FB-RAG: Improving RAG with Forward and Backward Lookup

Kushal Chawla, Alfy Samuel, Anoop Kumar, Daben Liu
Capital One
{kushal.chawla,alfy.samuel, anoop.kumar,daben.liu}@capitalone.com

Abstract

Traditional Retrieval-Augmented Generation
(RAG) struggles with complex queries that lack
strong signals to retrieve the most relevant con-
text, forcing a trade-off between choosing a
small context that misses key information and
a large context that confuses the LLM. To ad-
dress this, we propose Forward-Backward
RAG (FB-RAG), a new training-free frame-
work based on a simple yet powerful forward-
looking strategy. FB-RAG employs a light-
weight LLM to peek into potential future gen-
erations, using evidence from multiple sam-
pled outputs to precisely identify the most rele-
vant context for a final, more powerful gen-
erator. This improves performance without
complex finetuning or Reinforcement Learn-
ing common in prior work. Across 9 datasets
from LongBench and coBench, FB-RAG con-
sistently delivers strong results. Further, the
performance gains can be achieved with re-
duced latency due to a shorter, more focused
prompt for the powerful generator. On EN.QA
dataset, FB-RAG matches the leading baseline
with over 48% latency reduction or achieves
an 8% performance improvement with a 10%
latency reduction. Our analysis finds cases
where even when the forward-looking LLM
fails to generate correct answers, its attempts
are sufficient to guide the final model to an
accurate response, demonstrating how smaller
LLMs can systematically improve the perfor-
mance and efficiency of larger ones. Our
code is available at: https://github.com/
CapitalOne-Research/fb-rag.

1 Introduction

Retrieval-Augmented Generation (RAG) shows im-
mense promise in reducing hallucinations and im-
proving generation performance (Fan et al., 2024;
Gao et al., 2023). RAG achieves strong results on
diverse Question Answering (QA) tasks (Borgeaud
et al., 2022; Guu et al., 2020; Asai et al., 2024),
general language tasks (He et al., 2021; Khandel-

wal et al., 2019), and across numerous downstream
applications (Liu et al., 2023; Wu et al., 2024).

In this work, we focus on the task of answering
queries based on an already-provided large con-
text. Traditional RAG efforts for this setup involve
two steps (Zhao et al., 2024b): 1) Retrieve im-
portant chunks by computing similarities with the
query (based on a sparse or dense retriever and/or a
reranker), 2) Feed the retrieved chunks along with
the query to an LLM, which generates the answer.
We refer to these approaches as backward-looking —
looking back at the input query to score the context
chunks. Such methods have been widely adopted
in both academia and industry. However, standard
methods struggle with complex queries that lack
sufficient information to retrieve relevant chunks
(see example in Figure 1). This challenge is diffi-
cult to manage in RAG, where retrieving too little
risks missing key information and retrieving too
much risks adding irrelevant content that can con-
fuse the LLMs (Yu et al., 2024).

To address this challenge, we design Forward-
Backward RAG (FB-RAG) for studying the im-
pact of an emerging yet underexplored idea —
forward-looking or peeking into the LLM’s output
generations to improve retrieval. FB-RAG gener-
ates the output in three stages: I) Recall-focused
Retrieval, using an off-the-shelf retriever to ex-
tract a smaller, yet sufficiently large context, II)
Precision-focused Retrieval, which either only re-
lies on forward-looking by observing reasons and
answers from a light-weight LLM to evaluate the
context chunks (Ours-F) or relies on both forward
and backward lookup (Ours-FB), and III) Gener-
ation, prompting a powerful LLM to get the final
answer. Although prior work used related ideas to
improve RAG with LLM-based feedback or confi-
dence scores (Zhao et al., 2024a; Sun et al., 2022;
Wang et al., 2024; Yang et al., 2023; Jiang et al.,
2023), these methods typically propose complex
fine-tuning or Reinforcement Learning strategies,

1055

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 1055-1071
December 20-24, 2025 ©2025 Association for Computational Linguistics

https://github.com/CapitalOne-Research/fb-rag
https://github.com/CapitalOne-Research/fb-rag

and often assume access to external web search
engines or rely on LLM’s own memory which is
not suitable for many domain-specific practical set-
tings. Instead, FB-RAG is a simple and effective
training-free framework based on off-the-shelf re-
trievers and instruction-tuned LL.Ms that answers
questions from an already-provided large context.
To find relevant chunks with an imperfect
forward-looking LLM, FB-RAG samples multi-
ple outputs and assigns a high score to a chunk if
it was used for any of them. This turns out to be
powerful for improving RAG results over recent
baselines across diverse tasks. We also find that
gains can be achieved while reducing latency. On
EN.QA dataset from coBench (Zhang et al., 2024),
one can combine a 70B parameter model for final
response generation with an 8B model for forward-
lookup and match the baseline performance with
over 48% latency reduction. Further, one can get an
8% performance improvement with 10% latency
reduction. Through our qualitative analysis, we
find instances where even if all the sampled out-
puts from the smaller LLM incorrectly answer the
input query, and often fail to follow our instruc-
tions properly, this still proves sufficient for the
final, more powerful LLM to generate the correct
response. We now summarize our contributions:

1. We propose FB-RAG: a training-free frame-
work for performing RAG with off-the-shelf
instruction-tuned LLMs. FB-RAG employs
a simple and effective look-ahead strategy to
evaluate context chunks before selecting them
for final response generation (Section 2).

2. We comprehensively evaluate FB-RAG
against recent training-free RAG and Long
Context baselines on 9 datasets from Long-
Bench (Bai et al., 2024) and ocoBench (Zhang
et al., 2024), finding that FB-RAG delivers
consistent performance improvements.
We further analyze key design choices in
FB-RAG, such as the number of chunks
retrieved and the number of samples used for
forward lookup (Sections 3 and 4).

