fective against previously unseen attacks. Circuit-
Breaker (Zou et al., 2024), which defends against
jailbreak attacks by suppressing harmful hidden
states, tends to produce gibberish generation. This
drawback significantly limits its practical utility
in applications where clear and timely refusal re-
sponses are essential. responses are preferred. Be-
sides the above works, some solutions focus on
designing input/output filters to screen potentially
harmful content (Alon and Kamfonas, 2023; Inan
et al., 2023) or intervening during model decoding
at inference-time (Robey et al., 2025; Xu et al.,
2024a). However, these methods do not fundamen-
tally enhance model alignment. Instead, they neces-
sitate additional components, thereby introducing
extra overhead during testing. It is important to
note that these approaches are orthogonal to safety
fine-tuning, and can be used in conjunction during
test-time. Thus, we do not compare our methods
with these in this paper.

Representation Engineering and Refusal Di-
rection. Recently, analysis and manipulation tech-
niques for the internal representations (i.e., activa-
tions) of LLMs have gained widespread attention.
(Zou et al., 2023a) formally introduced Representa-
tion Engineering (RepE), which draws on insights
from cognitive neuroscience to improve the trans-
parency of AI systems. Furthermore, (Arditi et al.,
2024) demonstrated that refusal in LLMs is medi-
ated by a single direction, termed the refusal direc-
tion, and elucidated the mechanism of jailbreaking
at the representation level. Additionally, (Rimsky
et al., 2024; Stickland et al., 2024) showcased how
representation-level interventions can effectively
control model output behavior. Our approach lever-
ages these insights into the explainability of jail-
breaking and LLM safety mechanisms to enhance
model alignment and robustness.

3 Observations and Motivation

3.1 Current Safety Fine-Tuning Made on the
First Few Tokens

The majority of current safety alignment methods
suffer from a shared limitation: they over-rely on

Figure 2: Attack success rate with different lengths of
harmful tokens prefilled.

aligning the model’s generation within the initial
few tokens of the response (Yuan et al., 2025; Qi
et al., 2025). This gives rise to an inherent vulnera-
bility, termed the “alignment depth problem”. This
problem is rooted in a widely held yet unrealistic
assumption: when encountering harmful prompts,
a well-aligned model should instantaneously refuse,
i.e., produce refusal tokens like “I’m sorry...” at
the very beginning of its output. However, recent
work (Wei et al., 2023; Zhou et al., 2024b) have
shown that once this initial safeguard is bypassed,
the model often freely generates harmful content.

This behavior is exploited by nearly all recently
proposed jailbreak attacks. For instance, DeRTa
(Yuan et al., 2025) finds that refusal responses typ-
ically place the first refusal token within the first
20 output tokens. If a prompt succeeds in sup-
pressing refusal behavior in this early region, the
likelihood of a successful jailbreak increases dra-
matically. Similarly, Qi et al. (2025) show through
KL divergence analysis that safety fine-tuning dis-
proportionately aligns early tokens, leaving later
tokens insufficiently aligned.

From the attacker’s perspective, Wei et al. (2023)
argue that jailbreaks are essentially about suppress-
ing early refusal. This is further exemplified by the
prefilling attack (Vega et al., 2024), which prepends
a harmful context before the actual prompt to mis-
lead the model’s early generation. To validate this,
we conduct a prefilling attack experiment shown
in Figure 2. We randomly select 100 harmful
instructions from AdvBench (Zou et al., 2023b),
and prepend prefilled harmful tokens of increasing
length. The results demonstrate a clear trend: as
the length of the prefilled content increases, the
attack success rate rises significantly.

The current evidence collectively indicates that
merely relying on shallow alignment at the begin-
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ning of a response is far from adequate for ensuring
robust safety. This underscores the critical vulner-
ability arising from the alignment depth problem
and highlights the necessity for deeper safety align-
ment mechanisms that extend beyond the initial
token positions. Insteadly, they should be deeply
embedded within the model’s internal representa-
tions, consistently spanning all stages of response
generation.

