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Abstract

The influence of personas on Large Language
Models (LLMs) has been widely studied, yet
their direct impact on performance remains un-
certain. This work explores a novel approach
to guiding LLM behaviour through role vec-
tors, an alternative to persona-based prompt-
ing. We construct 29 role vectors derived from
model activations and evaluate their impact on
benchmark performance across multiple do-
mains. Our analysis investigates whether these
vectors can effectively steer models toward
domain-specific expertise. We measure two
key interventions: (i) activation addition, which
reinforces role-specific directions, and (ii) di-
rectional ablation, which removes them. Re-
sults on well-established benchmarks indicate
that role vectors do, in fact, influence model
behaviour, improving in-domain task perfor-
mance while also yielding unexpected cross-
domain gains. This, in turn, suggests that ma-
nipulating internal model representations has a
greater impact on outcomes than persona-based
prompting.

1 Introduction

The development of persona or role-based chat-
bots has gained significant attention in the AI and
NLP community due to their potential impact on
business and societal applications (Pataranutaporn
et al., 2021). The extent to which different per-
sonas influence Large Language Models’ (LLMs)
performance on objective tasks remains unclear.
Recent attempts have investigated whether incor-
porating personas into system prompts enhances
model performance on objective tasks and explored
potential factors influencing these effects. (Zheng
et al., 2024) conducted a large-scale analysis of the
effect of personas in LLM prompting, examining
the impact of domain alignment between personas
and task-related questions, finding that persona-
based prompting either has no effect or a slightly

Figure 1: Illustrative example demonstrating how role
vectors (e.g., chemist) can influence model outputs.

negative impact on model performance compared
to a baseline setting.

We aim to investigate whether modifying the
model’s internal mechanisms (Li et al., 2024),
rather than a prompt-based approach, can lead to
improved results. This forms the core objective of
our current work, guided by the following research
questions: RQ1: Can we identify specific latent
role directions, encoded as role vectors, within the
activation space and derived from the model’s in-
ternal mechanisms, that, when leveraged, lead to
improved performance on objective tasks? RQ2:
Do the directions that enhance performance effec-
tively impersonate the role of interest? RQ3: If we
eliminate these directions in the models, do their
performances suffer as a consequence?

Contribution. This work introduces a novel,
open-source1 approach to guiding the behaviour
of LLMs through role vectors, a structured method
for embedding personas directly into model acti-
vations. Fig. 1 is an illustrative example showing
how role vectors (in this example, a chemist-related
vector) may impact LLM performance. Our key
contributions are:

1. We develop a methodology for developing
1https://github.com/Crisp-Unimib/Role-Vectors
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role vectors and test it on selected LLMs
and 29 roles, each capturing domain-specific
knowledge and behavioural tendencies associ-
ated with each specialisation.

2. We investigate whether these vectors influence
model behaviour on downstream benchmarks
to determine whether explicit role-based di-
rections in the activation space enhance model
performance in domain-specific tasks.

3. Unlike traditional role-based prompting tech-
niques, which show a limited or negative im-
pact on performance, we show that role vec-
tor activation leads to measurable changes in
model behaviour.

2 Preliminaries and State of the Art

Personas and Roles in LLMs. Conversational
systems can explain their reasoning in a way that
aligns with the user’s needs (Nobani et al., 2021;
Malandri et al., 2022). Prompting acts as the nat-
ural language interface facilitating human-AI in-
teractions (Liu et al., 2023a). The effectiveness
of LLMs is often dependent on prompt formu-
lation (Lu et al., 2021); for instance, including
the phrase "Let’s think step by step" can enhance
model performance (Kojima et al., 2022). How-
ever, achieving nuanced, consistent, and robust
behavioural control, such as maintaining a spe-
cific persona over long interactions, presents sig-
nificant challenges (Li et al., 2025; Wehner et al.,
2025). These methods can be brittle, and the un-
derlying mechanisms of influence remain largely
opaque (Zhang et al., 2025). Some studies high-
light potential biases and constraints with persona-
based prompting (Sun et al., 2023; Hu and Collier,
2024; Beck et al., 2024). Furthermore, (Zheng
et al., 2024) shows that adding personas does
not consistently enhance performance on objec-
tive tasks and may even degrade it. These limi-
tations have catalysed the exploration of internal
representation manipulation for more direct and
interpretable control (Bartoszcze et al., 2025).

Mechanistic Interpretability and Represen-
tation Engineering. Pioneering research has
shown that neural networks encode input at-
tributes as specific directions within the activation
space (Elhage et al., 2022; Bolukbasi et al., 2016;
Hernandez and Andreas, 2021). This underpins
"Activation Steering" or "Activation Engineering",

which assumes the linear representation hypoth-
esis: high-level concepts are linearly represented
as directions in LLM activation spaces (Marks and
Tegmark, 2023; Hollinsworth et al., 2024). Rep-
resentation Engineering (RepE) identifies and in-
tervenes upon these representations. A common
approach is to contrast the difference-in-means of
activations between a target concept and a baseline
to extract steering vectors (Belrose, 2023; Arditi
et al., 2024). This technique was leveraged by Chen
et al. (2025) in their automated pipeline, which
generates contrastive pairs from natural language
descriptions of a personality trait (e.g., "evil") to
derive a corresponding "persona vector". This
method, core to Contrastive Activation Addition
(CAA) (Panickssery et al., 2023), is valued for its
simplicity and interpretability in isolating concept-
specific representations. While other methods like
Function Vectors (Todd et al., 2023) or In-Context
Vectors (Liu et al., 2023b) excel at narrow tasks,
the difference-in-means approach is well-suited for
capturing broader concepts like professional roles,
which involve diverse features rather than single
functions.

