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Abstract

Evaluating Theory of Mind (ToM) in Large
Language Models (LLMs) is an important area
of research for understanding the social intel-
ligence of AI. Recent ToM benchmarks have
made significant strides in enhancing the com-
plexity, comprehensiveness, and practicality
of evaluation. However, while the focus has
been on constructing “more difficult” or “more
comprehensive” tasks, there has been insuffi-
cient systematic analysis of the structural fac-
tors that inherently determine the difficulty of
ToM reasoning—that is, “what” makes reason-
ing difficult. To address this challenge, we
propose a new dataset generation framework
for ToM evaluation named AnaToM. To realize
an “Anatomy of Difficulty” in ToM reasoning,
AnaToM strictly controls structural parameters
such as the number of entities and the time-
line in a story. This parameter control enables
the isolation and identification of factors affect-
ing the ToM of LLMs, allowing for a more
precise examination of their reasoning mech-
anisms. The proposed framework provides a
systematic methodology for diagnosing the lim-
its of LLM reasoning abilities and offers new
guidelines for future benchmark design.

1 Introduction

As AI agents become increasingly prevalent in so-
ciety, their social intelligence, particularly their
ability to smoothly interact and collaborate with
humans, is of growing importance. At the core of
this social intelligence is the ability to infer mental
states such as intentions and beliefs from others’
words and actions, known as “Theory of Mind”
(ToM) (Premack and Woodruff, 1978). ToM has
been extensively studied in cognitive science, and
false belief tasks, in particular, have played a cru-
cial role in understanding human ToM development
and its neurological basis (Wimmer and Perner,
1983; Baron-Cohen et al., 1985).
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Figure 1: Overview of the proposed framework,
AnaToM, which diagnoses ToM of LLMs using stories
generated by parametrically controlling entity composi-
tion and timeline.

In recent years, this classical framework has
been extended to evaluate the capabilities of Large
Language Models (LLMs). There is an active
debate as to whether LLMs possess ToM (Sap
et al., 2022; Ullman, 2023; Ma et al., 2023; Sarıtaş
et al., 2025), and evaluation methods have evolved
rapidly. An early benchmark, ToMi (Le et al.,
2019), highlighted the problem of pattern learn-
ing in template-based tasks, laying the foundation
for subsequent research. Motivated by this issue, re-
cent studies have pursued refinement through mul-
tifaceted approaches, including comprehensiveness
(OpenToM (Xu et al., 2024), ToMBench (Chen
et al., 2024)), higher-order reasoning (Hi-ToM (Wu
et al., 2023)), conversational formats (ToMATO
(Shinoda et al., 2025)), real-world data (Common-
ToM (Soubki et al., 2024)), and adversarial data
generation by LLMs (ExploreToM (Sclar et al.,
2025), BigToM (Gandhi et al., 2023)).

These prior studies have significantly con-
tributed to the multifaceted evaluation of ToM in
LLMs. However, their focus has primarily been
on constructing “more difficult” or “more compre-
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hensive” tasks, and a systematic analysis of the
structural factors that inherently determine the dif-
ficulty of ToM reasoning—that is, what makes the
reasoning difficult—is still insufficient. As a result,
it has been difficult to clearly answer the question
of which factors affect the belief-tracking ability
of LLMs, and to what extent. This calls for an
evaluation paradigm that can isolate the constituent
elements of task difficulty and measure their indi-
vidual effects.

To establish this new evaluation paradigm,
our research proposes a new framework named
AnaToM.1 Its purpose is to deconstruct and ana-
lyze complex reasoning tasks into their fundamen-
tal structural factors, akin to an “Anatomy of Dif-
ficulty” in ToM reasoning. To achieve this goal,
AnaToM enables the strict control of structural pa-
rameters considered to influence the cognitive load
in LLM’s ToM reasoning, such as entity compo-
sition and timelines (Figure 1). We deliberately
employ template-based synthetic data generation
to intentionally control for semantic variables, such
as linguistic diversity, thereby isolating their con-
founding effects on reasoning difficulty. This ap-
proach is complementary to existing evaluations
that use naturalistic datasets focused on ecologi-
cal validity, and positions our framework as a “di-
agnostic tool” to identify which structural factors
cause a model’s failure. Through this approach, our
research aims to establish a methodological foun-
dation for precisely analyzing the limits of ToM
in LLMs and the causes of their failures, thereby
providing new guidelines for future benchmark de-
sign.

2 Related Works

2.1 The Current State of ToM Evaluation in
LLMs

Early computational attempts to handle the “be-
liefs” of others involved formal inference using
modal logic; however, its application was limited
by issues such as logical omniscience and computa-
tional complexity (Isozaki and Katsuno, 1996). In
contrast, the emergence of LLMs has established
a new paradigm for evaluating ToM as a reading
comprehension capability for natural language sce-
narios.

The evolution of benchmarks within this
paradigm can be characterized by the ongoing chal-

1The code and dataset for our framework are available un-
der the MIT License at https://github.com/dsml-lab/AnaToM.

lenge of mitigating “shortcut learning” in mod-
els. Early ToM benchmarks (Grant et al., 2017)
and the ToM-bAbi benchmark (Nematzadeh et al.,
2018), which introduced second-order beliefs, used
templated stories based on the bAbi dataset (We-
ston et al., 2015). However, the simple structure
of these benchmarks raised concerns that models
could solve the tasks not through genuine ToM
reasoning, but by learning superficial patterns like
word co-occurrence. To address this issue, ToMi
(Le et al., 2019) made it more difficult for models
to rely on simple heuristics by randomizing story
elements such as the timeline and the characters
involved, thereby laying the foundation for subse-
quent research. Our framework, AnaToM, is in-
spired by and utilizes some structural components
from the ToMi dataset, which is available under the
MIT License.