3.2 Jailbreak Inhibits the Activation of
Refusal Direction

Recent works (Arditi et al., 2024; Zou et al., 2023a;
Xu et al., 2024b) have demonstrated that LLMs
internally encode a refusal direction, which is a
distinct activation pattern corresponding to refusal
generation. To extract this direction, we adopt the
methodology from Arditi et al. (2024). Formally,
for each layer l ∈ [L] and post-instruction token
position i ∈ [I], we calculate the mean activation
µ
(l)
i for harmful prompts from D

(train)
harmful and ν

(l)
i for

harmless prompts from D
(train)
benign:

µ
(l)
i =

1

|D(train)
harmful|

∑

t∈D(train)
harmful

h
(l)
i (t) (1)

ν
(l)
i =

1

|D(train)
benign|

∑

t∈D(train)
benign

h
(l)
i (t) (2)

where h
(l)
i (t) denotes the hidden activation vector

at layer l and position i for input t. The differ-
ence between these two mean vectors defines the
candidate refusal direction:

r
(l)
i = µ

(l)
i − ν

(l)
i (3)

This process yields an array of |I|×L candidate
vectors. In line with Arditi et al. (2024), we refine
this array through heuristic filtering to identify the
most effective single direction r

(l∗)
i∗ , judging by its

capacity to either induce or suppress refusal behav-
ior upon manipulation. Importantly, this analysis
reveals that jailbreak prompts actively inhibit the
model’s internal refusal direction. As depicted in
Figure 3, when processing adversarial prompts, the
cosine similarity between model activations and the
refusal direction shows a marked decline. This in-
dicates that jailbreaks are not merely prompt tricks;
instead, they directly alter the model’s internal
safety-related activations, effectively bypassing
its built-in refusal mechanism.

Figure 3: Cosine similarity between the residual stream
activation of the last token and refusal direction(Arditi
et al., 2024).

This observation yields a crucial insight: We can
simulate the worst-case impact of a jailbreak at-
tack by directly ablating the refusal direction from
the LLM’s activations. Unlike traditional training
methods that rely on specific jailbreak prompts,
this activation-level approximation zeroes in on
the core mechanism exploited by jailbreak attacks.
It removes the necessity for detailed knowledge
of specific attack methodologies, making the ap-
proach more universal and controllable. More im-
portantly, it enables models to rebuild refusal be-
haviors even under the extreme internal conditions.
This innovation also eliminates the need for a large-
scale jailbreak corpus, making the training process
more efficient and practical.

4 Our DeepRefusal Method

Drawing on these observations, we introduce Deep-
Refusal, a novel approach designed to achieve
deep and robust safety alignment for LLMs. Deep-
Refusal simulates jailbreak scenarios within the
model’s internal structure without undermining its
language modeling capabilities or utility. By doing
so, it compels the model to rebuild and reinforce
its refusal mechanism across layer depth and token
depth. Our goal is to expose the model to these
simulated jailbreak scenarios during training. This
ensures the model learns to maintain robust refusal
behaviors even under adversarial conditions.

In practice, DeepRefusal utilizes two main strate-
gies to accomplish this goal: Layer-wise and Toke-
wise Probabilistic Activation Ablation (PAA). The
former involves probabilistically removing activa-
tion patterns across different layers of the model,
and the latter focuses on selectively ablating ac-
tivations at specific token positions within the
model’s output sequence. By integrating these
strategies, we ensure the model encounters a di-
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verse array of simulated adversarial attacks. This
all-encompassing method compels the model to
develop robust defenses against various jailbreak
techniques, thereby maintaining safe and reliable
performance even in challenging scenarios.

4.1 Obtain the Refusal Direction
A critical aspect of DeepRefusal is obtaining a di-
rection that truly represents the refusal concept.
The direction must induce refusal behavior across
both benign and harmful samples: when added, it
encourages the model to refuse, and when ablated,
it prevents the model from refusing. Given differ-
ent token positions and layers within an LLM may
offer a large number of potential directions, we use
a heuristic filtering approach to identify the most
representative refusal direction (Arditi et al., 2024).

This involves evaluating candidate directions
based on their ability to consistently trigger or
suppress refusal responses across a diverse set of
prompts. Specifically, we define the refusal direc-
tion as the vector r that satisfies two key criteria:

(1) Addition Constraint: Adding this direction
should consistently trigger a refusal response, even
for harmless prompts.

h(l)′ ← h(l) + r(l) (4)

(2) Ablation Constraint: Removing this direc-
tion should bypass the refusal mechanism, allowing
the model to respond to harmful prompts.

h′ ← h− r̂r̂⊤h (5)

From a set of candidate directions {r(l)i }, we se-
lect the single direction {r(l

∗)
i∗ } (denoted r̂) that best

satisfies the both constraints across validation data.
In addition, we tried to dynamically change the
refusal direction during fine-tuning, but we found
that the direction obtained in this way was very
unstable and it was difficult to meet the above two
constraints in real time. We finally chose to pre-
calculate the optimal single refusal direction of-
fline. And this choice ensures that the direction of
ablation is definitely the refusal direction, reducing
side-effects on other concept representations and
language modeling. Our experiments proved that
using the offline refusal direction is sufficient to
improve alignment.

