@inproceedings{nigam-etal-2025-tathyanyaya,
title = "{T}athya{N}yaya and {F}act{L}egal{L}lama: Advancing Factual Judgment Prediction and Explanation in the {I}ndian Legal Context",
author = "Nigam, Shubham Kumar and
Patnaik, Balaramamahanthi Deepak and
Mishra, Shivam and
Shallum, Noel and
Ghosh, Kripabandhu and
Bhattacharya, Arnab",
editor = "Inui, Kentaro and
Sakti, Sakriani and
Wang, Haofen and
Wong, Derek F. and
Bhattacharyya, Pushpak and
Banerjee, Biplab and
Ekbal, Asif and
Chakraborty, Tanmoy and
Singh, Dhirendra Pratap",
booktitle = "Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "The Asian Federation of Natural Language Processing and The Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-ijcnlp.57/",
pages = "985--1002",
ISBN = "979-8-89176-303-6",
abstract = "In the legal domain, Fact-based Judgment Prediction and Explanation (FJPE) aims to predict judicial outcomes and generate grounded explanations using only factual information, mirroring early-phase legal reasoning. Motivated by the overwhelming case backlog in the Indian judiciary, we introduce TathyaNyaya, the first large-scale, expert-annotated dataset for FJPE in the Indian context. Covering judgments from the Supreme Court and multiple High Courts, the dataset comprises four complementary components, NyayaFacts, NyayaScrape, NyayaSimplify, and NyayaFilter, that facilitate diverse factual modeling strategies. Alongside, we present FactLegalLlama, an instruction-tuned LLaMa-3-8B model fine-tuned to generate faithful, fact-grounded explanations. While FactLegalLlama trails transformer baselines in raw prediction accuracy, it excels in generating interpretable explanations, as validated by both automatic metrics and legal expert evaluation. Our findings show that fact-only inputs and preprocessing techniques like text simplification and fact filtering can improve both interpretability and predictive performance. Together, TathyaNyaya and FactLegalLlama establish a robust foundation for realistic, transparent, and trustworthy AI applications in the Indian legal system."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nigam-etal-2025-tathyanyaya">
<titleInfo>
<title>TathyaNyaya and FactLegalLlama: Advancing Factual Judgment Prediction and Explanation in the Indian Legal Context</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shubham</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Nigam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Balaramamahanthi</namePart>
<namePart type="given">Deepak</namePart>
<namePart type="family">Patnaik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shivam</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noel</namePart>
<namePart type="family">Shallum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kripabandhu</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arnab</namePart>
<namePart type="family">Bhattacharya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haofen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="given">F</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Biplab</namePart>
<namePart type="family">Banerjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhirendra</namePart>
<namePart type="given">Pratap</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The Asian Federation of Natural Language Processing and The Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-303-6</identifier>
</relatedItem>
<abstract>In the legal domain, Fact-based Judgment Prediction and Explanation (FJPE) aims to predict judicial outcomes and generate grounded explanations using only factual information, mirroring early-phase legal reasoning. Motivated by the overwhelming case backlog in the Indian judiciary, we introduce TathyaNyaya, the first large-scale, expert-annotated dataset for FJPE in the Indian context. Covering judgments from the Supreme Court and multiple High Courts, the dataset comprises four complementary components, NyayaFacts, NyayaScrape, NyayaSimplify, and NyayaFilter, that facilitate diverse factual modeling strategies. Alongside, we present FactLegalLlama, an instruction-tuned LLaMa-3-8B model fine-tuned to generate faithful, fact-grounded explanations. While FactLegalLlama trails transformer baselines in raw prediction accuracy, it excels in generating interpretable explanations, as validated by both automatic metrics and legal expert evaluation. Our findings show that fact-only inputs and preprocessing techniques like text simplification and fact filtering can improve both interpretability and predictive performance. Together, TathyaNyaya and FactLegalLlama establish a robust foundation for realistic, transparent, and trustworthy AI applications in the Indian legal system.</abstract>
<identifier type="citekey">nigam-etal-2025-tathyanyaya</identifier>
<location>
<url>https://aclanthology.org/2025.findings-ijcnlp.57/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>985</start>
<end>1002</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TathyaNyaya and FactLegalLlama: Advancing Factual Judgment Prediction and Explanation in the Indian Legal Context
%A Nigam, Shubham Kumar
%A Patnaik, Balaramamahanthi Deepak
%A Mishra, Shivam
%A Shallum, Noel
%A Ghosh, Kripabandhu
%A Bhattacharya, Arnab
%Y Inui, Kentaro
%Y Sakti, Sakriani
%Y Wang, Haofen
%Y Wong, Derek F.
%Y Bhattacharyya, Pushpak
%Y Banerjee, Biplab
%Y Ekbal, Asif
%Y Chakraborty, Tanmoy
%Y Singh, Dhirendra Pratap
%S Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
%D 2025
%8 December
%I The Asian Federation of Natural Language Processing and The Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-303-6
%F nigam-etal-2025-tathyanyaya
%X In the legal domain, Fact-based Judgment Prediction and Explanation (FJPE) aims to predict judicial outcomes and generate grounded explanations using only factual information, mirroring early-phase legal reasoning. Motivated by the overwhelming case backlog in the Indian judiciary, we introduce TathyaNyaya, the first large-scale, expert-annotated dataset for FJPE in the Indian context. Covering judgments from the Supreme Court and multiple High Courts, the dataset comprises four complementary components, NyayaFacts, NyayaScrape, NyayaSimplify, and NyayaFilter, that facilitate diverse factual modeling strategies. Alongside, we present FactLegalLlama, an instruction-tuned LLaMa-3-8B model fine-tuned to generate faithful, fact-grounded explanations. While FactLegalLlama trails transformer baselines in raw prediction accuracy, it excels in generating interpretable explanations, as validated by both automatic metrics and legal expert evaluation. Our findings show that fact-only inputs and preprocessing techniques like text simplification and fact filtering can improve both interpretability and predictive performance. Together, TathyaNyaya and FactLegalLlama establish a robust foundation for realistic, transparent, and trustworthy AI applications in the Indian legal system.
%U https://aclanthology.org/2025.findings-ijcnlp.57/
%P 985-1002
Markdown (Informal)
[TathyaNyaya and FactLegalLlama: Advancing Factual Judgment Prediction and Explanation in the Indian Legal Context](https://aclanthology.org/2025.findings-ijcnlp.57/) (Nigam et al., Findings 2025)
ACL
- Shubham Kumar Nigam, Balaramamahanthi Deepak Patnaik, Shivam Mishra, Noel Shallum, Kripabandhu Ghosh, and Arnab Bhattacharya. 2025. TathyaNyaya and FactLegalLlama: Advancing Factual Judgment Prediction and Explanation in the Indian Legal Context. In Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics, pages 985–1002, Mumbai, India. The Asian Federation of Natural Language Processing and The Association for Computational Linguistics.