2.2 Advancement and Diversification of ToM
Benchmarks

Building on the challenges identified by ToMi, re-
cent research has evolved through multifaceted ap-
proaches to enhance the validity and reliability of
ToM evaluation. The first direction is the pursuit of
comprehensiveness and practicality. As a preced-
ing large-scale benchmark, SocialIQa (Sap et al.,
2019) measures commonsense reasoning abilities
about motivations and emotions in everyday so-
cial situations through crowdsourcing. More re-
cently, OpenToM (Xu et al., 2024) and ToMBench
(Chen et al., 2024), based on insights from psy-
chology (Beaudoin et al., 2020), have enhanced
evaluation comprehensiveness by including diverse
mental states beyond belief. The second is an in-
crease in complexity and realism. Hi-ToM (Wu
et al., 2023) addresses higher-order belief reason-
ing, while ToMATO (Shinoda et al., 2025) intro-
duced information asymmetry and character per-
sonalities within a conversational format. As an-
other approach to pursuing scenario realism, some
research addresses the issue of relying on synthetic
data. Common-ToM (Soubki et al., 2024), the
first attempt of its kind, evaluates ToM by track-
ing changes in common ground based on actual
spoken dialogue data (Markowska et al., 2023),
enabling the measurement of capabilities in more
natural contexts. Furthermore, BigToM (Gandhi
et al., 2023) and ExploreToM (Sclar et al., 2025)
achieved more diverse and, at times, intention-
ally difficult adversarial evaluations by prompting
LLMs to generate the stories themselves. Addi-
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Figure 2: An example of state representation and action application in our framework. A state St is represented as
the arrangement of entities (A: Agent, O: Object, C: Container) for each Location (separated by the delimiter /). It
shows the transition from a state St to the next state St+1 by applying an action E(A,L) (Agent movement) or
M(O,C) (Object manipulation).

tionally, a method has been proposed to evaluate
the ToM of LLMs through multi-agent cooperative
tasks, focusing on dynamic belief states that are dif-
ficult to measure with static QA formats (Li et al.,
2023). A third direction focuses on specific social
reasoning abilities. Research such as FauxPas-EAI
(Shapira et al., 2023) targets more specific and ad-
vanced social skills, such as the recognition of a
“faux pas” (Baron-Cohen et al., 1999).

2.3 Relationship between Evaluation Methods
and Model Capabilities

Regarding ToM in LLMs, findings vary depending
on the evaluation method. While there are reports
that recent large models show performance compa-
rable to human children on classic false-belief tasks
(Kosinski, 2024), it has also been pointed out that
performance drops significantly with only slight
alterations to the tasks (Ullman, 2023), leaving
the question of whether models have acquired gen-
uine ToM still under debate. Furthermore, it has
been shown that prompting methods like Chain-
of-Thought (Wei et al., 2023) significantly im-
prove ToM performance (Moghaddam and Honey,
2023), suggesting that ToM in LLMs is highly
context-dependent and rely heavily on the eval-
uation method.

Additionally, two-stage prompting frameworks
like SimToM, which involve filtering the context
from the character’s perspective before answering
the question, have also been proposed, reporting
performance improvements over standard Chain-
of-Thought (Wilf et al., 2024).

2.4 Positioning of This Research

While ToM evaluation for LLMs has progressed
significantly toward greater comprehensiveness,
complexity, and realism, the perspective of ana-
lyzing “structural factors” is not, in itself, unique
to our work. For instance, LogicBench (Parmar
et al., 2024) proposes a benchmark that systemati-
cally controls structural complexity to evaluate for-
mal logical reasoning abilities in LLMs, spanning
25 distinct reasoning patterns across propositional,
first-order, and non-monotonic logics.

However, the logical reasoning evaluated by Log-
icBench operates in an extensional context, dealing
only with the objective truth values of propositions.
In sharp contrast, the ToM reasoning addressed by
our research requires an intentional context that
models an agent’s subjective mental state. For
example, in a false-belief task, a statement about
“Agent A’s belief” can be true independently of the
objective truth of that belief’s content. Whereas
the difficulty evaluated in LogicBench arises from
the combinatorial complexity of logical rules, the
difficulty AnaToM analyzes as an “Anatomy of Dif-
ficulty” arises from the cognitive load specific to
ToM, such as managing multiple perspectives and
tracking their dynamic changes.

This perspective—analyzing the “combinatorial
complexity” specific to ToM, which differs funda-
mentally from the evaluation axis of formal logic
like LogicBench—has been largely overlooked in
the mainstream of ToM research. As a result, when
a model fails, it has become difficult to disentangle
whether the cause is a lack of higher-order social
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commonsense, such as understanding a Faux Pas,
or a limitation in the fundamental combinatorial
ability to track numerous entities and timelines.

3 AnaToM

In this work, we propose AnaToM, a novel
benchmark generation framework that enables an
“Anatomy of Difficulty” for ToM reasoning in
LLMs. AnaToM aims to more precisely diagnose
the reasoning capabilities of LLMs by explicitly
treating the structural complexity of ToM tasks as
parameters.

3.1 Design Principles

AnaToM is based on the following three design
principles to overcome the challenges in diagnos-
ability faced by prior work.

The first design principle is parametric control.
This defines the structural elements of a story that
govern its difficulty as independently manipula-
ble continuous or discrete parameters, rather than
viewing task difficulty as a “difficult/easy” binary.
This makes it possible to identify how a model’s
performance changes in response to specific param-
eter values, such as thresholds where performance
drops sharply.