3. We show that FB-RAG provides the flexibil-
ity to improve performance while reducing
latency. We additionally perform qualitative
analysis discussing the strengths and limita-
tions of our approach, and provide insights for
future progress in this area (Section 5).

2 Methodology

We focus on the task of question answering based
on an already-provided context. Given an in-
put query) and a context C, FB-RAG relies
on an off-the-shelf retriever and instruction-tuned
LLMs (without finetuning) to generate the output
M(Q,C)". We assume that context C' is sufficient
to answer the query @), differentiating from some
prior formulations that assume runtime access to
web search engines (Yan et al., 2024). At its core,
FB-RAG relies on a look-ahead method to retrieve
the most relevant context chunks from C' before
performing the final response generation. We start
by describing this method and later connect it to
the overall three-stage process of FB-RAG.

2.1 Forward-Backward Retriever

We are given a query () and context C' = {C;} =
{C4,C4,Cs,...Cy, }, with n chunks in total. We
use A* to denote the ideal output response (ground-
truth answer), and C; € C to denote the con-
text chunk that contains the information needed
to generate the ideal answer A*. Further, we use
S(Ci; Q) to represent the importance score of a
context chunk C; given a query () using an off-the-
shelf retriever S. We use Spp(Cj; @, C) to denote
the importance score of chunk C; under FB-RAG
given a query () and the full associated context C.
As in a typical RAG pipeline, once the importance
scores are computed, we can select the highest-
scoring chunks for final output generation using an
LLM. Hence, our goal in this section is simply to
provide a formulation for Spp(Cj; @, C).

Prior work has reported that LLMs often get
confused by the irrelevant information present in
the context (Xu et al., 2024; Asai et al., 2024).
The inverted U shape for the performance observed
by Yu et al. (2024) as the context size increases
demonstrates this in action. Hence, one obvious
objective for the retrievers is to assign high impor-
tance scores to the most relevant chunks so that one
can use a small context for generation and reduce
irrelevant content. This is challenging for retrievers
relying solely on the information in the input query,
especially when the query is non-specific and com-
plex (Li et al., 2024). To address this gap, our key
idea is to look forward at the potential answer to
retrieve the relevant contexts. If we had access to

'This general formulation encompasses several QA, sum-
marization, and Multiple Choice Questions (MCQ) tasks - see
Section 3 for the datasets considered in this work.

1056

1
1
Off the shelf
Retriever
Who is the spouse of the 7'y

actor who played

Context
(1.5k)

Generator

Not mentioned X
(70b LLM) in the passages.

team?

@ Cont;ext C
(12k)

Off the shelf
Retriever
S(Ci; Q)

Forward Lookup
(8b LLM)
L(Q,C")

Context
C’ (6k)

Sampled
Answers &
___Rationales

A e{1,...,

D T T,

Forward Backward
Retriever

Generator
(70b LLM)
G(Q,c™)

Sherry

Context
—>
Boucher

n5.8(Ci; Q)+ 11 (1.5k)

5. ‘i‘g" S(Ci; [Ri, Ax])

Figure 1: Overview of FB-RAG: a training-free framework for generating answers for an input query and context.
FB-RAG looks at both the input query and sampled outputs from a light-weight LLM to rank context chunks.

the oracle generation model L*, we could compute
Srp(Ci; Q, C) in the following manner:

Sre(Ci; Q,C) = S(Ci;; L*(Q, C)) = S(Ci; A").

(1
Unfortunately, even though we are using the oracle
generator L*, this formulation is still not sufficient.
Oftentimes in QA, the answers are concise entities
or even binary (yes or no), meaning that even the
ideal answer A* might be insufficient to identify the
most relevant context chunk C}. Hence, we also
enable the oracle to generate the ideal reasoning
R* before generating the final answer A*:

Srp(Ci;Q,C) = S(C;; L*(Q, C))
=8(Cy R, A7), ()

For a reasonable retriever S, we now hypothesize:
argmax S(Cy; [R*, A™]) = C7, 3)
(2

meaning that one can reasonably expect to reach
C7 if given access to the ideal reasoning R* and
ideal answer A*. Note that our assumption that
there is a single chunk C which contains all the
relevant information to generate A* is not limiting;
one can trivially extend the same argument to the
case where the relevant information is split across
multiple chunks. In such a case, we reasonably
expect the most relevant chunks to be ranked higher
than irrelevant chunks based on S(C;; [R*, A*]).

We now approximate the oracle L* with an

instruction-tuned LLM L:

= S(Ci; [R, A)),)

where R and A are the reasoning and answer gen-
erated by the LLM L. To capture the uncertainty
of the imperfect LLM L, we further propose to
consider the maximum over K samples generated
from the model:

Sre(Ci;Q,C) = I?Efs(cz‘; [Ri, Ag]), (5)

where Ry and Aj are reasoning and answer in
the k' sample respectively. Taking the maximum
ensures that even if a chunk Cj is used only in
one sample, it will still receive a high score un-
der Spp(Cy; Q,C). This is useful to capture the
relevant chunks in cases where the LLM L is not
confident, resulting in high variance in the samples.

Equation 5 utilizes the complete forward-looking
component of our framework (referred as Sr be-
low). However, our formulation of Spp(C;; @, C)
is still incomplete. In case of an extremely noisy
model L, the generated reasoning sequences and
corresponding answers can be inaccurate and thus,
can provide a misleading signal for our purpose
of ranking the context chunks. Hence, merely re-
lying on the outputs from such a noisy model L
can unfairly penalize the true relevant chunk C7'.
Motivated by this, we also incorporate a backward-
looking component (as a form of a regularizer) that
looks at the original input query @) to compute the

1057

importance scores:

Sre(Ci;Q,C) =np.Sp +np.SF =
ni3-S(Cis Q) + . i S(Cis [, Arl), (6)

where Sp and Sr denote the backward and for-
ward components respectively, while np and np
refer to their corresponding weights. Equation 6
completes our goal for this Section.