Introducing such derived "steering vectors" into
LLMs’ residual stream can influence behaviour (Li
et al., 2024; Turner et al., 2023; Arditi et al., 2024).
Optimal intervention points (layers, token posi-
tions) remain an active research area (Jorgensen
et al., 2023; von Rütte et al., 2024). Steering
can induce behavioural modifications like language
switching (Scalena et al., 2024). Advanced meth-
ods include Semantics-Adaptive Dynamic Inter-
vention for dynamic steering vectors (Wang et al.,
2024), SPARE for controlled knowledge selec-
tion using pre-trained sparse autoencoders (Zhao
et al., 2024; Cunningham et al., 2023), and ITI
for enhancing truthfulness via supervised latent
vector identification (Li et al., 2024). The versa-
tility of sparse autoencoders extends to practical
applications, including text classification (Trenton
et al., 2024) and hallucination mitigation (Abdal-
jalil et al., 2025). While (Leong et al., 2023) detox-
ifies models by reversing a "toxification direction"
in attention layers without fine-tuning, our work ex-
plores guiding LLM behaviour and improving task
performance by constructing "role vectors" from
model activations in the residual stream and then
directly manipulating these activations through ad-
dition or ablation techniques.

The potential for more granular, data-efficient,
and computationally cheaper control compared to
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fine-tuning (Zhang et al., 2025) motivates explor-
ing RepE techniques (e.g. CAA) to identify role
vectors for robust and interpretable control over
LLM role-based behaviours.

3 Generating and Evaluating Role
Vectors

The methodology is composed of three main com-
ponents: (i) persona selection and prompt dataset
generation, (ii) creation of relevant role vectors and
(iii) evaluation methods.

3.1 Personas Selection and Role Dataset
Generation

To systematically assess the models’ knowledge
and reasoning capabilities across various domains,
our study adopts a role-based evaluation frame-
work inspired by (Zheng et al., 2024), inheriting 29
distinct roles R = {r1, r2, . . . , r29}, each r ∈ R
associated with a unique professional or academic
specialisation (see Tab. 1). Roles not correspond-
ing to an occupation or not associated with any
PersonaHub personas were excluded.

The roles dataset used to identify specific role
vectors is extracted using the corresponding per-
sonas for each role from PersonaHub (Ge et al.,
2024). These personas are highly specialised and
situated in realistic settings and represent various
contextualised scenarios, such as "A pharmaceu-
tical chemist who analyses the chemical proper-
ties of medical devices". First, we perform strict
string matching to identify personas that explic-
itly contain the role name. That is, for each
role r, we obtain P (r) = {p ∈ PersonaHub |
string-match(p, r)} where string-match(p, r) indi-
cates that the persona p explicitly contains the role
name r. Then, a sampling process is applied to
select relevant personas randomly. Each role can
have one or multiple personas, ranging from a mini-
mum of 1 to a maximum of 6948 (881 on average).

Each of the selected personas is then used to gen-
erate a synthetic role dataset, following the method-
ology employed by Alpaca (Taori et al., 2023).

We define a set of tasks T =
{write, explain, design,what is, how to, . . . },
analogous to those used in Alpaca (Taori et al.,
2023). We generate a set of prompts for each role
r ∈ R. Let Dr = {xr,1, xr,2, . . . , xr,128} be the
collection of 128 prompt examples for role r. For
each prompt xr,i, a task t is randomly sampled
from T , and a persona p is randomly sampled from

P (r). Then, the prompt is generated by providing
the template (see Fig. 2) to the Claude 3.5 Haiku
model (Anthropic, 2024b) with the selected task t
and persona p.

Generating Persona-Specific Tasks

Generate a {task_type} prompt that this persona would likely ask:
Persona: {persona}.

Rules: (i) The prompt should start with "{task_type}". (ii) Keep
it specific and under 15 words. (iii) Make it relevant to the per-
sona’s background/interests. (iv) Your output must start with "User
prompt:".

Examples based on task types:

- Describe: "Describe the key features of a successful marketing
campaign."
- Explain: "Explain the process of setting up a home network."
- Design: "Design a logo for a sustainable fashion brand."
- What is: "What is the difference between UI and UX design?"
- How to: "How to optimise a website for mobile devices?"

Figure 2: Prompt template for generating persona-
specific tasks.

The complete role dataset is given by Droles =⋃
r∈R Dr. We incorporate Dbase, an additional set

of 128 examples sourced from the original Alpaca
dataset, consisting of general instruction-following
prompts. This provides a broad reference point,
enabling the contrastive computation of direction
for each role using the corresponding Dr.

3.2 Creation of Role Vectors
To identify role vectors for each specific role, e.g.,
to find the directions in the model’s residual stream
activations corresponding to each role, we use a
technique known as difference-in-means (Belrose,
2023). We compute the difference between the
model’s average activations when performing infer-
ence on the role-specific dataset Dr ∈ Droles and
generic queries from Dbase.

Following the notation from (Arditi et al., 2024),
for each role r ∈ R, layer l ∈ [L], and post-
instruction token position i ∈ I , we compute the
mean activation µ

(l)
i,r for role-specific prompts in

Dr and ν
(l)
i for generic prompts in Dbase:

µ
(l)
i,r =

1

|Dr|
∑

t∈Dr

x
(l)
i (t), ν

(l)
i =

1

|Dbase|
∑

t∈Dbase

x
(l)
i (t) (1)

We then define the role-specific difference-in-
means vectors:

d
(l)
i,r = µ

(l)
i,r − ν

(l)
i (2)

By computing d
(l)
i,r for each r ∈ R, we obtain |R|

(29) distinct groups of role vectors, each represent-
ing the shift in model activations specific to a given
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role. These vectors are informative in two ways:
their direction indicates how the mean activations
for role-specific and generic prompts diverge; their
magnitude quantifies the extent of this difference.