The second principle is formal definition and
deterministic generation. To avoid the inherent am-
biguity, reproducibility issues, and potential “pref-
erence bias” associated with LLM-based scenario
generation, our framework does not involve LLMs
in the generation of the story’s logical structure. In-
stead, the world “state,” agent “actions,” and their
interactions are formally defined (Section 3.2.2).
All stories are generated programmatically and de-
terministically based on these definitions, which
ensures logical consistency, reproducibility, and a
foundational absence of any LLM-induced genera-
tion bias.

The third principle is diagnosability, where each
generated task is clearly linked to the combina-
tion of structural parameters that produced it. This
allows for the identification of which structural
factors caused a model’s failure, based on its per-
formance evaluation results.

3.2 Formal Definition of the Framework

The formal definitions of the world state and ac-
tions, which form the core of AnaToM, are pre-
sented below. This formalization ensures that all
scenarios are constructed based on consistent rules.

3.2.1 World State Representation
In a ToM scenario, the world is defined by
a set of entities and their attributes. Enti-
ties consist of four types: Agent (AGT =
A1, . . . , ANA

), Object (OBJ = O1, . . . , ONO
),

Container (CON = C1, . . . , CNC
), and Location

(LOC = L1, . . . , LNL
), where the number of ele-

ments in each set is denoted by NA, NO, NC , NL.
The relationships between these entities are gov-
erned by attributes. Agents and Containers have a
Location as an attribute, represented as loc(A) (∈
LOC), loc(C) (∈ LOC). Objects have a Con-
tainer as an attribute, represented as con(O) (∈
CON).

The world state St at a given time t is defined
as the set of attribute values for all entities at that
moment. A state is a “snapshot” that completely
describes the physical arrangement of the world.
An entire story is represented as a trajectory that be-
gins from an initial state S0 and transitions through
the state space via a series of actions (S0, S1, . . . ,
ST ) (Figure 2).

3.2.2 Definition of Actions
An action is defined as a deterministic function
that transitions a state St to the next state St+1.
In this framework, we define two types of actions:
Enter/Exit and Move.

The Enter/Exit action E(A,L) moves agent A
from its current location loc(A) to a different lo-
cation L (where L ̸= loc(A)), updating the value
of the attribute loc(A) to L. This action plays a
crucial role in generating false belief scenarios by
changing the perceptual state of agent A.

The Move action M(O,C) involves an agent
A moving an object O from its current container
con(O) to a different container C (where C ̸=
con(O)). As a precondition for physical plausibil-
ity, this action requires that the acting agent A, the
source container con(O) holding the target object,
and the destination container C all exist in the same
location (loc(A) = loc(con(O)) = loc(C)). This
action updates the value of the attribute con(O) to
C, causing a central change in the world state that
is the subject of the agents’ beliefs.

3.2.3 State Transitions as a Markov Chain
The state space and the set of actions defined in
Section 3.2.2 form the basis for modeling the dy-
namics of the entire system as a Markov chain.
Specifically, each state S corresponds to a node in
the Markov chain. By applying an action ACT
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Figure 3: A Markov chain representation of the state
space for the case where NA, NO, NC , NL = 2. Each
state deterministically transitions via actions E (En-
ter/Exit) and M (Move).

(a general placeholder for any action from the set
{E(Enter/Exit), M(Move)} defined in Section 3.2.2)
from a state S the system deterministically transi-
tions to the next state St+1.

This transition can be regarded as a directed edge
connecting nodes within the state space (Figure 3).
In this framework, story generation is defined as
the process of selecting a specific path in this state
space, starting from an initial state S0. The timeline
composition parameters determine the length and
shape of this path. This formalization enables the
analysis of a story’s structural properties, such as
the reachability of states where a false belief occurs,
or the minimum number of timeline events required
to perform a specific inference.

3.3 Structural Parameter Space

AnaToM defines the difficulty of a story as a pa-
rameter space consisting of the following three as-
pects. This is the most important contribution of
our framework, as it enables the “deconstruction”
and reconstruction of difficulty.

First is entity composition, which determines
the static complexity of the story. The parameters
are the sizes of each entity set: NA, NO, NC , NL

These directly govern the total amount of informa-
tion that a model must track and manage.

Second is combinatorial complexity. The num-
ber of entities determines the number of possible
initial state combinations, which increases non-
linearly. This number of combinations can be mod-
eled as a “balls and bins problem,” where n indistin-
guishable balls are placed into m indistinguishable
bins. For example, the number of combinations
for placing NC containers into NL locations can
be formulated as a function f(NL, NC). As a con-
crete example, in the base configuration used in
this study, where NA, NO, NC , NL = 3, the total

number of initial entity placement patterns is 97.
This parameter is a potential difficulty factor in how
LLMs comprehend the initial state, and our frame-
work makes it possible to analyze the impact of this
combinatorial complexity on a model’s reasoning.

Third is timeline composition, which determines
the dynamic complexity of the story. This includes
two parameters. One is the total number of actions
T that occur in the story; this value is related to the
memory load required for a model to continuously
update beliefs. The other is the sequence of actions
ACTs = (ACT1, ACT2, . . . , ACTT ). Even with
the same set of actions, a different sequence can
result in a completely different final belief state
for an agent. In particular, the relative order of
object movements and agent movements is a crucial
parameter that determines whether a false belief is
formed.