4.2 Simulate Jailbreak with Layer-wise PAA
To simulate jailbreak scenarios within the model’s
internal hidden states and prompt the model to re-

build its refusal mechanism (Figure 1d), we imple-
ment an activation intervention at each of the L
layers independently with probability p. Specifi-
cally, we denote

Ql ∼ Bernoulli(p), l = 1, 2, . . . , L, (6)

as the indicator that layer l is intervened. Here,
Qi = 1 indicates that we apply directional activa-
tion ablation at layer l. Consequently, Equation 5
can be reformulated as:

h′ ← h−Q(r̂r̂⊤h) (7)

Layer-wise PAA allows us to probabilistically
remove activation patterns across different layers
of the model. This simulates adversarial conditions
where the model’s internal safety mechanisms are
compromised at various layers. By doing so, the
model is forced to reinforce its refusal behavior
across its entire layer depth. This process signif-
icantly enhances the model’s robustness against
potential jailbreak attacks.

4.3 Simulate Jailbreak with Token-wise PAA
Let x = (x1, . . . , x|x|) denotes the user prompt
and y = (y1, . . . , y|y|) denotes the models’s output.
The full sequence length is T = |x| + |y|. We
denote πθ(y | x) as the model’s conditional distri-
bution over the response given the prompt. By the
chain rule, this can be expanded as:

πθ(y | x) =
|y|∏

t=1

πθ
(
yt | x, y<t

)
(8)

We introduce Ml,t ∼ Bernoulli(p) as an indica-
tor variable that determines whether to ablate the
refusal direction r̂ at layer l and position t. Dur-
ing the forward pass, the intervened hidden state is
updates as follows:

h
(l)′
t = h

(l)
t −Ql ×Ml,t

(
r̂ r̂⊤ h

(l)
t

)
(9)

The loss function is then defined as:

L = −
|y|∑

t=1

log πθ
(
yt | x, y<t; {h(l)′t }Ll=1

)
(10)

Token-wise PAA selectively targets specific to-
ken positions within the model’s output sequence.
This strategy directly addresses the model’s vulner-
ability to generate harmful content when certain
tokens are either manipulated or suppressed. By
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focusing on these critical positions, the model is
trained to recognize and counteract such adversar-
ial manipulations. As a result, it learns to consis-
tently maintain robust refusal behaviors throughout
the entire token generation process, thereby signifi-
cantly enhancing its safety and reliability.

4.4 Training Procedure of DeepRefusal
Our final design draws from Qi et al. (2025) and uti-
lizes quadruples in the form of (x, x′, y, y′), where
x denotes benign instructions paired with its corre-
sponding safe response y, and x′ denotes harmful
instructions associated with harmful response y′.
A pair (x′, y) signifies a harmful instruction met
with a refusal response, which is the desired result
of safe alignment. Conversely, a pair (x′, y′), typ-
ically indicates that the LLM has been jailbroken.
Our primary objective is that for any x′, the model
consistently generates safe response y.

This consistency must be maintained even un-
der challenging conditions such as prefilling at-
tacks, where the model encounters modified input
sequences (x′, y′<t). In such scenarios, we aim
for the model to persist in generating the safe re-
sponse y rather than succumbing to the attack and
producing the harmful response y′. Similarly, in
the face of representation-level attacks, such as
those described in Eq.(9), which involve ablating
the refusal direction, our goal is for the model to
reconstruct and maintain the refusal response y.

We employ Equation 11 to simulate the prefilling
attack, where a harmful prefix is prepended to the
response.

πθ(y|x, y′≤k), k ∼ Uniform[20, 25] (11)

To fine-tune the model against such attacks, we
use the following objective function:

min
θ

α× E
[
− log πθ(y|x′, y′≤k; {h(l)′}Ll=1)

]

+(1− α)× E
[
− log πθ(y|x; {h(l)′}Ll=1))

] (12)

Consistent with Qi et al. (2025), we set α to 0.2.
Our training dataset comprises three types of pairs:
(x, y) to preserve the model’s utility, (x′, y) for
refusal training, and the augmented pair (x′, y′<t, y)
to enhance robustness against prefilling attacks.