Using the identified role vectors, follow-
ing Arditi et al. (2024), we apply two types of
interventions: activation addition and directional
ablation. These techniques allow us to manipulate
the model’s activations by reinforcing or suppress-
ing specific directional components in the residual
stream.

Activation Addition. Given a difference-in-
means role vector d(l)i,r, we can modulate the influ-
ence of the corresponding feature through a simple
linear transformation. Specifically, we add the di-
rection vector to the activations of a base input,
shifting them toward the mean activation observed
for role-enhanced inputs:

x(l)′ ← x(l) + αd
(l)
i,r (3)

Where α is a scalar hyperparameter that scales
the difference-in-means vector d(l)i,r, controlling the
magnitude of the shift applied to the base activa-
tions x(l) toward the role-enhanced mean. One
might hypothesise that increasing their magnitude
would enhance the effect associated with a given
role; however, such amplification may also deterio-
rate text generation performance (Liu et al., 2023b;
Scalena et al., 2024), so we set α = 1. This opera-
tion is applied exclusively at layer l and affects all
token positions, ensuring a controlled perturbation
of the model’s internal representations.

Directional Ablation. We also evaluate the im-
pact of ablating the direction entirely, a trade-off
explored in the literature relating to safety mecha-
nisms in models (Wei et al., 2024; Arditi et al.,
2024). Given the unit norm of the difference-

in-means role vector
ˆ
d
(l)
i,r, directional ablation re-

moves a role vector’s contribution from the model’s
activations. This process effectively zeroes out the
component of each residual stream activation x

along
ˆ
d
(l)
i,r, preventing the model from utilising this

direction:

x′ ← x− ˆ
d
(l)
i,r

ˆ
d
(l)
i,r

⊤
x. (4)

This operation is performed at every activation
x
(l)
i , across all layers l and all token positions i,

ensuring that the model no longer represents the
targeted direction in its residual stream. A per-
formance drop relative to the non-ablated case is

expected.
By applying these interventions, we can assess

the functional role of specific directions in the
model’s representation space.

3.3 Evaluation Method
It is key to note that we do not obtain a single role
direction, but a bundle of directions for each role,
layer and token position. Among these, perfor-
mance can vary significantly, and not all directions
may effectively capture the essence of the intended
role. We adopt a validation-based selection proce-
dure to identify each role’s most representative and
performant vector d∗r . Specifically, we use a bench-
mark dataset distinct from the role construction
dataset Droles: the Massive Multitask Language
Understanding (MMLU) benchmark (Hendrycks
et al., 2020), adhering to the sampling and splitting
methodology described by (Zheng et al., 2024) for
a total of 2457 questions. We define the set of cate-
gories as C = Natural Science, Economics, EECS
(Electrical Engineering and Computer Sciences),
Law, Math, Medicine, Politics, Psychology}.

For each c ∈ C, let Dc denote the set of ques-
tions corresponding to category c. Tab. 1 shows
the distribution of questions and roles. While many
of these roles correspond directly to established
MMLU categories, some exhibit only partial align-
ment. For example, the role of a dentist does not
perfectly fit within the "medicine" category. How-
ever, we expect that individuals or models adopting
the role of a dentist should demonstrate domain-
specific knowledge that exceeds that of the general
population or those assuming unrelated roles.

We partition the questions of each domain Dc

into a 70-30% validation-test split Dval
c and Dtest

c .
We evaluate candidate directions on the validation
set Dval to select the optimal candidate for each
role. This selected direction, d∗r , is subsequently
evaluated on every category of the test set Dtest

to assess its impact on downstream performance
across the different splits Dtest

c ∈ Dtest.
To determine the optimal candidate direction,

for each model and role r ∈ R, we assess whether
incorporating through Activation Addition the com-
puted role-specific difference-in-means vectors d(l)i,r
yields an improvement in performance on the vali-
dation dataset Dval, focusing on the corresponding
domain-reference split Dval

c . For a direction to be
valid, the directional ablation vector must also yield
lower performance than the baseline. Among the
directions that both (i) increase the performance
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Category Role(s) #

Economics economic researcher,
economist, financial analyst

492

EECS electronics technician, data
scientist, electrical engineer,
software engineer, web de-
veloper

247

Law bailiff, lawyer 200
Math data analyst, mathematician,

statistician
287

Medicine nurse, doctor, physician,
dentist, surgeon

241

Natural Science geneticist, biologist, physi-
cist, teacher, chemist, ecolo-
gist

590

Politics politician, sheriff, enthusi-
ast, partisan

200

Psychology psychologist 200

Total 2457

Table 1: Distribution of roles and corresponding ques-
tions for each category, using a subset of the MMLU
dataset adapted from (Zheng et al., 2024).

in activation addition w.r.t. the baseline and (ii)
decrease in directional ablation, we select the di-
rection d∗r with the highest increase in performance
on activation addition as the optimal.

Expanding on the details of this evaluation, for
each validation dataset Dval

c ∈ Dval, we assess per-
formance using a logit-based framework. Given a
query xr,i ∈ Dval

c , we restrict the candidate answer
tokens to Tans = {tA, tB, tC , tD}; the maximum
logit value between those tokens determines the
prediction. Overall performance is computed as
the percentage of correct answers.

For each tuple (l, i), we modify the residual
stream activation x(l) via Eq. 3 and 4 with α = 1.
Let s(l,i)r denote the performance (e.g., the propor-
tion of correct answers) on the domain-specific test
split Dval

c after applying the intervention specified
by (l, i).