3.4 Generation Process

AnaToM generates ToM evaluation datasets
through a five-step process based on the defined
parameters. The process begins by setting specific
conditions from the parameter space defined in
Section 3.3, corresponding to the hypothesis being
tested (e.g., to measure the ability to track agent
A, only NA is varied from 2 to 5 while other pa-
rameters are held constant). Next, based on the
set entity composition, a specific initial state S0

is sampled from the combinatorial space. Subse-
quently, based on the set timeline, the sequence of
actions defined in Section 3.2.2 is applied, and the
world state transitions deterministically from S0 to
ST . Afterward, this formal sequence of state tran-
sitions (S0, S1, . . . , ST ) is converted into a natural
language story using predefined templates. Finally,
based on the final state ST and the perceptual in-
formation of each agent, tasks for tracking facts in
the story (Memory, Reality) as well as belief and
false belief tasks (1st/2nd-order belief/false belief)
are automatically generated. For example, a false
belief task concerning a certain agent A is gener-
ated only if that agent perceived the initial move of
an object O but did not perceive its final move.

AnaToM makes it possible to systematically and
quantitatively evaluate the impact of structural fac-
tors, such as an increase in the number of agents or
changes in the timeline, on the ToM reasoning of
LLMs.
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Table 1: ToM evaluation results from AnaToM. Values are accuracy (%). Model abbreviations: 8B (Llama-3-8B-
Instruct), 70B (Llama-3-70B-Instruct), 4o-m (GPT-4o-mini), 4.1-m (GPT-4.1-mini). GPT scores (4o-m, 4.1-m) are
the average ± standard deviation of 3 runs. Llama scores were identical across all 3 runs for 8B and all 2 runs for
70B.

Llama-3 GPT
task type 8B 70B 4o-m 4.1-m

Memory 70.8 92.9 99.7 ±0.0 99.9 ±0.0

Reality 97.1 88.3 99.3 ±0.1 99.7 ±0.1

1st-order true belief 45.1 52.0 57.4 ±0.1 82.9 ±0.2

1st-order false belief 40.4 27.5 29.7 ±0.2 74.1 ±0.4

2nd-order true belief 27.2 35.6 42.6 ±0.3 69.4 ±0.2

2nd-order false belief 35.9 55.4 3.7 ±0.1 54.6 ±0.2

overall accuracy 52.8 58.6 55.4 ±0.1 80.1 ±0.1

4 Experiments

4.1 Dataset Construction Process

This experiment aims to precisely diagnose the
limits of ToM in LLMs, for which we constructed
an evaluation dataset by applying AnaToM. In this
construction, we did not merely generate stories,
but applied specific procedures and filtering criteria
to extract instances particularly useful for probing
the limits of LLM reasoning capabilities.

First, as structural parameters, we defined seven
settings for the entity composition parameters
(NA, NO, NC), varying each from 3 to 5 (e.g.,
NA = 4, NO = 3, NC = 3), while the number
of locations NL was fixed at 3. For the timeline,
the total number of actions T was fixed at 4, and
we limited the generation to five specific action se-
quence patterns that can produce false beliefs (e.g.,
Move → Exit/Enter → Move → Exit/Enter). Based
on these parameters, initial states were sampled
from the combinatorial space described in Section
3.3. The initial belief of each agent was then initial-
ized based on a perception-based rule, assuming
they fully grasp the correct location of any object
present in the same location as themselves.

Next, during the story generation process, we
introduced a simple lookahead heuristic for action
selection to avoid “dead-end” states where subse-
quent actions would become physically impossible.
This ensured that only stories that could be com-
pleted to the end of the sequence were generated.
From the pool of candidate stories for each setting
obtained through this process, we finally randomly

sampled 1,000 instances to be used as the evalua-
tion dataset for this experiment.

4.2 Evaluated Models

In this experiment, we evaluated several repre-
sentative, widely used LLMs. The selection was
based on diversity in model architecture, parameter
size, and developer. As a representative of open-
source models, we selected Llama-3-8B-Instruct
(Grattafiori et al., 2024), an 8-billion parameter,
instruction-tuned model from the Llama-3 fam-
ily developed by Meta. To analyze the impact of
model scale on ToM reasoning, we also included
its larger family member, Llama-3-70B-Instruct
(Grattafiori et al., 2024). Additionally, to evaluate
the performance of a model family considered to
have state-of-the-art reasoning capabilities, we se-
lected the high-performance commercial models
GPT-4o-mini and GPT-4.1-mini, which are based
on the GPT-4 architecture developed by OpenAI,
allowing for a comparison between versions. All
evaluations in this study were conducted via the
official APIs for each model, using settings that
facilitate deterministic outputs (e.g., temperature =
0.0).

4.3 Evaluation Metrics

The evaluation metric is accuracy. Accuracy is
calculated for each task type (Memory, Reality,
1st/2nd-order belief/false belief) and for each pa-
rameter setting. This allows for a detailed analysis
of which structural factors affect which types of
reasoning, and to what extent.
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Table 2: Accuracy (%) for each entity composition, grouped by model family. Abbreviations: 8B (Llama-3-8B-
Instruct), 70B (Llama-3-70B-Instruct), 4o-m (GPT-4o-mini), 4.1-m (GPT-4.1-mini). Scores for Llama models (8B,
70B) were identical across all 3 runs (8B) and 2 runs (70B), respectively. Scores for GPT models (4o-m, 4.1-m) are
the average of 3 runs, and the Coefficient of Variation is at most 1.3%.