The forward component S relies on (reasoning,
answer) samples generated by the LLM, which
can be time-consuming as is. Of course, one can
generate these samples in parallel, but we propose
two additional simple solutions to manage this cost.
First, the LLM used for this look-ahead can be
selected independently from the LLM that is used
to perform the final generation. In our experiments
presented in Section 4, we use a relatively light-
weight LLM (8B parameters) for forward-lookup
and a much more powerful LLM (70B parameters)
for the final response generation. We also present
results with other light-weight LLM choices later
in Section 5. Second, one can use a fast retriever to
reduce the context size before utilizing the Forward-
Backward procedure laid out in this Section. These
remedies motivate the three-step process of FB-
RAG, which we describe below.

2.2 FB-RAG Overview

We present our approach in Figure 1. FB-RAG
follows a three-stage process to compute the output
response M (Q, C): 1) Recall-focused Retrieval, 2)
Precision-Focused Retrieval, and 3) Generation.
Recall-focused Retrieval: In Stage I, we employ
an off-the-shelf retriever to reduce the context size
from C to C!. This is recall-focused, meaning
one can select a relatively large context while still
reducing the size significantly compared to C. The
goal here is not to perform generation with C, but
rather to use it for Stage II.
Precision-Focused Retrieval: In Stage II, we fol-
low the procedure laid out in Section 2.1 using a
light-weight LLM L to compute Srp(Ci; Q, CT).
Importantly, C; still comes from the full input con-
text C'. We use these scores to precisely select the
relevant context chunks, reducing C to C! which
is our target context to be used for generation.
Generation: Lastly, we prompt another instruction-
tuned LLM G(Q, C*1) to generate the final answer.
We evaluate two variants of FB-RAG in this
paper: 1) Ours-FB: Using both np and nr as 0.5
in Equation 6, and 2) Ours-F: Using ng = 0 and

nr = 1 (ignoring the backward-component and
resorting to the formulation in Equation 5 instead).
As presented later in Sections 4 and 5, we find that
Ours-F consistently outperforms Ours-FB across
the board, indicating that one needs to only rely on
the forward-looking component — at least for the
choices for LLM L considered in this work.

We make two observations about the overall per-
formance achievable by our framework. First, the
performance is not limited by L(Q, C?) since the
outputs from L are only used softly to score the
chunks in the full context C, and the final gener-
ation is still performed by a more powerful LLM
G. Second, the performance is also not limited
by G(Q, C') since Stage II works to improve the
position of C}, increasing the likelihood that C;
is picked up in the smaller context C'/, which can
make it easier for GG to generate an accurate answer.
We provide a deeper probabilistic interpretation of
our approach in Appendix A and validate these
observations empirically in Section 4.

3 Experiment Design

We address the following four research questions:
RQ 1) Performance: How does FB-RAG perform
compared to RAG and Long Context baselines? —
We evaluate FB-RAG on 9 datasets spanning QA,
Summarization, and Multiple Choice Questions
(MCQ) tasks. RQ 2) Design Considerations: What
is the impact of key design choices on the perfor-
mance of FB-RAG? - We study the performance by
varying the number of retrieved chunks, the number
of samples used in Stage II, and the LLM used for
forward lookup. RQ 3) Impact on Latency: How
does the three-stage process of FB-RAG impact the
overall latency? - We plot the performance against
latency by varying the chunks and comparing our
approach to a baseline. RQ 4) Qualitative Analysis:
In what specific scenarios does FB-RAG improve
performance and what kind of errors does the ap-
proach make? - We perform error analysis and
discuss our insights for future work.

Datasets: Following prior work (Li et al., 2024),
we focus on tasks that are a) in English, b) real, and
c¢) query-based. This leads to 7 datasets from Long-
Bench (Bai et al., 2024): NarrativeQA (Kocisky
et al., 2018), Qasper (Dasigi et al., 2021), Mul-
tiFieldQA (Bai et al., 2024), HotpotQA (Yang
et al.,, 2018), 2WikiMultihopQA (Ho et al.,
2020), MuSiQue (Trivedi et al., 2022), and
QMSum (Zhong et al., 2021). We also pick

1058

two datasets from coBench (Zhang et al., 2024),
namely, En.QA and EN.MC. These datasets cover
diverse domains, including Wikipedia articles,
meetings, narratives, and research papers, involv-
ing single and multi-hop questions. The average
context lengths range from a few thousand to 150k
words. Refer to Appendix B for more details.
Metrics: We use F1 score for QA datasets, Rouge-
L F1 for summarization, and classification accuracy
for the MCQ task. Our implementation is based on
the code released with LongBench?.

Methods: Long Context (LC) refers to directly
feeding the full context to the LLM without ex-
plicit retrieval. Vanilla denotes the typical RAG
approach, which performs retrieval based on an
off-the-shelf retriever before feeding the context to
the LLM. We implemented two recent approaches
evaluated on the considered datasets. In Order-
Preserving (OP) RAG (Yu et al., 2024), the se-
lected chunks from the retriever are first sorted in
their original ordering before feeding them to the
LLM. Self-Route (Li et al., 2024) is a look-ahead
approach that relies on LLM’s ability to understand
if the question is answerable from the retrieved con-
text. It involves 3 steps: 1) Retrieval: Based on an
off-the-shelf retriever, 2) Generation: A modified
generation based on the retrieved context where
the LLM can choose to output ‘unanswerable’ if
it finds that the retrieved context is insufficient to
answer the question, and 3) Generation: Based on
the full input context if the LLM outputs ‘unan-
swerable’ in the previous step.