Validity of a direction d
(l)
i,r is defined as its ability

to improve performance in the reference domain-
specific validation split Dval

c when added and either
degrade or maintain it when removed, compared to
the baseline. Among all directions satisfying this
criterion, the one (d∗r) with the highest increase in
performance when applying activation addition is
considered optimal. With d∗r identified, we then
evaluate its effect on all domain-specific splits in
Dtest with magnitude α = 1.

Semantic alignment with the roles. Addition-
ally, we wish to quantify the proportion of optimal
directions d∗ that align with the role-specific signal

identified via a patch-scoping procedure. We adopt
the methodology outlined in (Chen et al., 2024;
Ghandeharioun et al., 2024), i.e. patch scoping.
We prompt the model with the query “What does
♦ represent?”, apply the Activation Addition inter-
vention while increasing the magnitude of its effect
by a coefficient α = 3, and generate an explanation
based on the resulting activations, as exemplified
in Fig. 3. This procedure allows us to determine
whether the introduced direction corresponds to the
specific role of interest.

Patch Scoping Example (Llama 3.1 8B)

Prompt: What does ♦ represent?

Model Baseline Response:
The symbol ♦ is a Unicode character known as
“Heavy Large Circle.” It is often used in mathe-
matics, particularly in geometry and algebra, to
represent a circle or a set of points. However, with-
out more context, it’s difficult to provide a more
specific interpretation.
Model Intervention Response
(Layer 20, Position -4, Chemist direction):
The ♦ symbol is a non-specific or non-chemical
radical, which is a small molecule or functional
group used to represent a specific chemical struc-
ture or functional group in a reaction mechanism
or during synthesis.

Figure 3: Diverse interpretations of ♦, before and after
model intervention.

4 Results

Experimental setting. Our evaluation uses a set
of open-source, instruction-tuned language models
M, focusing on the most recent versions employed
by (Arditi et al., 2024). Specifically, we analyse
Meta’s Llama 3 series (Dubey et al., 2024), includ-
ing the 3.1 8B model and the 3.2 version at 1B and
3B parameters, as well as Google’s Gemma 2 (2B
and 9B) (Team et al., 2024) and Qwen (1.8B and
7B) (Bai et al., 2023). We do not consider base
versions of the models (non-instruction tuned).

Our evaluation was conducted on the Cineca
Leonardo supercomputer (Turisini et al., 2023).
The assessment required approximately 4,500 GPU
hours to process all requests, computing over 213
million inferences (29 roles r multiplied by 2457
questions, the number of layers l, coefficients α
and positions i for each of the seven models M).

RQ1: Analysis of best performing directions d∗r .
Following the procedure delineated in Section 3,
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Figure 4: Spearman correlation of the percentage im-
provement in performance (relative to baseline) between
each model after applying activation addition. * corre-
sponds to p-values ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001.

we apply activation addition with the direction d∗r
for each role r ∈ R and model m ∈ M to sys-
tematically visualise and quantify its impact on
performance across Dtest. To analyse the relation-
ship between models, we compute and visualise
the correlation matrix of the percentage difference
relative to baseline in intervention effects across
models. Fig. 4 shows the Pearson correlation co-
efficient between each model pair. Gemma 2 9B
exhibits the highest average correlation with all
other models, indicating that its behaviour under
steering is consistent with different models. For
this reason, we show in Tab. 2 Gemma 2 9B be-
haviour on performance for each role when steering
using d∗r . We display the performance scores across
the eight dataset splits for all 29 roles. After ap-
plying activation addition, we report the baseline
score and percentage increment over the baseline
for each domain and role. The colour represents
the extent of the change compared to the baseline
(without intervention).

Cross-Dataset Validation on MedQA. To as-
sess the generalisability of our method beyond
MMLU, we performed an additional evaluation on
the MedQA dataset (Jin et al., 2021). We applied
the optimal role vectors for five medical profes-
sions (nurse, doctor, physician, dentist, and sur-
geon), previously identified on the MMLU valida-
tion split, to the Gemma 9B model. These vec-
tors enhanced performance on MedQA, confirming
their cross-domain utility. Against a 52% base-
line, we observed consistent accuracy gains: nurse

(53.6%; +3.0%), doctor (55.0%; +5.7%), physi-
cian (54.1%; +4.0%), dentist (54.0%; +3.8%), and
surgeon (54.4%; +4.6%). This result suggests that
the discovered role vectors capture task-relevant
specialisation that can be transferred to related do-
mains and tasks.

RQ2: Analysis of directions corresponding to
the role. For every model m ∈ M and each
direction d

(l)
i,r, we apply the patch scoping pro-

cedure (detailed in Section 3) to prompt Claude
3.5 Haiku (Anthropic, 2024a). We ask the model
whether the applied direction aligns with the cor-
responding role r ∈ R with the prompt shown in
Fig. 5. Tab. 3 shows, among the directions that
improve the baseline score on the domain-specific
test split Dtest

c , the percentage of those d
(l)
i,r that

Claude identifies as role-specific.

Prompt to Evaluate Patch Scoping

We are testing whether the LLM has been success-
fully steered from its baseline output to adopt a
{role} perspective. Your task is to determine if the
response contains relevant content to the {role}
domain. Note that you are not assessing the qual-
ity of the response—only its relation to the {role}
concept.
Please keep in mind: (i) The text may be repeti-
tive or somewhat incoherent. (ii) If the response
closely mirrors the baseline without introducing
any distinct {role}-related elements, it should be
considered as not aligned with the {role} role.
Evaluate this step by step and answer the follow-
ing question: Is the model being steered toward
the {role} role?
Text to Evaluate: {response_text}; Baseline Refer-
ence: {baseline_response}.