1st-order true belief 1st-order false belief 2nd-order true belief 2nd-order false belief
Llama-3 GPT Llama-3 GPT Llama-3 GPT Llama-3 GPT

setting 8B 70B 4o-m 4.1-m 8B 70B 4o-m 4.1-m 8B 70B 4o-m 4.1-m 8B 70B 4o-m 4.1-m

A3_O3_C3 (base) 47.3 59.5 64.3 85.4 42.5 29.8 33.2 77.0 27.3 38.7 43.6 72.0 41.0 56.1 3.3 57.6

agents +

A4_O3_C3 40.1 45.9 52.2 78.5 37.6 24.9 26.0 70.3 21.2 28.1 41.8 68.1 35.3 54.3 4.7 52.3

A5_O3_C3 37.2 41.9 46.8 78.2 34.6 22.6 21.2 63.8 20.8 24.1 36.4 63.0 29.0 46.6 4.3 51.3

objects +

A3_O4_C3 44.2 53.0 55.7 85.6 41.3 29.1 33.3 78.0 26.6 38.3 45.6 73.6 38.3 57.7 2.6 56.7

A3_O5_C3 45.8 47.9 53.4 86.0 42.0 26.6 26.6 76.8 28.5 37.1 45.6 75.5 38.6 55.5 2.4 52.3

containers +

A3_O3_C4 47.7 54.5 63.1 83.5 41.2 29.8 32.7 76.4 31.2 39.8 42.3 66.1 34.7 58.6 3.8 57.0

A3_O3_C5 53.7 61.6 66.2 83.0 43.7 29.8 34.9 76.8 34.9 42.9 40.4 67.8 34.6 59.1 4.5 54.9

Table 3: Accuracy (%) for each event sequence, grouped by model family. Abbreviations: 8B (Llama-3-8B-Instruct),
70B (Llama-3-70B-Instruct), 4o-m (GPT-4o-mini), 4.1-m (GPT-4.1-mini). Scores for Llama models (8B, 70B)
were identical across all 3 runs (8B) and 2 runs (70B), respectively. Scores for GPT models (4o-m, 4.1-m) are the
average of 3 runs, and the Coefficient of Variation is at most 1.3%.

1st-order true belief 1st-order false belief 2nd-order true belief 2nd-order false belief
Llama-3 GPT Llama-3 GPT Llama-3 GPT Llama-3 GPT

timeline 8B 70B 4o-m 4.1-m 8B 70B 4o-m 4.1-m 8B 70B 4o-m 4.1-m 8B 70B 4o-m 4.1-m

E -> E -> M -> M 48.8 50.4 58.7 78.7 21.8 4.7 21.5 82.0 20.3 22.8 38.9 70.3 22.3 39.3 0.5 55.9

E -> M -> E -> M 41.0 51.4 53.6 84.8 49.8 41.8 43.1 73.9 34.3 44.1 43.9 67.5 39.8 63.6 9.0 50.8

E -> M -> M -> E 50.4 57.6 59.2 87.5 26.7 10.1 15.2 77.7 21.2 31.8 31.1 79.6 22.0 37.2 0.9 50.4

M -> E -> E -> M 44.8 50.1 59.9 78.8 49.3 39.2 37.8 77.5 29.8 38.2 51.6 64.0 46.8 72.6 3.8 68.1

M -> E -> M -> E 41.0 50.8 55.3 84.4 53.4 40.6 30.6 60.5 30.2 40.5 47.1 65.9 47.7 63.6 4.0 48.1

5 Results

In this section, we report the results of experiments
conducted using the dataset constructed in Section
4 and analyze the impact of structural factors on
the ToM reasoning of LLMs.

5.1 Overall Performance Overview

First, we provide an overview of the overall perfor-
mance of the models evaluated in this experiment.
Table 1 summarizes the average accuracy for each
task type across the entire dataset. Several impor-
tant trends can be observed from Table 1. First,
GPT-4o-mini and GPT-4.1-mini achieved high ac-
curacy rates exceeding 99% on the fact-tracking
tasks, Memory and Reality. However, the perfor-
mance of these same models dropped significantly
on first- and second-order belief and false belief
tasks. Notably, GPT-4o-mini showed extremely
low performance on second-order false belief tasks
at 3.7%, confirming a significant gap between its

fact-tracking ability and its ToM reasoning capabil-
ities. Llama-3-8B-Instruct performed lower than
the GPT-based models even on the fact-tracking
tasks and tended to struggle further with the belief
tasks. Meanwhile, Llama-3-70B-Instruct, with its
scaled-up parameter size, showed improved perfor-
mance over the 8B model in terms of overall accu-
racy and on higher-order belief reasoning (Table1).
However, its scores on the Reality and 1st-order
false belief tasks decreased, suggesting that sim-
ply scaling up the model does not lead to uniform
improvements across all ToM-related capabilities.

5.2 Analysis of the Impact of Structural
Factors

Next, we analyze in detail the impact of the struc-
tural factors that determine the difficulty of ToM
reasoning. This section focuses on the effects of
entity composition and timeline composition on
performance in the particularly challenging belief
and false belief tasks.
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5.2.1 Impact of Entity Composition
Table 2 shows the accuracy rates on first- and
second-order belief and false belief tasks when the
number of each entity (Agent, Object, Container)
was individually increased from the baseline setting
(NA, NO, NC = 3).

The most notable point from these results is that
the increase in the number of agents (NA ) degrades
performance more consistently than any other fac-
tor. For example, in GPT-4.1-mini, when the num-
ber of agents increased from 3 to 5, the accuracy on
second-order false belief tasks dropped from 57.6%
to 51.3%. This trend was similarly observed in the
scaled-up Llama-3-70B (dropping from 56.1% to
46.6%), suggesting that an increased number of
agents constitutes a common cognitive load for
many models. However, an exception was noted
for GPT-4o-mini on the 2nd-order false belief task;
with its extremely low baseline accuracy of 3.3%,
a clear degradation trend was not observed. On the
other hand, the performance degradation from an
increase in the number of objects (NO) or contain-
ers (NC) was limited in comparison.