For our approach, both Ours-FB and Ours-F
variants use 5 samples in Stage II obtained by com-
bining top-p (p=0.9) and top-k (k=50) sampling.
The final response generation for all methods uses
Llama3.1-70B-Instruct (Meta, 2024). Self-Route
uses the same model for both generation steps. For
our approach, we use Llama3.1-8B-Instruct (Meta,
2024) for generating samples in Stage II. Refer to
Appendix C for the prompts used, hardware de-
tails, and token limits. We evaluated 4 retrievers:
BM25 (Trotman et al., 2014), M3Flag (Chen et al.,
2024), BGEFlag (Xiao et al., 2024), and MPNet’.
We chose BM25 for our experiments due to its
strong relative performance, simplicity, and versa-
tility, making it suitable for our approach, which
relies on LLM-generated outputs to retrieve rele-
vant context chunks (see Appendix D.1 for a perfor-

2https://github.com/THUDM/LongBench/tree/main
3https://huggingface.co/sentence—transformers/
multi-ga-mpnet-base-cos-v1

mance comparison). For chunking, we use a chunk
size of 300 words throughout.

4 Results

FB-RAG outperforms Long Context and other
RAG baselines on both LongBench and coBench
datasets. We present the main results on Long-
Bench datasets in Table 1. Across diverse do-
mains and context size settings, we find that our
approach exhibits consistent performance improve-
ments over other implemented methods. Our
approach achieves the best score on 5 out of 7
datasets, and our method Ours-F (6k — 6k), which
uses a 6k context output in both Stage I and II,
achieves the best average performance of 50.51.
We present the results for coBench datasets in Ta-
ble 2. We find performance improvements on both
datasets. Our approach F (24k — 16Kk) achieves
52.24 on EN.QA outperforming both the top re-
ported results in the OP RAG paper (47.25) and the
best OP RAG result found in our own implemen-
tation (48.27). On EN.MC, our approach achieves
86.46, which beats the best achieved in our imple-
mentation of OP-RAG (85.59) but does not beat
the reported best result of 88.65, potentially due to
differences in the experiment design, such as the
retriever and chunking methods.

Only looking forward in Stage II of FB-RAG
generally performs better than averaging out
Forward and Backward components. We ob-
serve that setting 7p = 0 in Equation 6 (nullify-
ing the backward-looking component in Stage II)
performs better than giving equal weight to both
forward and backward looking components. This
indicates that when LLM-generated reasoning and
answer samples are incorporated, the input query
does not seem to provide any new useful informa-
tion to retrieve the most relevant context chunks,
and rather hurts the ranking. This essentially points
to the effectiveness of the underlying LLM used for
forward lookup (Llama-3.1-8B-Instruct for these
reported results). In general, the 8B model is much
worse than the 70B variant used for final generation
(~ 15% lower average performance in our initial
experiments). Often, the former even fails to follow
our formatting instructions to generate the ‘Ratio-
nale:” and ‘Answer:’ prefixes correctly. Further,
we often see the answer being absent or cut off due
to the model generating a long reasoning statement,
leaving no room for the answer within our hard
decoding token limit. However, regardless of these

1059

https://github.com/THUDM/LongBench/tree/main
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1

Method | Avg | Narr Qasp Mult Hotp 2Wiki Musi QMSum
Long Context
Llama3.1-70B-Instruct ‘ 49.28 ‘ 33.42 5096 5563 644 67.18 48.68 24.68
Self-Route (Li et al., 2024)
Gemini-1.5-Pro 4333 | 2832 4523 5147 5518 62.68 40.66 19.77
GPT-40 46.83 | 31.36 47.99 53.17 62.14 70.14 41.69 21.31
Llama3.1-70B-Instruct; RAG - Our Impl. (1.5k)
Vanilla 44.19 | 25.01 49.31 5341 6091 58.84 37.32 24.51
OP (Yu et al., 2024) 4434 | 23.89 4931 548 61.11 59.06 37.94 24.26
Self-Route (Li et al., 2024) | 47.23 | 24.04 48.77 5434 64.42 68.23 46.68 24.14
Ours-FB (6k — 1.5k) 49.36 | 30.29 51.38 5622 68.76 6327 50.92 24.68
Ours-F (6k — 1.5k) 49.36 | 28.62 51.29 5553 6699 65.1 5293 25.07
Llama3.1-70B-Instruct; RAG - Our Impl. (3k)
Vanilla 47.09 | 26.99 50.55 54.67 6533 61.06 46.55 24.48
OP (Yu et al., 2024) 48.03 | 26.62 50.71 56.78 66.28 64.8 4591 25.11
Self-Route (Li et al., 2024) | 48.29 | 27.54 50.09 56.1 65.64 66.02 47.75 24.9
Ours-FB (6k — 3k) 50.23 | 33.22 5099 5599 6629 6742 53.13 24.56
Ours-F (6k — 3k) 50.31 | 32.41 51.05 56.12 66.79 6795 53.7 24.17
Llama3.1-70B-Instruct; RAG - Our Impl. (6k)
Vanilla 48.59 | 31.09 50.12 55.17 6639 659 46.72 24.72
OP (Li et al., 2024) 48.75 1 29.85 5135 556 6553 655 48.85 24.59
Self-Route (Li et al., 2024) | 48.71 | 30.52 50.74 54.67 66.5 64.12 49.29 25.13
Ours-FB (6k — 6k) 50.05 | 33.24 50.87 56.57 6525 67.76 51.94 24.75
Ours-F (6k — 6k) 50.51 | 34.36 50.84 57.26 6536 67.63 534 24.69

Table 1: Results on LongBench. We use Rouge-L F1 for QMSum, and F1 score for others. (X — Y): Context size
X in Stage I and Y in Stage II. Comparisons with other popular retrievers are in Appendix D.1.