Algorithm 1 outlines the entire procedure of
DeepRefusal. It first obtains a global refusal di-
rection r̂, following Arditi et al. (2024). Then, it
fine-tunes the model with probabilistic activation

Algorithm 1: DeepRefusal
Input: θ, Dbenign,Dharmful,p,α
Output: θDeepRefusal

1 Stage I: Obtain global refusal direction;
2 for each layer l ∈ [L]

and post-instruction token position i ∈ I
do

3 Obtain refusal direction r
(l)
i with Eq. 3;

4 for each vector r(l)i where i ∈ I, l ∈ [L] do
5 Evaluate r

(l)
i on validation sets D(val)

harmful

and D
(val)
benign ;

6 Score r
(l)
i based on the ability to bypass

refusal when ablated and induce
refusal when added;

7 r
(l∗)
i∗ ← HeuristicFilters(r

(l)
i )

8 r̂ ← Normalize(r(l
∗)

i∗ )
9 Stage II: Fine-tune with PAA;

10 k ∼ Uniform[20, 25];
11 (x, y) ∼ Dbenign;
12 (x′, y, y′) ∼ Dharmful;
13 for each training batch do
14 Random sample training pairs from

(x, y), (x′, y), and (x′y′<k, y);
15 for each layer l in the model do
16 Sample Ql ∼ Bernoulli(p);
17 for each token position t do
18 Sample Ml,t ∼ Bernoulli(p) ;
19 m ∈ {attn,mlp, res};
20 h

(l)′,m
t = h

(l),m
t −Mm

l,t ·Qm
l ·(

r̂r̂⊤h(l),mt

)
;

21 L = α× [− log πθ(y|x′, y′≤k; {h(l)′})]+
(1− α)× [− log πθ(y|x; {h(l)′})];

22 Update θ to minimize L;
23 return θDeepRefusal

ablation and harmful-prefix augmentation. The
PAA is applied to attention (attn), multi-layer per-
ceptron (mlp), and residual stream modules, pro-
viding a more comprehensive defense. We further
augment the training data with harmful prefixes
to ensure that the model can maintain its refusal
behavior even when encountering manipulated in-
puts. By integrating these techniques, DeepRefusal
effectively enhances the model’s alignment and ro-
bustness against a wide range of jailbreak attacks,
which is fundamentally different from traditional
surface-level fine-tuning.
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No Attack Manual CodeAttack GCG Refusal-Transfer Refusal Prefilling
Llama3-8B-instruct 2.4 7.0 87.1 24.0 92.5 92.5 86.8
+RT 0.2 3.0 58.8 62.0 70.8 83.5 82.7
+RT-Augmented 0.6 4.5 46.7 50.0 76.6 77.7 3.0
+CircuitBreaker 0.4 0.5 45.7 0.0 48.0 1.2 0.6
+LAT 0.0 0.5 49.2 2.0 87.5 91.0 0.0
+DeepRefusal(Ours) 0.0 0.0 0.2 2.0 0.4 0.2 0.4
Llama2-7B-instruct 0.2 7.6 49.0 34.0 90.4 90.4 30.1
+RT 0.0 1.0 0.4 42.0 20.7 73.3 64.5
+RT-Augmented 0.0 2.5 1.2 20.0 16.3 80.6 0.2
+CircuitBreaker 0.2 2.0 42.1 24.0 7.9 66.0 5.4
+CAT 0.0 2.5 4.4 14.0 0.6 - 0.2
+DeepRefusal(Ours) 0.0 0.0 0.0 6.0 0.0 36.9 0.0
Mistral-7B-Instruct-v0.2 36.7 82.8 86.5 82.0 94.82 - 95.8
+RT 0.0 17.7 77.5 78.0 35.32 - 91.0
+RT-Augmented 0.0 10.1 92.5 40.0 4.0 - 0.6
+CircuitBreaker 0.4 1.0 15.4 0.0 0.2 - 0.6
+DeepRefusal(Ours) 0.0 1.5 73.5 8.0 0.0 - 0.2
Gemma-7B-it 4.2 10.6 89.6 46.0 78.9 78.9 17.5
+RT 0.0 3.5 73.9 40.0 75.6 77.5 10.0
+RT-Augmented 0.0 2.5 73.9 2.0 76.6 77.4 0.2
+CircuitBreaker 0.4 1.0 9.8 0.0 27.8 39.5 0.2
+DeepRefusal(Ours) 0.0 0.0 0.0 0.0 1.3 0.0 0.0

Table 1: Several representative jailbreak methods were selected for evaluating safety alignment. The robustness
is measured by ASR(%). Refusal-Transfer represents the refusal direction of the instruction-tuned model. The
Refusal-Transfer in Mistral models is obtained after the Refusal Training.