5.2.2 Impact of Timeline Composition
Table 3 shows the accuracy on false belief tasks
for each of the five different action sequence (time-
line) patterns. The timeline sequence was also con-
firmed to be a factor that significantly affects task
difficulty. In particular, in sequences such as E ->
M -> M -> E and E -> E -> M -> M, the accuracy
of GPT-4o-mini on second-order false belief tasks
plummeted to below 1%, confirming that specific
timelines have a catastrophic impact on the model’s
performance. Llama-3-70B also exhibited its low-
est performance on these same sequences (37.2%
and 39.3% respectively), revealing that vulnerabil-
ity to specific timeline structures persists even with
increased model size.

6 Discussion

In this section, we discuss new insights into the
ToM reasoning of LLMs based on the experimental
results obtained in Section 5. We also describe the
implications of our research and future prospects.

6.1 Principal Findings of This Research

The experiments in this study demonstrated that
AnaToM is effective for precisely diagnosing the
ToM reasoning capabilities of LLMs, yielding three
primary findings.

First, a clear disparity was observed across all
evaluated models between their performance on
fact-tracking tasks (Memory, Reality) and their per-
formance on belief-reasoning tasks that require in-
ferring others’ mental states (especially false be-
liefs). This suggests that even for high-performing
models, fact-tracking ability does not directly trans-
late to advanced ToM reasoning.

Second, among the structural factors that deter-
mine the difficulty of ToM reasoning, the num-
ber of agents, NA, was found to have the most
dominant impact. Compared to an increase in the
number of objects (NO) or containers (NC), an in-
crease in the number of agents consistently caused
the most significant performance degradation, re-
gardless of the model type or the order of the task.

Third, it was found that the impact of the time-
line on performance differs qualitatively depend-
ing on the model’s capability level. Less capable
models showed a significant performance drop in
sequences where state changes occurred consec-
utively while an agent was absent. On the other
hand, the most high-performing model, while han-
dling such sequences, faced relative difficulty with
different, more complex sequences in which the
types of actions frequently alternated.

6.2 Identifying Cognitive Bottlenecks in
LLM’s ToM

These findings indicate the existence of multiple
cognitive bottlenecks in the ToM reasoning of
LLMs.

The first bottleneck is the limitation of multi-
agent tracking capabilities. The finding that an
increase in the number of agents is a primary factor
in performance degradation indicates that a funda-
mental constraint in the ToM of LLMs lies in the
ability to simultaneously track and manage mul-
tiple perspectives. Objects and containers, which
constitute the physical state of the world, are pas-
sive elements belonging to a single “reality” that
the model must track. In contrast, agents are active
entities, each capable of holding their own unique
beliefs, and as their number increases, the model
must manage and update multiple different mental
states in parallel. We posit that this increase in
cognitive load exposes a fundamental limitation of
current LLM architectures.

In addition, the different responses among mod-
els to the timeline composition reveal a second
bottleneck: a hierarchy in the ability to main-
tain beliefs in a dynamic context. The sequences
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that Llama-3-8B, Llama-3-70B, and GPT-4o-mini
struggled with were those in which Move actions
occurred consecutively, such as E -> M -> M ->
E and E -> E -> M -> M. Whereas an Exit/Enter
action updates the location information of a sin-
gle agent, a Move action is a more complex op-
eration that changes the state of an object and si-
multaneously requires updating the belief states
of all agents present in that location. Therefore,
this result suggests that models have a fundamen-
tal challenge in their ability to accurately integrate
information when complex actions that have a com-
pound effect on belief states occur consecutively.

On the other hand, the highest-performing
model, GPT-4.1-mini, showed a different pattern
of difficulty. While GPT-4.1-mini processed se-
quences that other models struggled with, such as
E -> E -> M -> M, with a high accuracy of 81.1%,
its performance dropped the most on the M -> E
-> M -> E sequence where Move and Exit/Enter
events alternate, with an accuracy of 60.4%. The
reasoning required by this sequence is more com-
plex than mere information integration. In this se-
quence, the perceptual state of a certain agent (let’s
call it B) frequently changes from “present (per-
ceivable)” -> “absent (imperceptible)” -> “present
again (perceivable again).” To handle this dynamic
change, the model needs to flexibly switch the rules
of inference on which information to base its belief
updates. For example, it must treat “directly per-
ceived information” as the source of belief while
the agent is present, and “the last seen memory”
as the source while the agent is absent. The fact
that GPT-4.1-mini faced relative difficulty with this
sequence suggests that while the model has, to
some extent, overcome the bottleneck of simple
state change integration, it faces a new challenge
in a more advanced capability: the switching and
management of the reasoning process according
to the situation. In other words, this indicates that
as a model’s capabilities improve, the nature of
the difficulties it faces shifts to a higher level of
complexity.

7 Conclusion

In this work, we addressed the problem that the
structural factors defining the difficulty of ToM
evaluation in LLMs have not been sufficiently ana-
lyzed. To tackle this issue, we proposed AnaToM,
a novel benchmark generation framework that en-
ables an “Anatomy of Difficulty” for ToM reason-

ing. AnaToM strictly controls structural parameters
such as the number of entities and the timeline in a
story.

Experiments using this framework revealed that
a major bottleneck in the ToM reasoning of LLMs
lies in the limits of multi-agent tracking capabil-
ities, which stems from the number of agents to
be tracked. Furthermore, it was shown that the
nature of timelines perceived as difficult changes
qualitatively depending on the model’s capability
level.