Method EN.QA EN.MC
Long Context
Llama3.1-70B-Instruct 34.26 71.62
Self-Route (Li et al., 2024)
Gemini-1.5-Pro 37.51 76.86
GPT-40 34.95 77.29
Llama3.1-70B-Instruct; OP RAG (Yu et al., 2024)
16k 44.43 84.72
24k 45.45 88.65
48k 47.25 85.59
Llama3.1-70B-Instruct; OP RAG (Our Impl.)
16k 47.87 81.22
24k 48.27 85.59

Llama3.1-70B-Instruct; FB-RAG (Ours)

Ours-FB (24k — 12k) 49.93 84.28
Ours-FB (24k — 16k) 51.68 85.59
Ours-F (24k — 12k) 50.38 85.59
Ours-F (24k — 16k) 52.24 86.46

Table 2: Results on coBench. We report F1 score for
EN.QA and accuracy for EN.MC. (X — Y): Context
size X in Stage I and Y in Stage II.

issues, as long as the model outputs the appropriate
language relevant to answering the input question,
it helps to retrieve the most relevant chunks for
the final generation step by a more powerful LLM.
We also experimented with different prompts for
Stage II and found that some sort of reasoning or
explanation provides slight gains over only using
answers (Appendix D.2).

Forward-looking improves the ranking of rele-

vant context chunks. In Figure 2 (top), we directly
compare OP-RAG with our approach on EN.QA
by varying the number of chunks used for final gen-
eration*. We find that our approach at 20 chunks
(6k context) outperforms OP RAG at 80 chunks
(24k context). On EN.MC (Appendix D.3), this
happens at 53 chunks (16k context). This goes
back to the discussion in Section 2.2. With for-
ward lookup in Stage II (albeit with a less powerful
LLM), our approach essentially improves the rank-
ing of relevant context chunks, and thus, allows one
to use a smaller context for final response genera-
tion. This makes it easier for the LLM to find the
correct answer, leading to improved performance.

Performance improves even with one forward
sample in Stage II of FB-RAG. Finally, we ana-
lyze the impact of the number of samples used in
Stage II of FB-RAG on the overall performance
(Appendix D.4). We find that the performance im-
proves greatly with only one forward sample, with
maximum performance at 5. We also note that
the trend is not strictly increasing, indicating that
more samples may not always add value and this
parameter must be tuned empirically.

“We exclude Self-Route here since it relies on LC as a
fallback which already performs poorer than RAG in this case.

1060

EN.QA

F1

—e— OP-RAG
Ours

10 20 30 40 50 60 70 80
Number of chunks

Performance (F1)

2 s & & 0w
S N N S N
> & o i o
: f

»
>
»

w
~
o

® OP-RAG
o A Ours

w
u
o

5 10 15 20 25 30 35
Latency (s)

Figure 2: Top: Results on EN.QA obtained by varying
the number of chunks used for final response generation.
Across all data points, our approach uses an Llama3.1-
8B-Instruct model for forward lookup in Stage II with
80 context chunks as input and setting nr = 1 and
np = 0. Bottom: Performance vs. Latency plot on
EN.QA for the same points as in the Top Figure. Refer
to Appendix C for details on the hardware used.

5 Discussion

Combining FB-RAG with In-Context Learn-
ing: Wei et al. (2024) proposed to improve the
generation step in RAG with In-Context Learn-
ing (ICL) examples. This approach is comple-
mentary to FB-RAG, which improves the retrieval
of relevant chunks. Hence, we studied how com-
bining these two methods impacts performance.
We consider two variants for the retrieval step: 1)
Vanilla and 2) Ours-F). We consider three aug-
mentations: Reason-then-Answer, which includes
reasoning in the final generation by Llama3.1-70B-
Instruct, along with Few-Shot Demo. w/ Instruc-
tion and INSTRUCTRAG-ICL methods by Wei et al.
(2024) which combine reasoning with ICL. We im-
plemented these methods ourselves and combined
them with one of the two retrieval choices, for a
total of 6 new evaluations.

We present the results in Appendix Table 9. On
average, our original Ours-F model from Table 1

—— OP-RAG 24k

54 4 — - OP-RAG 16k

FB (24k - 16k)
F (24k - 16k)

Performance (F1)
n @
3 5

IS
3

46 4

Llama3.2-3b Llama3.2-1b

LLM for Stage Il of FB-RAG

Llama3.1-8b

Figure 3: Varying the model used for Forward lookup in
Stage II of our approach. Results are on EN.QA dataset.

remains the top performer. The ICL augmentations
provide a clear benefit on one dataset (2Wiki). Cru-
cially, the results for the ICL-augmented Vanilla
setting are consistently lower than for the ICL-
augmented Ours-F. This demonstrates that while
generation techniques like ICL can help, they can-
not fully compensate for poor retrieval. Ours-F
provides a better, more precise context for these
generation methods to work with.

Our qualitative analysis reveals trade-offs.
Adding reasoning (especially Reason-then-Answer)
often hurts instruction-following, causing the
model to generate long answers instead of the
concise phrases requested in the prompt. While
INSTRUCTRAG-ICL fixes some errors made by
the base Ours-F model, its own faulty reason-
ing sometimes introduces new errors. One poten-
tial benefit we observed was in handling out-of-
context queries: the INSTRUCTRAG-ICL model of-
ten correctly concluded that information was miss-
ing or used its internal knowledge, whereas the
base Ours-F model was more likely to make an
incorrect guess. While this did not improve scores
after the augmentations, it suggests a potential di-
rection for improving system reliability. Effectively
integrating these ICL methods remains an area for
future work.

