@inproceedings{kim-etal-2025-persona,
title = "Persona is a Double-Edged Sword: Rethinking the Impact of Role-play Prompts in Zero-shot Reasoning Tasks",
author = "Kim, Junseok and
Yang, Nakyeong and
Jung, Kyomin",
editor = "Inui, Kentaro and
Sakti, Sakriani and
Wang, Haofen and
Wong, Derek F. and
Bhattacharyya, Pushpak and
Banerjee, Biplab and
Ekbal, Asif and
Chakraborty, Tanmoy and
Singh, Dhirendra Pratap",
booktitle = "Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "The Asian Federation of Natural Language Processing and The Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-ijcnlp.51/",
pages = "848--862",
ISBN = "979-8-89176-303-6",
abstract = "Recent studies have shown that prompting large language models (LLMs) with role-playing personas can enhance their reasoning capabilities. While the benefits of role-playing personas in reasoning tasks are widely recognized, it remains uncertain whether a persona aligned with the given dataset can consistently achieve these improvements. In this work, we empirically investigate the potential drawbacks of using dataset-aligned personas (referred to as **coarsely aligned personas**) and introduce Jekyll {\&} Hyde, a novel framework that enhances reasoning robustness by ensembling solutions from both role-playing and neutral (non-persona) prompts.Jekyll {\&} Hyde first predicts an instance-specific persona tailored to each query using an LLM, then generates answers with both persona and neutral prompts, and finally selects the superior output through an LLM-based evaluator.Experimental results claim that across twelve widely used natural language reasoning datasets and three backbone large language models, Jekyll {\&} Hyde consistently outperforms single-perspective LLMs, achieving an average accuracy gain of **9.98{\%}** on GPT{-}4.We further demonstrate that using instance{-}aligned personas yields more accurate and stable performance than using dataset-aligned personas."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2025-persona">
<titleInfo>
<title>Persona is a Double-Edged Sword: Rethinking the Impact of Role-play Prompts in Zero-shot Reasoning Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Junseok</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nakyeong</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyomin</namePart>
<namePart type="family">Jung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haofen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="given">F</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Biplab</namePart>
<namePart type="family">Banerjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhirendra</namePart>
<namePart type="given">Pratap</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The Asian Federation of Natural Language Processing and The Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-303-6</identifier>
</relatedItem>
<abstract>Recent studies have shown that prompting large language models (LLMs) with role-playing personas can enhance their reasoning capabilities. While the benefits of role-playing personas in reasoning tasks are widely recognized, it remains uncertain whether a persona aligned with the given dataset can consistently achieve these improvements. In this work, we empirically investigate the potential drawbacks of using dataset-aligned personas (referred to as **coarsely aligned personas**) and introduce Jekyll & Hyde, a novel framework that enhances reasoning robustness by ensembling solutions from both role-playing and neutral (non-persona) prompts.Jekyll & Hyde first predicts an instance-specific persona tailored to each query using an LLM, then generates answers with both persona and neutral prompts, and finally selects the superior output through an LLM-based evaluator.Experimental results claim that across twelve widely used natural language reasoning datasets and three backbone large language models, Jekyll & Hyde consistently outperforms single-perspective LLMs, achieving an average accuracy gain of **9.98%** on GPT-4.We further demonstrate that using instance-aligned personas yields more accurate and stable performance than using dataset-aligned personas.</abstract>
<identifier type="citekey">kim-etal-2025-persona</identifier>
<location>
<url>https://aclanthology.org/2025.findings-ijcnlp.51/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>848</start>
<end>862</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Persona is a Double-Edged Sword: Rethinking the Impact of Role-play Prompts in Zero-shot Reasoning Tasks
%A Kim, Junseok
%A Yang, Nakyeong
%A Jung, Kyomin
%Y Inui, Kentaro
%Y Sakti, Sakriani
%Y Wang, Haofen
%Y Wong, Derek F.
%Y Bhattacharyya, Pushpak
%Y Banerjee, Biplab
%Y Ekbal, Asif
%Y Chakraborty, Tanmoy
%Y Singh, Dhirendra Pratap
%S Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
%D 2025
%8 December
%I The Asian Federation of Natural Language Processing and The Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-303-6
%F kim-etal-2025-persona
%X Recent studies have shown that prompting large language models (LLMs) with role-playing personas can enhance their reasoning capabilities. While the benefits of role-playing personas in reasoning tasks are widely recognized, it remains uncertain whether a persona aligned with the given dataset can consistently achieve these improvements. In this work, we empirically investigate the potential drawbacks of using dataset-aligned personas (referred to as **coarsely aligned personas**) and introduce Jekyll & Hyde, a novel framework that enhances reasoning robustness by ensembling solutions from both role-playing and neutral (non-persona) prompts.Jekyll & Hyde first predicts an instance-specific persona tailored to each query using an LLM, then generates answers with both persona and neutral prompts, and finally selects the superior output through an LLM-based evaluator.Experimental results claim that across twelve widely used natural language reasoning datasets and three backbone large language models, Jekyll & Hyde consistently outperforms single-perspective LLMs, achieving an average accuracy gain of **9.98%** on GPT-4.We further demonstrate that using instance-aligned personas yields more accurate and stable performance than using dataset-aligned personas.
%U https://aclanthology.org/2025.findings-ijcnlp.51/
%P 848-862
Markdown (Informal)
[Persona is a Double-Edged Sword: Rethinking the Impact of Role-play Prompts in Zero-shot Reasoning Tasks](https://aclanthology.org/2025.findings-ijcnlp.51/) (Kim et al., Findings 2025)
ACL