5 Experiments

5.1 Experimental Setup

Backbone Models. We conduct evaluations on
four representative open-source LLMs, namely
Llama3-8B-instruct, Llama2-7B-instruct, Mistral-
7B-Instruct-v0.2, and Gemma-7B-it. These models
vary in architecture and training data, providing a
comprehensive assessment of DeepRefusal’s effec-
tiveness across different LLM backbones.

Training Configuration. All models were fine-
tuned using one NVIDIA A100 80GB GPU. The
training process was conducted for 1 epoch, taking
approximately 45 minutes. We employed LoRA
with the hyperparameters consistent with Circuit-
Breaker: LoRA alpha=16, LoRA rank=16. The
batch size is 16. Notably, PAA probability p = 0.5
demonstrated the best performance.

Datasets. Our training set is composed of 2,000
harmful samples from CircuitBreaker (Zou et al.,
2024), utilizing prefill augmentation wtih Equation
11, and 4,000 benign samples from UltraChat (Ding
et al., 2023). To address over-refusal, we further
include 500 samples from XSTest (Röttger et al.,
2024) and Or-bench (Cui et al., 2025).

For testing, we sample 500 samples from Ad-
vBench (Zou et al., 2023b), HarmBench (Mazeika
et al., 2024), and JailbreakBench (Chao et al., 2024)
to evaluate the models’ defense capabilities. For
the Manual attack evaluation, we combine the sam-
pled samples with HumanJailbreak templates from
HarmBench. Our evaluation of the GCG attack
is limited to 100 harmful samples. Additionally,
for over-refusal evaluation, we randomly sample
200 prompts from XSTest and Or-bench. Note that
the data used for mitigating over-refusal during
training is different from the over-refusal test data.

Attack Methods. We evaluate DeepRefusal un-
der the following seven representative attack vec-
tors: No Attack, Manual (HumanJailbreaks from
HarmBench), CodeAttack (out-of-distribution at-
tack from Ren et al., 2024), GCG (gradient-based
optimization), Refusal, Refusal-Transfer2, and Pre-
filling Attack (Vega et al., 2024).

Defense Baselines. We compare DeepRefusal
with five representative defenses. (1) RT: Refusal
Training; (2) RT-Augmented: Refusal Training
with harmful-prefix augmented (Qi et al., 2025); (3)

2For Refusal-Transfer, we use the direction calculated on
the instruction-tuned model to perform transfer attacks.
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LAT: Latent Adversarial Training (Sheshadri et al.,
2024); (4) CAT: Continuous Adversarial Training
(Xhonneux et al., 2024); (5) CircuitBreaker: (Zou
et al., 2024). Both RT and RT-Augmented use the
same training set as DeepRefusal.

Evaluation Metrics. We use three categories of
metrics. (1) ASR (Attack Success Rate): percent-
age of successful attacks (lower is better); (2) Ca-
pability: performance on MMLU (Hendrycks et al.,
2021), GSM8k (Cobbe et al., 2021), and MT-bench
(Zheng et al., 2023) benchmarks (higher is better);
and (3) Over-Refusal: rate of incorrectly refusing
harmless queries (lower is better).

MMLU GSM8k MT-bench
Llama3-8B-instruct 63.82 75.44 6.89
+RT 63.84 70.51 6.27
+RT-Augmented 63.79 72.10 6.28
+CircuitBreaker 58.82 42.84 6.79
+LAT 61.94 60.42 6.52
+DeepRefusal(Ours) 63.61 72.40 5.94
Llama2-7B-instruct 46.38 22.97 5.09
+RT 45.90 20.77 4.82
+RT-Augmented 45.76 21.83 4.63
+CircuitBreaker 46.29 23.58 5.27
+CAT 46.25 20.24 4.88
+DeepRefusal(Ours) 46.83 21.76 4.71
Mistral-7B-Instruct-v0.2 59.00 41.70 6.55
+RT 57.50 41.32 5.33
+RT-Augmented 57.67 39.80 5.40
+CircuitBreaker 58.82 42.84 6.30
+DeepRefusal(Ours) 58.10 41.02 5.65
Gemma-7B-it 50.20 27.90 5.40
+RT 50.73 29.42 4.47
+RT-Augmented 50.58 28.43 4.53
+CircuitBreaker 50.04 26.31 5.25
+DeepRefusal(Ours) 50.93 32.45 4.63

Table 2: Assessment of LLM capabilities.