Figure 5: Prompt for evaluating patch scoping output
provided to Claude 3.5 Haiku.

RQ3: Directional ablation analysis. To evalu-
ate whether the optimal direction d∗r plays a causal
role in boosting performance on the test dataset
Dtest, we ablate d∗r in Gemma 2 9B and present
the resulting performance for each role r ∈ R in
Tab. 4.

5 Discussion

The effect of steering using role vectors on model
performances. In larger models, the strongest
improvements are observed in the target domain
and often extend to closely related areas. Since we
observe a strong correlation among larger models,

17740



Dataset Split Economics (148) EECS (75) Law (60) Math (87) Medicine (73) Natural Science (177) Politics (60) Psychology (60)
Role ↓ Intervention→ Base Addition Base Addition Base Addition Base Addition Base Addition Base Addition Base Addition Base Addition

economic researcher 0.67 +5.7% 0.66 +0.6% 0.69 +2.2% 0.29 +10.7% 0.70 +4.7% 0.53 +9.0% 0.93 +0.5% 0.80 +2.5%
economist 0.67 +3.9% 0.66 +0.6% 0.69 +2.2% 0.29 +7.1% 0.70 +3.6% 0.53 +7.7% 0.93 +1.1% 0.80 +1.3%
financial analyst 0.67 +3.6% 0.66 −1.2% 0.69 +0.7% 0.29 +8.3% 0.70 +3.6% 0.53 +4.1% 0.93 +1.1% 0.80 +1.3%

electronics technician 0.67 +1.8% 0.66 −0.6% 0.69 +0.7% 0.29 +8.3% 0.70 +4.2% 0.53 +6.1% 0.93 +0.5% 0.80 +0.0%
data scientist 0.67 +1.2% 0.66 +0.6% 0.69 +0.7% 0.29 +2.4% 0.70 +3.6% 0.53 +2.2% 0.93 +1.1% 0.80 +1.9%
electrical engineer 0.67 +3.3% 0.66 +0.6% 0.69 +2.2% 0.29 +7.1% 0.70 +5.9% 0.53 +8.0% 0.93 +0.5% 0.80 +1.9%
software engineer 0.67 +1.5% 0.66 +1.2% 0.69 +0.7% 0.29 +3.6% 0.70 +2.4% 0.53 +2.2% 0.93 +0.5% 0.80 +1.3%
web developer 0.67 +0.0% 0.66 −0.6% 0.69 −1.4% 0.29 +1.2% 0.70 −0.6% 0.53 +0.0% 0.93 +0.0% 0.80 +0.0%

bailiff 0.67 +0.6% 0.66 −3.1% 0.69 +2.2% 0.29 +0.0% 0.70 −2.4% 0.53 −0.3% 0.93 +0.0% 0.80 −0.6%
lawyer 0.67 −0.3% 0.66 −1.9% 0.69 +1.4% 0.29 −3.6% 0.70 −1.2% 0.53 −0.6% 0.93 +0.0% 0.80 +0.0%

data analyst 0.67 +2.7% 0.66 −0.6% 0.69 +0.7% 0.29 +7.1% 0.70 +3.0% 0.53 +3.5% 0.93 +1.1% 0.80 +1.3%
mathematician 0.67 +2.1% 0.66 −1.2% 0.69 +0.7% 0.29 +9.5% 0.70 +4.2% 0.53 +2.2% 0.93 +1.1% 0.80 +1.3%
statistician 0.67 +1.8% 0.66 +0.0% 0.69 −0.7% 0.29 +5.9% 0.70 +0.0% 0.53 +0.6% 0.93 +1.1% 0.80 +0.6%

nurse 0.67 +5.4% 0.66 −0.6% 0.69 −1.4% 0.29 +16.7% 0.70 +2.4% 0.53 +6.7% 0.93 −0.5% 0.80 −0.6%
doctor 0.67 +0.6% 0.66 −2.5% 0.69 +2.2% 0.29 +1.2% 0.70 +3.0% 0.53 +2.6% 0.93 +1.1% 0.80 +1.9%
physician 0.67 +1.2% 0.66 −1.9% 0.69 +0.0% 0.29 +1.2% 0.70 +3.0% 0.53 +1.6% 0.93 +1.1% 0.80 +1.3%
dentist 0.67 +3.6% 0.66 −0.6% 0.69 +0.7% 0.29 +7.1% 0.70 +4.2% 0.53 +5.7% 0.93 +1.1% 0.80 +1.9%
surgeon 0.67 +5.1% 0.66 −1.9% 0.69 +1.4% 0.29 +3.6% 0.70 +4.7% 0.53 +5.1% 0.93 +0.5% 0.80 +2.5%

geneticist 0.67 +5.1% 0.66 −0.6% 0.69 +2.2% 0.29 +11.9% 0.70 +4.2% 0.53 +9.0% 0.93 +0.5% 0.80 +1.9%
biologist 0.67 +4.2% 0.66 −0.6% 0.69 +2.2% 0.29 +10.7% 0.70 +3.6% 0.53 +11.2% 0.93 +1.1% 0.80 +1.3%
physicist 0.67 +5.1% 0.66 +0.0% 0.69 +2.2% 0.29 +9.5% 0.70 +5.9% 0.53 +8.0% 0.93 +1.1% 0.80 +1.3%
teacher 0.67 +3.9% 0.66 −1.2% 0.69 +1.4% 0.29 +7.1% 0.70 +5.3% 0.53 +6.1% 0.93 +1.1% 0.80 +1.3%
chemist 0.67 +1.8% 0.66 +0.0% 0.69 +1.4% 0.29 +8.3% 0.70 +4.2% 0.53 +4.8% 0.93 +0.0% 0.80 +1.9%
ecologist 0.67 +1.5% 0.66 −1.9% 0.69 +1.4% 0.29 +4.7% 0.70 +3.0% 0.53 +4.8% 0.93 +1.1% 0.80 +0.6%