The approach proposed in our research promotes
the elucidation of LLM reasoning mechanisms and
presents a new path toward a deeper understanding
of their capabilities and limitations. The findings
of this research, which analyzes the difficulty of
ToM by deconstructing it into its constituent com-
ponents, are expected to contribute to the develop-
ment of more advanced and robust AI with social
intelligence.

Ethical Consideration

This research, which analyzes ToM in LLMs, in-
volves several ethical considerations.

First is the risk of misunderstanding model ca-
pabilities and of anthropomorphism. This study
analyzes specific text-processing patterns in LLMs
and does not suggest that the models possess men-
tal states equivalent to those of humans.

Second is the potential for misuse of the research.
The findings from this study carry a risk of being
applied to the development of adversarial attacks
that intentionally manipulate models, or to applica-
tions that deceive users.

All data used in this study are synthetic data and
does not infringe on personal privacy.

Limitations

This study has several limitations, which suggest
directions for future research.

First, this research focuses on “belief” reason-
ing within ToM and limits actions to deterministic
physical movements. This was a deliberate design
choice, serving as a first step in our novel structural
analysis approach to ToM evaluation, intended to
ensure maximum control and reproducibility. As a
result, this framework does not address the broader
range of mental states integral to real-world social
situations, such as intentions, desires, and emotions,
nor does it capture more ambiguous, probabilistic
interactions. Extending the framework to these as-
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pects is a crucial future direction that can build
upon the methodological foundation established
here.

Second, the use of templates in the natural lan-
guage realization of stories restricts linguistic di-
versity. This represents a key design trade-off nec-
essary to achieve our research goal of an “Anatomy
of Difficulty”. By intentionally excluding semantic
variables like linguistic diversity, we guarantee that
performance differences can be purely attributed to
the structural factors being analyzed, such as the
number of agents or the timeline. Consequently,
this framework is not intended to measure ecologi-
cal validity, and model robustness to more natural
and diverse linguistic expressions is not evaluated
in this study.

Finally, the models evaluated in this experiment
were limited to four types, and the exploration of
the parameter space was not exhaustive. Further
experiments with a wider range of models are de-
sirable to confirm whether the observed trends can
be generalized to a broader class of LLMs.
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A Example Appendix

A.1 Full List of Initial Placement Patterns
The following is a complete list of the 97 combina-
torially possible initial placement patterns for the
baseline entity composition (NA, NO, NC , NL =
3) used in this study. Each string represents the
placement of Agents A, Containers C, and Objects
O into three locations (delimited by /).

AAA// (1/3)
AAACOOOCC//, AAA/COOOCC/
AAACOOOC/C/, AAAC/COOOC/, AAA/COOOC/C
AAACOOO/CC/, AAACC/COOO/, AAA/COOO/CC
AAACOOO/C/C, AAAC/COOO/C
AAACOOCOC//, AAA/COOCOC/
AAACOOCO/C/, AAAC/COOCO/, AAA/COOCO/C
AAACOOC/CO/, AAACO/COOC/, AAA/COOC/CO
AAACOO/COC/, AAACOC/COO/, AAA/COO/COC
AAACOO/CO/C, AAACO/COO/C, AAAC/COO/CO
AAACOCOCO//, AAA/COCOCO/
AAACOCO/CO/, AAACO/COCO/, AAA/COCO/CO
AAACO/CO/CO

AA/A/ (2/3)
AACOOOCC/A/, AA/ACOOOCC/, AA/A/COOOCC
AACOOOC/AC/, AACOOOC/A/C, AAC/ACOOOC/,
AAC/A/COOOC

AA/ACOOOC/C, AA/AC/COOOC
AACOOO/ACC/, AACOOO/A/CC, AACC/ACOOO/,
AACC/A/COOO
AA/ACOOO/CC, AA/ACC/COOO
AACOOO/AC/C, AAC/ACOOO/C, AAC/AC/COOO
AACOOCOC/A/, AA/ACOOCOC/, AA/A/COOCOC
AACOOCO/AC/, AACOOCO/A/C, AAC/ACOOCO/,
AAC/A/COOCO
AA/ACOOCO/C, AA/AC/COOCO
AACOOC/ACO/, AACOOC/A/CO, AACO/ACOOC/,
AACO/A/COOC
AA/ACOOC/CO, AA/ACO/COOC
AACOO/ACOC/, AACOO/A/COC, AACOC/ACOO/,
AACOC/A/COO
AA/ACOO/COC, AA/ACOC/COO
AACOO/ACO/C, AACOO/AC/CO, AACO/ACOO/C,
AACO/AC/COO
AAC/ACOO/CO, AAC/ACO/COO
AACOCOCO/A/, AA/ACOCOCO/, AA/A/COCOCO
AACOCO/ACO/, AACOCO/A/CO, AACO/ACOCO/,
AACO/A/COCO
AA/ACOCO/CO, AA/ACO/COCO
AACO/ACO/CO

A/A/A (3/3)
ACOOOCC/A/A
ACOOOC/AC/A
ACOOO/ACC/A
ACOOO/AC/AC
ACOOCOC/A/A
ACOOCO/AC/A
ACOOC/ACO/A
ACOO/ACOC/A, ACOO/ACO/AC
ACOCOCO/A/A
ACOCO/ACO/A
ACO/ACO/ACO

A.2 Dataset Distribution by Experimental
Setting

This section clarifies the distribution of task types
for each experimental setting. The dataset consists
of 7,000 unique stories (instances) in total. Each
story is associated with exactly one question for
each of the 6 task types (Memory, Reality, 1st-
order true/false, 2nd-order true/false), totaling 6
questions per story.