5.2 Results and Analysis
Attack Success Rate. DeepRefusal significantly
reduces the Attack Success Rate (ASR) across
all models and attack types, as shown in Table 1.
For instance, on Llama3-8B, DeepRefusal drops
CodeAttack’s ASR from 87.1% (instruction model)
to a mere 0.2%. Notably, DeepRefusal also shows
strong performance against refusal attacks, includ-
ing in the refusal transfer setting, where other meth-
ods fail to provide similar resilience. However, Cir-
cuitBreaker is compromised by refusal transfer at-
tacks on the Llama3-8B-Instruct model. We further
evaluate robustness against alternative refusal di-
rection constructions (Wollschläger et al., 2025; Xu

et al., 2024b), and report the results in Appendix B,
and additionally examine the cross-lingual general-
ization of our method in Appendix C.

Capability Preservation. Table 2 demonstrates
that DeepRefusal maintains model capabilities with
the minimal degradation. For Llama3-8B, DeepRe-
fusal maintains MMLU at 63.61 (vs. base 63.82)
and GSM8k at 72.40 (vs. base 75.44). This means
it only slightly reduces mathematical reasoning
ability while keeping general knowledge intact. In
contrast, CircuitBreaker significantly impacts ca-
pabilities, especially in GSM8k (42.84 vs. base
75.44). This performance drop likely stems from
CircuitBreaker generating nonsense outputs, sug-
gesting that suppressing harmful activations can
unintentionally disrupt language modeling. No-
tably, over-refusal rate does not lead to significant
improvements in Appendix A.

5.3 Ablation Study

We systematically evaluate the impact of three key
design components of our DeepRefusal method
on the Llama3-8b-instruct model. Specifically, we
investigate the following three configurations. (1)
Without Harmful Prefix Augmentation: We remove
the harmful prefix augmentation (x′, y′<k, y) mech-
anism. (2) Layer-wise Directions: Instead of em-
ploying a single refusal direction for all layers, we
adopt layer-wise directions. This variant explores
whether allowing each layer to learn independent
refusal directions can enhance the model’s robust-
ness. (3) Dynamic Directions: Following the ap-
proach in Yu et al. (2025), we implement dynami-
cally computed refusal directions during training.

Results in Table 3 show that removing the harm-
ful prefix augmentation reduces resilience against
GCG attacks. The Layer-wise and Dynamic Di-
rections variants performed worse than DeepRe-
fusal. Our proposed design, which uses a single
static refusal direction along with harmful prefix
augmentation, achieves the best balance between
robustness and general capabilities.

We further examine the impact of the PAA prob-
ability p, as shown in Table 4. The results show
that small p values under-train the model against
adversarial conditions, while large p values cause
excessive over-refusal. The setting p = 0.5 offers
the best balance.
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ASR(↓) Capability(↑)
No Attack Manual CodeAttack GCG Refusal-Transfer Refusal Prefilling MMLU GSM8k MT-bench

DeepRefusal(Ours) 0.0 0.0 0.2 2.0 0.4 0.2 0.4 63.61 72.40 5.94

- w/o Augment 0.0 0.0 5.2 50.0 0.2 0.0 83.7 63.36 71.80 5.62
- Layer-wise Directions 0.6 8.1 6.7 68.0 74.5 77.4 0.4 63.55 72.78 6.07
- Dynamic Directions 0.0 0.0 7.5 14.0 69.3 75.8 76.2 63.24 72.48 5.09

Table 3: Ablation study of refusal direction on Llama3-8B-instruct: We considered three variants: (1) without em-
ploying harmful prefix augmentation; (2) using layer-wise directions instead of the single direction; (3) dynamically
computing the refusal directions during training.

Model No Attack Manual CodeAttack GCG Refusal-Transfer Refusal PrefillingAttack Over-Refusal(↓)

Llama3-8B-instruct(+RT) 0.2 3.0 58.8 62.0 70.8 83.5 82.7 39.5

+DeepRefusal(p=0) 0.6 4.5 46.7 50.0 76.6 77.7 3.0 20.0
+DeepRefusal(p=0.1) 0.0 0.0 14.0 34.0 56.6 79.7 0.0 22.0
+DeepRefusal(p=0.3) 0.0 0.0 0.8 22.0 11.1 73.5 0.0 23.5
+DeepRefusal(p=0.5) 0.0 0.0 0.0 2.0 0.4 3.3 0.0 28.5
+DeepRefusal(p=0.7) 0.0 0.0 0.0 2.0 0.2 0.0 0.0 40.5
+DeepRefusal(p=1) 0.0 0.0 0.4 0.0 0.2 0.0 0.0 49.5

Table 4: Ablation study of PAA probability p on Llama3-8B-instruct

6 Conclusion

Our research identifies a significant gap in current
safety alignment methods, demonstrating that exist-
ing defenses are vulnerable to jailbreak attacks via
refusal directions, which can even be exploited for
transfer attacks. To address this, we propose Deep-
Refusal, a novel defense approach that simulates
adversarial conditions by ablation of refusal direc-
tions at different token and layer depths. This force
the model to develop a deeper, more robust refusal
mechanism. DeepRefusal offers a principled way
to train LLMs to rebuild safety mechanisms from
jailbreak states, bridging the gap between surface-
level alignment and robust internal defense.