politician 0.67 +1.2% 0.66 −2.5% 0.69 +0.7% 0.29 +4.7% 0.70 +1.8% 0.53 +3.5% 0.93 +0.5% 0.80 +0.6%
sheriff 0.67 +1.2% 0.66 −1.9% 0.69 +0.0% 0.29 +1.2% 0.70 +1.2% 0.53 +1.6% 0.93 +0.5% 0.80 +0.0%
enthusiast 0.67 −0.6% 0.66 −4.9% 0.69 −5.8% 0.29 −5.9% 0.70 −1.8% 0.53 −1.6% 0.93 +1.1% 0.80 −0.6%
partisan 0.67 −0.9% 0.66 −7.4% 0.69 −4.3% 0.29 +4.7% 0.70 −3.6% 0.53 +0.6% 0.93 +1.1% 0.80 +0.6%

psychologist 0.67 +2.4% 0.66 −2.5% 0.69 +0.0% 0.29 +4.7% 0.70 +1.2% 0.53 +5.7% 0.93 +1.1% 0.80 +3.1%

Table 2: Performance differences (%) in test set of activation addition for gemma-2-9b-it across roles, relative to
the baseline. Positive values indicate performance gains. Highlighted cells show in-domain splits.

gemma-2-2b gemma-2-9b Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B Qwen-1.8B Qwen-7B

169/1008 (17%) 371/1217 (30%) 36/538 (7%) 168/987 (17%) 87/581 (15%) 76/1195 (6%) 187/1284 (15%)

Table 3: Number and percentage of directions interpreted as the corresponding roles by Claude 3.5 Haiku among
those that improve upon the baseline, sorted by model family and size.

as shown in Fig. 4, we report the full details of one
model, Gemma 2 9B, in Tab. 22. Beyond these ex-
pected patterns, we also find notable gains in other
domains that seem both related and unrelated to the
activated role (e.g., psychology improving natural
science). This suggests that role activation addition
contributes not only domain-specific benefits but
also broader improvements across tasks. Concrete
examples illustrate both effects: the mathematician
role produces substantial gains on math questions,
while the doctor role primarily enhances medicine
but also benefits natural science. At the same time,
there are roles for which the direction that yielded
the best validation failed to produce improvements
on the test set, underscoring that the effect is not
uniform. These cross-domain gains raise the possi-
bility that the benefit of role activation is not solely
tied to semantic alignment between the role and
the evaluation task. Instead, the intervention may
introduce structured, expert-like signals into the
representation space that enhance task adherence
or generalisation more broadly. While the largest
gains still tend to occur in-domain (e.g., mathemati-

2Full experimental results are available at https://
github.com/Crisp-Unimib/Role-Vectors.

cian on math, doctor on medicine), the consistent
improvements across multiple domains suggest that
role activation may also act as a multiple-purpose
performance enhancer. These findings for role vec-
tor interventions present a notable contrast to those
typically observed with traditional persona prompt-
ing. We frame this difference in terms of direct
versus indirect control.

Persona prompting, as explored by Zheng et al.
(2024), is a form of indirect control. A prompt such
as "You are a physicist..." is a high-level instruc-
tion that the model must first interpret to steer its
own activations toward a state it associates with
the persona. This process is complex, depends on
how the concept was learned during pre-training,
and can be diluted or ignored within the broader
context, often yielding no significant improvement.
In contrast, our method with role vectors exerts
direct control. It bypasses natural language inter-
pretation to perform an intervention directly on
the model’s internal representations. We are not
asking the model to behave like a physicist (Zou
et al., 2023); we are forcing its activation state into
a configuration that is closer to its "physicist" state.
This direct form of control might explain why our
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Dataset Split Economics (148) EECS (75) Law (60) Math (87) Medicine (73) Natural Science (177) Politics (60) Psychology (60)
Role ↓ Intervention→ Base Ablation Base Ablation Base Ablation Base Ablation Base Ablation Base Ablation Base Ablation Base Ablation