Latency Considerations: FB-RAG improves per-
formance with lower latency. The latency of FB-
RAG is governed by the two LLM calls in Stage
II and III (Figure 1). We approximate the over-
all latency by the sum of the average time taken
by Llama3.1-8B-Instruct to generate output sam-
ples in Stage II (assuming parallelization) and the
average time taken by Llama3.1-70B-Instruct to
generate the final answer. In Figure 2 (bottom),
we plot performance against latency for EN.QA,

1061

varying the number of chunks used in Stage III and
comparing to OP-RAG. This is complementary to
the performance curves in Figure 2 (top). As evi-
dent, we find that FB-RAG improves performance
while reducing latency. It matches the best base-
line performance (48.27 F1 at 29s), with over 48%
reduction in latency, attaining 48.85 F1 at 14.89s.
Further, FB-RAG shows 8% performance improve-
ment with a 10% reduction in latency. This can
be attributed to using a lightweight 8B model for
forward-lookup with a large context, and the final
generation with a 70B model using a much smaller
context size, and is in line with previously reported
inference speedups in 8B vs. 70B variants®.
Varying the LLLM used for forward lookup: We
can go even more light-weight. The latency anal-
ysis above used an 8B model for forward-lookup
in Stage II of FB-RAG. Even though the 8B model
fails to follow instructions properly occasionally
and performs much worse compared to the 70B
model, it still brings performance improvements.
A natural question is — ‘Can we push this further?’
In Figure 3, we compare performance by varying
the LLM used for Stage II, experimenting with
Llama3.2 3B and 1B instruction-tuned variants®.
As evident, we find that even the 3B model shows
visible improvements in performance, while the 1B
performs similar to the baseline. This finding at-
tests to the strength of FB-RAG — although the 3B
variant is nearly half as accurate as the 8B model,
as long as it provides the relevant language in the
generated reasons and answers, it helps to retrieve
the relevant context chunks for the 70B model to
generate accurate answers. From these observa-
tions, we argue that FB-RAG provides the knobs
to improve performance while controlling latency
with reasonable design choices — this includes the
number of chunks for Stage II and Stage III, and
the size of the forward-lookup model.

Qualitative Analysis: Analyzing complex queries
where FB-RAG decisively outperforms the base-
lines, we make two observations. First (which is
more straightforward), there are cases where the
8B model answers the query correctly in at least
one of the Stage II samples, along with giving a
reasonable rationale. This directly helps to pick the
relevant chunks for Stage III following Equation
5. The second situation is more interesting, where
the 8B model fails to answer a multihop query in

5https ://openllmbenchmarks.com/index.html
6https ://ai.meta.com/blog/

all samples. However, it answers one hop correctly
in at least one of the samples, which proves to be
sufficient to retrieve the correct chunks for the 70B
model to handle the multiple hops correctly. Take
a query from MuSiQue as an example — ‘Who is
the spouse of the actor who played Hannibal Smith
in the A team?’, the 8B model correctly guesses
‘George Peppard’ as the actor who played Hanni-
bal Smith, but is unable to get to the final answer
‘Sherry Boucher*. However, simply generating the
relevant language and ‘George Peppard’ helps to
retrieve the right context chunks for the 70B model
to produce the correct answer — This gives insight
into how even a light-weight LLM in Stage II can
systematically help to improve the performance,
aligned with the overall results discussed earlier.

Looking at the fewer cases where FB-RAG per-
forms worse, we find that first, some of the errors
can be traced back to the evaluation metrics. When
FB-RAG predicts ‘Sebastian’ instead of ‘Sebastian
Cabot’ or ‘Qatari Stars League’ instead of ‘Qatar
Stars League’, it hurts the F1 score it receives. —
Investing in improved metrics (potentially se-
mantic) will be valuable in the future. Second, in
some cases, the error can be attributed to the ambi-
guity in the input query. The answer to the question
‘The Live Life Loud album’s band signed to which
label?’ is temporally dependent, and FB-RAG gets
penalized since it answers correctly but from a dif-
ferent year than what is unfairly assumed in the
ground truth answer — Incorporating the tempo-
ral dimension to curate unambiguous queries
will improve the dataset quality in the future.
Finally, we find cases where the 70B model fails to
resolve multihop queries even with a precise input
context, for instance, confusing the ‘spouse’ with
the ‘mother’ of an artist — Enabling LLMs to re-
solve complex multihop queries is still an open,
challenging problem, demanding additional ded-
icated efforts in this area.

6 Related Work

Long Context (LC) LLMs: Context lengths have
rapidly increased, with Gemini 1.5 Pro (Team et al.,
2024) and Meta Llama 4 (Meta, 2025) using even
10 million tokens. However, LLMs can get con-
fused by irrelevant parts of the context, leading to
known cases where RAG significantly outperforms
LC (Xu et al., 2023; Yu et al., 2024). In terms of
latency, LC is expensive due to the quadratically in-

1lama-3-2-connect-2024-vision-edge-mobile-devices/ creasing compute costs with input size. We follow

1062

https://openllmbenchmarks.com/index.html
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

the RAG paradigm by first retrieving the most rel-
evant context chunks and then feeding them to an
LLM with the input query for answer generation.
Retrieval Augmented Generation (RAG): RAG
has emerged as a popular paradigm competing with
LC, improving performance across diverse tasks
with significantly lower compute costs (Fan et al.,
2024). Traditional RAG is backward-looking — the
context chunks are scored based on the input query
using a combination of retrievers and rerankers,
which further refine the selected context (Gao et al.,
2023). Instead, FB-RAG uses forward-looking
with samples generated from an LLM to select
the relevant context chunks for the final answer
generation. Unlike a typical reranker, Stage II of
FB-RAG selects the chunks from the full context
C instead of C'! (the output of Stage 1).
Numerous efforts augment RAG with trained fil-
ters (Yoran et al., 2023), trained compressors (Xu
et al., 2024), and web search engines (Yan et al.,
2024) to improve retrieval quality and generation.
Self-RAG (Asai et al., 2024) trains an LLM us-
ing special reflection tokens to retrieve on demand.
Li et al. (2023) and Jiang et al. (2023) perform
retrieval from the web based on the LLM’s look-
ahead confidence scores. Speculative RAG (Wang
et al., 2024) uses a smaller trained LLM to gen-
erate answer candidates, which are then verified
by another LLM. LongRAG (Zhao et al., 2024a)
uses plug-n-play components to extract global in-
formation and factual details from context chunks
which enhances the understanding from long con-
texts. Our setting differs in several ways: 1) We
push the performance of instruction-tuned LL.Ms
without any further training, 2) We assume no ac-
cess to external web sources, and 3) We only use
forward lookup from the light-weight LLM in a
soft manner for selecting relevant context chunks
from the entire context, with the final generation
still being performed by a more powerful LLM.
Two recent papers closest to our formulation are
Self-Route (Li et al., 2024) and Order Preserving
(OP) RAG (Yu et al., 2024), which we implemented
ourselves and used as baselines in this work.