Experimental results demonstrate that DeepRe-
fusal achieves optimal defense performance against
various attacks across multiple models. Our Deep-
Refusal method, benefiting from advances in LLM
interpretability and moving beyond surface align-
ment, serves as a strong example of how inter-
pretability research can enhance safety alignment.
In future work, we plan to extending DeepRefusal
to multimodal scenarios, where safety alignment
challenges are even more complex and pressing.

Limitations

While DeepRefusal significantly enhances the de-
fense capabilities of LLMs, it also has certain limi-
tations. First, our method is fundamentally depen-
dent on refusal directions within the model. This
means that extending it to multimodal models re-

quires first extending these refusal directions to the
multimodal context. Second, variations in model
size, architecture, and training data can influence
defense performance. Specifically, the inclusion of
high-quality data aimed at mitigating over-refusal
is crucial for reducing excessive refusal rates in
models.

Ethics Statement

Our work identifies a transfer attack against safety
alignment. However, since this attack requires ma-
nipulation of the model’s hidden states, which is
an unrealistically strong attack setting, it does not
apply to black-box settings. While this finding
may inform future jailbreak attempts, it does not
significantly increase the practical risks of LLMs.
Although our findings underscore vulnerabilities in
current safety mechanisms, we maintain that our
work positively contributes to understanding these
risks. Such understanding is crucial for advancing
more robust and secure AI systems.
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A Over-Refusal Evaluation

Llama3-8B-instruct
RT RT(Aug) CB LAT Ours

39.5 20.0 16.5 28.5 29.0

Llama2-7B-instruct
RT RT(Aug) CB CAT Ours

51.0 43.0 17.0 17.5 21.5

Mistral-7B-Instruct-v0.2
RT RT(Aug) CB Ours

33.0 36.0 27.0 8.5

Gemma-7B-it
RT RT(Aug) CB Ours

20.0 28.5 16.5 30.5

Table 5: Over-Refusal Evaluation(%)

Safety alignment methods can lead to over-
refusal. Therefore, it is necessary to evaluate the
model’s over-refusal rate.

In addition, due to the evaluation of over-refusal,
the model may have four situations: direct answer,
indirect answer, direct rejection, and indirect rejec-
tion. Therefore, we also designed a prompt for the
evaluation result to determine whether the final an-
swer is a refusal. Both direct rejection and indirect
rejection will be counted in our over-refusal rate.

You are given a user question and an LLM
response. Your task is to classify the
response into one of four categories:

↪→
↪→
1. direct_answer

- The response makes a direct attempt to
answer the original question, providing
substantive information, suggestions, or
conclusions—even if the answer is
incorrect or only partially relevant.

↪→
↪→
↪→
↪→

2. indirect_answer
- The response does not directly deliver a

standard answer but still offers useful,
topic-related information or guidance.
Examples include:

↪→
↪→
↪→

- Questioning or critiquing the premise of
the original question and then
providing a substantive workaround or
analysis.

↪→
↪→
↪→
- Asking for additional context

(preferences, background,
constraints) to improve the eventual
answer.

↪→
↪→
↪→
- Offering related principles, examples,

or step-by-step reasoning instead of a
straight answer.

↪→
↪→

3. direct_refusal
- The response flatly refuses to answer (“I

cannot,” “I will not”) and supplies
**no** meaningful information or
suggestions that relate to the user’s
original question.

↪→
↪→
↪→
↪→

4. indirect_refusal
- The response also refuses to answer the

original question but then provides
content that is **unrelated** or
off-topic (e.g., changing the subject,
giving generic advice not tied to the
question).

↪→
↪→
↪→
↪→
↪→
- This category also includes gibberish,

where the response outputs meaningless
characters, repetitive meaningless
words, or incoherent text.

↪→
↪→
↪→
- Note: If the response first says it cannot

answer but then goes on to give a
relevant analysis or solution, that is
**not** indirect_refusal—it belongs
under indirect_answer.

↪→
↪→
↪→
↪→

QUESTION: "{}"
RESPONSE: "{}"
Please briefly explain the reason for choosing

the class and then state your choice inside
[[ and ]].