economic researcher 0.67 −2.4% 0.66 −11.7% 0.69 −4.3% 0.29 −8.3% 0.70 −4.1% 0.53 −5.7% 0.93 +0.0% 0.80 −0.6%
economist 0.67 −1.2% 0.66 −4.3% 0.69 +0.0% 0.29 −1.2% 0.70 +4.2% 0.53 +2.6% 0.93 +0.0% 0.80 +1.3%
financial analyst 0.67 −2.1% 0.66 −8.0% 0.69 −2.2% 0.29 −7.1% 0.70 −2.4% 0.53 −2.9% 0.93 −0.5% 0.80 −0.6%
electronics technician 0.67 +2.7% 0.66 −4.3% 0.69 +2.2% 0.29 +1.2% 0.70 +3.0% 0.53 +2.6% 0.93 +0.0% 0.80 +2.5%
data scientist 0.67 +4.8% 0.66 −3.1% 0.69 +3.6% 0.29 +5.9% 0.70 +8.3% 0.53 +8.3% 0.93 +0.0% 0.80 +0.6%
electrical engineer 0.67 −4.8% 0.66 −11.7% 0.69 −5.0% 0.29 −10.7% 0.70 −7.7% 0.53 −6.7% 0.93 −3.8% 0.80 −3.1%
software engineer 0.67 +3.9% 0.66 −4.9% 0.69 +2.9% 0.29 +4.7% 0.70 +3.6% 0.53 +1.6% 0.93 +0.5% 0.80 +1.9%
web developer 0.67 −1.8% 0.66 −5.6% 0.69 −0.7% 0.29 −7.1% 0.70 −1.2% 0.53 −2.2% 0.93 −0.5% 0.80 −0.6%
bailiff 0.67 +0.0% 0.66 −1.2% 0.69 −1.4% 0.29 −1.2% 0.70 −0.6% 0.53 −0.6% 0.93 +1.6% 0.80 +0.0%
lawyer 0.67 −2.1% 0.66 −6.8% 0.69 −3.6% 0.29 −7.1% 0.70 −1.8% 0.53 −2.9% 0.93 +0.0% 0.80 −0.6%
data analyst 0.67 +0.0% 0.66 −4.3% 0.69 +0.0% 0.29 −5.9% 0.70 −1.8% 0.53 −1.0% 0.93 −0.5% 0.80 +0.0%
mathematician 0.67 −15.4% 0.66 −21.0% 0.69 −20.1% 0.29 −25.0% 0.70 −16.0% 0.53 −19.2% 0.93 −9.7% 0.80 −7.5%
statistician 0.67 −3.3% 0.66 −10.5% 0.69 −4.3% 0.29 −9.5% 0.70 −4.7% 0.53 −6.1% 0.93 −1.1% 0.80 −3.8%
nurse 0.67 −3.0% 0.66 −6.8% 0.69 −6.5% 0.29 −5.9% 0.70 −4.7% 0.53 −2.2% 0.93 −5.4% 0.80 −3.1%
doctor 0.67 −5.1% 0.66 −12.3% 0.69 −4.3% 0.29 −8.3% 0.70 −3.6% 0.53 −6.1% 0.93 −1.1% 0.80 −1.3%
physician 0.67 −0.3% 0.66 −8.0% 0.69 −0.7% 0.29 −5.9% 0.70 −0.6% 0.53 −2.2% 0.93 +0.0% 0.80 −1.3%
dentist 0.67 −10.9% 0.66 −17.9% 0.69 −15.1% 0.29 −16.7% 0.70 −9.5% 0.53 −16.6% 0.93 −6.5% 0.80 −5.7%
surgeon 0.67 −4.8% 0.66 −14.8% 0.69 −5.8% 0.29 −10.7% 0.70 −3.6% 0.53 −6.1% 0.93 +0.0% 0.80 −3.8%
geneticist 0.67 −0.6% 0.66 −5.6% 0.69 +0.0% 0.29 +0.0% 0.70 −1.2% 0.53 −0.6% 0.93 −0.5% 0.80 +0.0%
biologist 0.67 −1.2% 0.66 −8.6% 0.69 −2.9% 0.29 −3.6% 0.70 −2.4% 0.53 −2.6% 0.93 −1.1% 0.80 −0.6%
physicist 0.67 −3.0% 0.66 −14.2% 0.69 −5.0% 0.29 −16.7% 0.70 −4.7% 0.53 −6.4% 0.93 −2.2% 0.80 −4.4%
teacher 0.67 −12.4% 0.66 −17.9% 0.69 −15.8% 0.29 −22.6% 0.70 −7.7% 0.53 −13.4% 0.93 −7.6% 0.80 −1.3%
chemist 0.67 −10.6% 0.66 −19.1% 0.69 −11.5% 0.29 −15.5% 0.70 −14.2% 0.53 −15.0% 0.93 −5.9% 0.80 −6.3%
ecologist 0.67 −1.2% 0.66 −7.4% 0.69 −2.2% 0.29 −5.9% 0.70 −2.4% 0.53 −3.2% 0.93 −0.5% 0.80 −0.6%
politician 0.67 +5.7% 0.66 +3.1% 0.69 +5.0% 0.29 +46.4% 0.70 +3.6% 0.53 +18.2% 0.93 −1.6% 0.80 −3.8%
sheriff 0.67 +4.8% 0.66 +3.1% 0.69 +6.5% 0.29 +39.3% 0.70 +3.6% 0.53 +15.3% 0.93 −2.7% 0.80 −3.1%
enthusiast 0.67 −11.5% 0.66 −16.7% 0.69 −10.8% 0.29 −20.3% 0.70 −8.9% 0.53 −11.8% 0.93 −5.4% 0.80 −5.7%
partisan 0.67 +2.4% 0.66 +1.8% 0.69 +0.0% 0.29 +35.7% 0.70 +3.0% 0.53 +12.8% 0.93 −7.6% 0.80 −6.3%
psychologist 0.67 +4.2% 0.66 +0.0% 0.69 +5.8% 0.29 +34.5% 0.70 +3.0% 0.53 +9.6% 0.93 −6.5% 0.80 −5.0%

Table 4: Performance differences (%) in test set of directional ablation across roles for gemma-2-9b-it, relative to
the baseline. Negative values indicate expected performance drops. Highlighted cells show in-domain splits.

intervention yields more consistent and substantial
effects on model performance.

Reinforcing the Linear Representation Hypoth-
esis. These findings offer evidence for the Lin-
ear Representation Hypothesis (Olah et al., 2020,
2017). The ability to isolate a high-level con-
cept, such as a professional role, as a single di-
rectional vector (dr) and then use that vector to
influence model behaviour, suggests that such con-
cepts might be represented linearly in the model’s
activation space to a functional degree. This under-
lying linear structure enables a simple arithmetic
intervention, such as vector addition, to produce
consistent and predictable changes in model output,
effectively guiding the model toward an "expert"
state.

