PhysicsEval: Inference-Time Techniques to Improve the Reasoning Proficiency of Large Language Models on Physics Problems

Oshayer Siddique, J. M Areeb Uzair Alam, Md Jobayer Rahman Rafy, Syed Rifat Raiyan, Hasan Mahmud, Md Kamrul Hasan


Abstract
The discipline of physics stands as a cornerstone of human intellect, driving the evolution of technology and deepening our understanding of the fundamental principles of the cosmos. Contemporary literature includes some works centered on the task of solving physics problems—a crucial domain of natural language reasoning. In this paper, we evaluate the performance of frontier LLMs in solving physics problems, both mathematical and descriptive. We also employ a plethora of inference-time techniques and agentic frameworks to improve the performance of the models. This includes the verification of proposed solutions in a cumulative fashion by other, smaller LLM agents, and we perform a comparative analysis of the performance that the techniques entail. There are significant improvements when the multi-agent framework is applied to problems that the models initially perform poorly on. Furthermore, we introduce a new evaluation benchmark for physics problems, PhysicsEval, consisting of 19,609 problems sourced from various physics textbooks and their corresponding correct solutions scraped from physics forums and educational websites. Our code and data are publicly available at https://github.com/areebuzair/PhysicsEval.
Anthology ID:
2025.findings-ijcnlp.43
Volume:
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
Month:
December
Year:
2025
Address:
Mumbai, India
Editors:
Kentaro Inui, Sakriani Sakti, Haofen Wang, Derek F. Wong, Pushpak Bhattacharyya, Biplab Banerjee, Asif Ekbal, Tanmoy Chakraborty, Dhirendra Pratap Singh
Venue:
Findings
SIG:
Publisher:
The Asian Federation of Natural Language Processing and The Association for Computational Linguistics
Note:
Pages:
738–760
Language:
URL:
https://aclanthology.org/2025.findings-ijcnlp.43/
DOI:
Bibkey:
Cite (ACL):
Oshayer Siddique, J. M Areeb Uzair Alam, Md Jobayer Rahman Rafy, Syed Rifat Raiyan, Hasan Mahmud, and Md Kamrul Hasan. 2025. PhysicsEval: Inference-Time Techniques to Improve the Reasoning Proficiency of Large Language Models on Physics Problems. In Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics, pages 738–760, Mumbai, India. The Asian Federation of Natural Language Processing and The Association for Computational Linguistics.
Cite (Informal):
PhysicsEval: Inference-Time Techniques to Improve the Reasoning Proficiency of Large Language Models on Physics Problems (Siddique et al., Findings 2025)
Copy Citation:
PDF:
https://aclanthology.org/2025.findings-ijcnlp.43.pdf