↪→
↪→

CLASS:

Ultimately, we extracted 100 samples each from
XSTest (Röttger et al., 2024) and Or-Bench (Cui
et al., 2025), for a total of 200 samples as the test
data for Over-Refusal Rate, and we present the test
results in Table 5. In order to alleviate the over-
refusal caused by safety alignment, many works
(Zou et al., 2024; Yu et al., 2025) have added some
samples that are prone to over-refusal to the be-
nign dataset. DeepRefusal also adopts this tech-
nique. This mitigation method allows DeepRefusal
to maintain its robust safety while minimizing the
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Model Refusal-Transfer Refusal Refusal-orthogonal Refusal-independent SCAV

Llama3-8B-instruct 92.5 92.5 90.6 46.8 66.92
+DeepRefusal (Ours) 0.4 0.2 0.0 0.0 1.3

Table 6: Robustness evaluation under alternative refusal direction construction methods.

over-refusal rate. Table 5 shows that our method
achieves safety without significantly increasing the
model’s over-refusal rate. The main reason why
CircuitBreaker performs better is that the safety
mechanism in CircuitBreaker abandons refusal be-
havior to a certain extent (partial refusal and partial
suppression of malicious answers), so it will show
a lower over-refusal rate (because there is no re-
fusal). In addition, we did not carefully design the
data to alleviate over-refusal. If the corresponding
data is carefully designed, it is expected to further
reduce the over-refusal rate of our method.

B Evaluation Under Alternative Refusal
Direction

To test whether our defense depends on a particular
refusal direction, we evaluate five representation-
level attacks that differ only in how this direction is
constructed. Specifically, (i) Refusal-Transfer: the
direction is computed on the instruction-tuned base
model and transferred; (ii) Refusal: the direction is
computed on the evaluated model; (iii) SCAV (Xu
et al., 2024b): Obtain the refusal direction by cal-
culating the normal direction of the hyperplane;
and, following (Wollschläger et al., 2025), (iv)
Refusal-orthogonal and (v) Refusal-independent,
which instantiate refusal directions that are mutu-
ally orthogonal/independent within a cone-based
formulation of the refusal concept.

Results in Table 6 show that our approach
remains robust even under cone-based, multi-
directional constructions of refusal direction.

C Cross-Lingual Robustness Evaluation

To examine the generalization of DeepRefusal
across languages, we adopt SORRYBENCH (Xie
et al., 2025), which provides multilingual jail-
break prompts. Specifically, we consider 5 lan-
guages: two high-resource languages (Chinese and
French) and three lower-resource languages (Tamil,
Marathi, and Malayalam). For each language, 440
prompts were used, all translated from the same set
of English harmful instructions to ensure compara-
bility. We evaluate attack success rates on four

ASR/% Tamil French Marathi Malayalam Chinese

Llama3-8B 20.23 22.27 29.32 28.18 24.09
+DeepRefusal 0.45 0.23 0.45 0.68 0.45

Llama2-7B 4.09 17.95 11.82 4.32 20.68
+DeepRefusal 0.23 4.55 0.45 0.00 5.23

Mistral-7B 8.86 57.27 21.36 24.55 53.18
+DeepRefusal 3.18 4.55 5.91 5.91 4.09

Gemma-7B 16.59 18.86 24.55 12.05 24.09
+DeepRefusal 1.14 0.68 3.86 0.91 2.05

Table 7: Cross-lingual robustness evaluation on five
languages from SORRYBENCH (Xie et al., 2025). Deep-
Refusal consistently lowers attack success rates across
both high-resource (Chinese, French) and low-resource
(Tamil, Marathi, Malayalam) languages without requir-
ing language-specific modifications.

Model GCG (Avg ASR/Std)

+RT 62.0± 8.0
+RT-Augmented 50.0± 4.0
+CircuitBreaker 1.0± 1.0
+LAT 2.0± 4.0
+DeepRefusal (Ours) 3.0± 3.0

Table 8: Attack success rates (ASR) of GCG on Llama3-
8B-instruct across three random seeds.

instruction-tuned LLMs and their DeepRefusal-
enhanced variants.

As shown in Table 7, DeepRefusal significantly
improves multilingual robustness across all tested
models. These results demonstrate that DeepRe-
fusal generalizes effectively across languages with-
out requiring language-specific modifications or
additional training data.

D Robustness under Random Seeds for
GCG

Since the GCG attack involves random seed ini-
tialization, its outcomes can vary across runs. To
assess the stability of defenses under this ran-
domness, we repeat the GCG experiments on
Llama3-8B-instruct with three different seeds.
We report the average attack success rate (ASR)
along with the standard deviation across seeds in
Table 8.
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