Are directions capturing the role? We observe
that role-based interventions often produce direc-
tional shifts in the model’s activation space that
enhance performance within the target domain and,
in some cases (e.g., as evidenced by d∗r in Tab. 2),
in closely related domains. However, these direc-
tions are not always directly interpretable and do
not correspond to the intended roles. Role vectors
may not just represent the roles: they also capture
lateral effects and functional patterns related to
how the role is used. As shown in Tab. 3, in the
largest model, Gemma 2 9B, we found 30% of the
directions yielding improvements in the relevant
test split that are directly interpreted by Claude 3.5

Haiku as reflecting the intended role. For smaller
models, this percentage decreases, with 15-17% of
directions in 8B models and only 6-7% in mod-
els with less than 2 billion parameters. In other
words, while some of the identified activation di-
rections benefit performance, they do not necessar-
ily align with the semantic role as determined by
patch-scoping methods. This is a known character-
istic of patch-scoping (Kharlapenko et al., 2024)
that distinguishes it from auto-interp (Bills et al.,
2023). While auto-interp leverages the feature’s
maximally activating examples from the training
set of SAEs to prompt a language model to interpret
that feature, patch-scoping captures the underlying
concept represented by the feature, yet struggles to
identify the "label" of the concept explicitly.

Examining Tab. 3, we notice that larger mod-
els exhibit activation directions more clearly in-
terpretable as corresponding to specific roles than
their smaller counterparts within a given model
family. This observation holds for Gemma-2,
Qwen, and Llama-3.23. This indicates that larger
models can capture and encode fine-grained role-
specific features within their activation spaces. In
contrast, smaller models tend to develop more gen-
eral, abstract representations that may blend mul-
tiple role-related cues, making it harder to iso-
late a clear directional signal corresponding to

3Note that a direct comparison between Llama-3.1 and
Llama-3.2 is not feasible, as their pre-training and post-
training methodologies differ.
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a specific role. This aligns with the evidence
from Anthropic in (Templeton et al., 2024) that
as model scale increases, representations become
more mono-semantic, meaning activations align
more closely with specific concepts.

The effect of ablating roles. Results in Tab. 4 in-
dicate that ablating the optimal d∗r activation direc-
tions yields heterogeneous effects. For directions
associated with the role r ∈ R that correspond to
the domain-specific dataset Dtest

c , where c ∼ r, we
observe a performance degradation, which aligns
with expectations. Notably, in domain-specific
datasets Dtest

c unrelated to the role r, where c ̸∼ r,
performance generally declines but occasionally
exhibits a marginal improvement. We hypothe-
sise that this variation arises because the removal
process may eliminate certain noise components
without significantly disrupting the core represen-
tational structure essential for the task. As shown
by (Dalvi et al., 2020), many neurons across neu-
ral networks are redundant and can be removed
when optimising towards a downstream task. Also,
Tab. 3 clearly shows that multiple directions exist
in the activation space that yield an improvement;
ablating a single direction can remove noise and
amplify the effect of the remaining ones. Smaller
models have less redundancy, making them more
sensitive to perturbations. While steering interven-
tions can enhance performance, they can just as
easily cause deterioration across test splits. This
sensitivity likely stems from more concentrated
representations, where each directional component
is crucial for encoding domain-specific knowledge.

6 Conclusion

In this work, we introduced role vectors as a novel
method for guiding the behaviour of LLMs by di-
rectly manipulating their internal activations. By
computing difference-in-means vectors between
role-specific prompts and a generic baseline, our
approach shows that targeted activation addition
can steer models toward domain-specific expertise.
Our experiments, spanning multiple models and do-
mains, reveal that such interventions can improve
performance in target domains and, in some cases,
more broadly across domains, while largely pre-
serving overall capabilities. We also show that the
effectiveness of role-based steering is sensitive to
both model scale and the depth at which the inter-
vention is applied; larger models and deeper layers
tend to yield more robust and interpretable direc-

tional signals.
Our findings suggest that embedding role vec-

tors within model activations offers a promising
pathway for achieving more controllable behaviour
in large language models. Our further work will
explore this phenomenon in greater depth, consider-
ing additional analytical dimensions and potential
biases, using RepE techniques such as Activation
Patching (Causal Mediation Analysis) with SAE
features (Heimersheim and Nanda, 2024) to better
explain this phenomenon.

Limitations

Although we examined diverse open-source mod-
els, our results might differ in untested models,
especially larger ones. Additionally, our analy-
sis does not offer a complete mechanistic expla-
nation of the phenomenon; a different methodol-
ogy will be explored in future research. While we
pinpointed a specific direction influencing perfor-
mances in each model, its exact semantic interpre-
tation remains uncertain. The term “role direction”
is used functionally here, but these directions might
represent other underlying concepts. While the tar-
geted domain performance improves, applying role
vectors might degrade performance in unrelated
tasks, making the intervention less universally ben-
eficial. Steering models using role vectors may
inadvertently reinforce biases or lead to overconfi-
dence in certain domains. To mitigate unintended
consequences, careful evaluation will be conducted
in future work.
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A Appendix: Detailed Performance
Results for Additional Models

Tab. 5 presents the performance impact of activa-
tion addition and directional ablation for Llama 3.1
8B and Qwen 8B, analogous to Tab. 2 and 4.

As reported in Fig. 4, the results are correlated:
using activation addition, most models increase
their performance w.r.t. the baseline in the cor-
responding dataset split, directional ablation de-
creases it as expected. This is true for most splits;
occasionally, we notice a negative outlier result
when using addition (or vice versa). We also note
that the effect of those techniques is less promi-
nent in smaller models: for 1B and 3B versions of
the models, the effect is much less noticeable and
effective.
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