For the entity composition analysis (Table 4),
these 7,000 stories are evenly divided into the 7
settings (e.g., A3_O3_C3, A4_O3_C3), resulting
in 1,000 stories per setting. Consequently, the to-
tal number of questions for each setting is exactly
6,000 (1,000 stories × 6 task types), demonstrat-
ing that the task distribution is perfectly balanced
across these conditions.

For the timeline analysis (Table 5), the same
7,000 stories are classified into 5 timeline settings.
In this case, the stories are not evenly distributed
(e.g., 1,357 stories for E->E->M->M). Therefore,
the total number of questions for each timeline
setting varies (e.g., 1,357 stories × 6 task types =
8,142 questions).

As both tables show, the distribution of task
types is perfectly balanced within every single ex-
perimental setting (e.g., all 1,000 questions for
A4_O3_C3 are split evenly across the 6 task types).
This ensures that no bias is introduced by the task
distribution.

Furthermore, a detailed breakdown of the 1,000
stories within the A3_O3_C3 (base) setting, cate-
gorized by their specific child patterns, is provided
in Table 6.

255



Table 4: Distribution of question counts for each entity composition setting. This table demonstrates that the
distribution of task types is perfectly balanced across all settings analyzed in Table 2 (1,000 instances per task type
for each setting).

setting Memory Reality 1st-order true 1st-order false 2nd-order true 2nd-order false total questions

A3_O3_C3 (base) 1000 1000 1000 1000 1000 1000 6000
A4_O3_C3 (agents +) 1000 1000 1000 1000 1000 1000 6000
A5_O3_C3 (agents +) 1000 1000 1000 1000 1000 1000 6000
A3_O4_C3 (objects +) 1000 1000 1000 1000 1000 1000 6000
A3_O5_C3 (objects +) 1000 1000 1000 1000 1000 1000 6000
A3_O3_C4 (containers +) 1000 1000 1000 1000 1000 1000 6000
A3_O3_C5 (containers +) 1000 1000 1000 1000 1000 1000 6000

Table 5: Distribution of question counts for each timeline setting. This demonstrates that task types are perfectly
balanced within each timeline, and the total number of questions is reasonably balanced across timeline conditions
analyzed in Table 3.

timeline setting Memory Reality 1st-order true 1st-order false 2nd-order true 2nd-order false total questions

E -> E -> M -> M 1357 1357 1357 1357 1357 1357 8142
E -> M -> E -> M 1378 1378 1378 1378 1378 1378 8268
E -> M -> M -> E 1395 1395 1395 1395 1395 1395 8370
M -> E -> E -> M 1405 1405 1405 1405 1405 1405 8430
M -> E -> M -> E 1465 1465 1465 1465 1465 1465 8790

A.3 Experimental Details

A.3.1 Models and Parameter Settings

In this experiment, we evaluated Meta’s Llama-3-
8B-Instruct and Llama-3-70B-Instruct as represen-
tative open-source models, and OpenAI’s GPT-4o-
mini and GPT-4.1-mini as commercial API models.

To ensure reproducibility and enhance the de-
terminism of the outputs, a common set of
configurations was applied to all models. For
inference with the Llama-3 models (8B and
70B), the transformers library’s pipeline was
used with the parameters do_sample=False and
temperature=0.0. The 70B model was loaded
with torch_dtype=torch.bfloat16. For the
OpenAI models, the official API was utilized with
temperature=0.0 and top_p=1.0. The maxi-
mum number of new tokens to generate was limited
to 50 for all models. The evaluation for Llama-3-
8B, GPT-4o-mini, and GPT-4.1-mini (3 runs each,
approx. 10 hours per run) and Llama-3-70B (2
runs, approx. 600 hours total) required a total com-
putational budget of about 690 GPU hours.

A.3.2 Prompt Format

A common zero-shot prompt format was used for
the evaluation. The prompt consists of a system
prompt that assigns the role of a reading compre-
hension expert, and a user prompt that includes the
story and the question.

System prompt:
You are an expert in reading comprehension. An-
swer the following question based ONLY on
the text provided in the story. Provide only the
answer, without any introductory phrases or ex-
planations.

User prompt:
Please read the following story and answer the

subsequent question.

— STORY —
{story_text}
— END OF STORY —

Question: {question}

For Llama-3 models (8B and 70B),
the above content was converted into
the model-specific chat format using the
tokenizer.apply_chat_template method
before being input.

A.4 Use of AI Assistants
In preparing this manuscript, AI assistants were
used for coding support, Japanese-English transla-
tion, and text editing.
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Table 6: Detailed breakdown of the 1,000 stories (total 6,000 questions) in the A3_O3_C3 (base) setting, grouped
by parent (agent placement) and child (full entity) patterns.

parent pattern child pattern (A/O/C) instances (stories) total questions

A/A/A A/A/ACCCOOO 10 60
A/AC/ACCOOO 7 42
A/ACCO/ACOO 5 30
A/ACCOO/ACO 7 42
(subtotal for A/A/A) (29) (174)

AA/A A/AACCCOOO/ 300 1800
AA/ACCCOOO/ 22 132
AAC/ACCOOO/ 4 24
AACCO/ACOO/ 29 174
AACCOO/ACO/ 103 618
AACCOOO/AC/ 71 426
AA/ACCO/COO 4 24
AA/ACCOO/CO 5 30
AA/ACCOOO/C 6 36
AACO/ACCOO/ 8 48
AACOO/ACCO/ 3 18
A/AACCO/COO 37 222
A/AACCOO/CO 120 720
A/AACCOOO/C 90 540
(subtotal for AA/A) (802) (4812)

AAA/ AAACCO/COO/ 22 132
AAACCOO/CO/ 72 432
AAACCOOO/C/ 75 450
(subtotal for AAA/) (169) (1014)

Total 1000 6000
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