7 Conclusion

We proposed and evaluated FB-RAG — a new frame-
work for RAG with LLMs. Instead of solely relying
on the input query to retrieve the relevant chunks,
we employed a look-ahead mechanism tightly in-
tegrated with the task at hand. This retrieves the

most relevant chunks while reducing the irrelevant
information in the context, resulting in superior per-
formance. We found that FB-RAG has the potential
to improve performance while simultaneously re-
ducing latency. We performed a qualitative analysis
and discussed insights to guide future work.

Our findings also provide clear guidance on
when to use FB-RAG. For applications with sim-
ilar setup as ours, Ours-F (forward-lookup only)
should be preferred over Ours-FB (forward and
backward) given its superior performance in our
experiments. The choice between Ours-F and OP-
RAG depends on the specific performance versus
latency requirements:

* Performance-first (e.g., offline setup): As
shown in Table 1 and 2 along with Figure 2
(top), Ours-F consistently achieves the best
performance.

* Fixed performance target: As shown in Fig-
ure 2 (bottom), OP-RAG may be suitable for
lower performance targets, but for higher tar-
gets, Ours-F achieves them with lower la-
tency.

* Fixed latency budget: For low latency bud-
gets, OP-RAG is preferable, but as the bud-
get increases, Ours-F delivers superior per-
formance.

This highlights a key advantage of FB-RAG for
long-text applications. When the input context
is large (e.g., 16k or 24k), standard RAG with a
large generator (e.g., 70B model) incurs high la-
tency. In such cases, FB-RAG’s strategy of using a
light-weight model for forward-lookup allows it to
achieve higher performance while simultaneously
reducing overall latency.

Limitations

The effectiveness of FB-RAG depends on the qual-
ity of the off-the-shelf retriever that is being used.
In our experiments, we found BM25 to be effective.
However, if the quality of the available retriever is
poor for the domain in consideration, one is forced
to use a larger context size for subsequent stages,
which would impact the overall latency gains from
the system.

In our qualitative analysis, we observed that
smaller, less-capable LLMs can be used for
forward-lookup in Stage II and one can even-
tually get accurate responses even if this small

1063

LLM is inaccurate or fails to always follow our
instructions properly. However, the minimum level
of the model capability (parameters, instruction-
following abilities) required for forward-looking
signals to be helpful remains an open question and
will be important for future investigation. Ulti-
mately, the design choices that best manage the
performance-latency tradeoff will depend on the
specific application and platform constraints.

Ethical Considerations

Our work was approved by the established internal
review procedure. We carefully verified the licens-
ing information associated with all the datasets and
instruction-tuned LLMs used in this work, ensuring
that their use was within their intended scope. All
the datasets were properly anonymized before be-
ing used. We provide dataset statistics in Appendix
B and refer the readers to the original dataset pa-
pers for details regarding pre-processing steps as
well as the demographics of human annotators.

All datasets considered in this work were in En-
glish. Hence, it is unclear whether our findings
directly translate to other languages and cultures.
However, our approach is free of any such assump-
tions, and we encourage future work to extend it to
these other scenarios.

We further note that LLMs have been known to
exhibit different kinds of gender or cultural biases
that can lead to discriminatory language in the gen-
erated outputs. Hence, we call for rigorous testing
before any LLM-based systems are deployed. We
also recommend regular monitoring after deploy-
ment to ensure that the models’ behaviors remain
within their planned scope.

References

Akari Asai, Zeqiu Wu, Yizhong Wang, Avi Sil, and
Hannaneh Hajishirzi. 2024. Self-rag: Learning to re-
trieve, generate, and critique through self-reflection.
In International Conference on Learning Representa-
tions.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. LongBench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3119-3137, Bangkok, Thailand.
Association for Computational Linguistics.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, and 1 others.
2022. Improving language models by retrieving from
trillions of tokens. In International conference on
machine learning, pages 2206-2240. PMLR.

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun
Luo, Defu Lian, and Zheng Liu. 2024. M3-
embedding: Multi-linguality, multi-functionality,
multi-granularity text embeddings through self-
knowledge distillation. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 2318-2335, Bangkok, Thailand. Association
for Computational Linguistics.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A dataset
of information-seeking questions and answers an-
chored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4599-4610, On-
line. Association for Computational Linguistics.

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang,
Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing
Li. 2024. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Pro-
ceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 6491—
6501.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jin-
liu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Haofen Wang,
and Haofen Wang. 2023. Retrieval-augmented gen-
eration for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929-3938. PMLR.

Qiuxiang He, Guoping Huang, Qu Cui, Li Li, and
Lemao Liu. 2021. Fast and accurate neural machine
translation with translation memory. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3170-3180.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning
steps. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 6609—
6625.

Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023. Active retrieval
augmented generation. In Proceedings of the 2023

1064

https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7969-7992, Singapore. As-
sociation for Computational Linguistics.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. In International Conference on Learning
Representations.

Tomas Kocisky, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gabor Melis, and Ed-
ward Grefenstette. 2018. The NarrativeQA reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317-328.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jingyuan Wang,
Jian-Yun Nie, and Ji-Rong Wen. 2023. The web can
be your oyster for improving large language models.
arXiv preprint arXiv:2305.10998.

Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu Mei,
and Michael Bendersky. 2024. Retrieval augmented
generation or long-context LLMs? a comprehensive
study and hybrid approach. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pages 881—
893, Miami, Florida, US. Association for Computa-
tional Linguistics.

Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui
Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei
Xiao, and Animashree Anandkumar. 2023. Multi-
modal molecule structure—text model for text-based
retrieval and editing. Nature Machine Intelligence,
5(12):1447-1457.

Meta. 2024. [link].
Meta. 2025. [link].

Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and
Denny Zhou. 2022. Recitation-augmented language
models. arXiv preprint arXiv:2210.01296.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, and 1
others. 2024. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Musique: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539-554.

Andrew Trotman, Antti Puurula, and Blake Burgess.
2014. Improvements to bm?25 and language models
examined. In Proceedings of the 19th Australasian
Document Computing Symposium, pages 58—65.

Zilong Wang, Zifeng Wang, Long Le, Huaixiu Steven
Zheng, Swaroop Mishra, Vincent Perot, Yuwei
Zhang, Anush Mattapalli, Ankur Taly, Jingbo Shang,

and 1 others. 2024. Speculative rag: Enhancing re-
trieval augmented generation through drafting. arXiv
preprint arXiv:2407.08223.

Zhepei Wei, Wei-Lin Chen, and Yu Meng. 2024. In-
structrag: Instructing retrieval-augmented genera-
tion via self-synthesized rationales. arXiv preprint
arXiv:2406.13629.

Junda Wu, Cheng-Chun Chang, Tong Yu, Zhankui He,
Jianing Wang, Yupeng Hou, and Julian McAuley.
2024. Coral: Collaborative retrieval-augmented large
language models improve long-tail recommendation.
In Proceedings of the 30th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining,
pages 3391-3401.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-
nighoff, Defu Lian, and Jian-Yun Nie. 2024. C-pack:
Packed resources for general chinese embeddings. In
Proceedings of the 47th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 641-649.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2024. Re-
comp: Improving retrieval-augmented Ims with com-
pression and selective augmentation. In /2th Inter-

national Conference on Learning Representations,
ICLR 2024.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee,
Chen Zhu, Zihan Liu, Sandeep Subramanian, Evelina
Bakhturina, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023. Retrieval meets long context large lan-
guage models. In The Twelfth International Confer-
ence on Learning Representations.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling.
2024. Corrective retrieval augmented generation.
arXiv preprint arXiv:2401.15884.

Haoyan Yang, Zhitao Li, Yong Zhang, Jianzong Wang,
Ning Cheng, Ming Li, and Jing Xiao. 2023. Prca:
Fitting black-box large language models for retrieval
question answering via pluggable reward-driven con-
textual adapter. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5364-5375.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369-2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan
Berant. 2023. Making retrieval-augmented language
models robust to irrelevant context. arXiv preprint
arXiv:2310.01558.

Tan Yu, Anbang Xu, and Rama Akkiraju. 2024. In
defense of rag in the era of long-context language
models. arXiv preprint arXiv:2409.01666.

1065

https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://www.llama.com/llama3_1/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai,
Shuo Wang, Zhiyuan Liu, and Maosong Sun. 2024.
ooBench: Extending long context evaluation beyond
100K tokens. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15262—
15277, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Qingfei Zhao, Ruobing Wang, Yukuo Cen, Daren Zha,
Shicheng Tan, Yuxiao Dong, and Jie Tang. 2024a.
Longrag: A dual-perspective retrieval-augmented
generation paradigm for long-context question an-
swering. In Proceedings of the 2024 Conference on

Empirical Methods in Natural Language Processing,
pages 22600-22632.

Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan He,
Luna K Qiu, and Lili Qiu. 2024b. Retrieval aug-
mented generation (rag) and beyond: A comprehen-
sive survey on how to make your llms use external
data more wisely. arXiv preprint arXiv:2409.14924.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir
Radev. 2021. QMSum: A new benchmark for query-
based multi-domain meeting summarization. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5905-5921, Online. Association for Computational
Linguistics.

A Methodology

In this Section, we provide a deeper insight into
how FB-RAG works to improve the overall RAG
performance. This interpretation is complementary
to the discussion in Section 2.2. We lay out a prob-
abilistic formulation of the RAG process below
(extending the notation used in the main paper):

P(A*|Q,C) =) P(r|Q)- P(A*|Q,r), (7)

VrCC

where r denotes all possible contexts that can be
selected in the retriever stage of RAG.

The first component, P(7|Q), captures the re-
triever’s role - a conditional probability distribution
over all possible contexts that can be selected from
the full context C' conditioned on the query Q. A
higher probability of a specific r corresponds to a
higher score from the retriever and a higher likeli-
hood of it being picked up for generation.

The second component, P(A*|Q,), captures
the job of the generator - the probability of gen-
erating the answer A* from the query () and the

Dataset No. of Queries Avg Length

LongBench (Bai et al., 2024)

NarrativeQA 200 18,395
Qasper 200 3,599
MultiFieldQA 150 4,539
HotpotQA 200 9,133
2WikiMultihopQA 200 4,873
MusSiQue 200 11,196
QMSum 200 10,533
ooBench (Zhang et al., 2024)
EN.QA 351 150,374
EN.MC 229 142,622

Table 3: Statistics for all the datasets considered in our
experiments in this paper.

selected context r. Note that P(A*|Q,r) will be
high for a better quality » which contains the rele-
vant context chunks and minimizes irrelevant infor-
mation, and will be low for a poor quality » which
misses out key relevant chunks or contains a high
amount of irrelevant content.

Under this formulation, when supplied with a
reasonable forward-looking LLLM, the procedure
laid out in Section 2.1 simply works to shift the
probability mass in P(r|Q) to better quality con-
texts. Combined with the better performance from
the generator P(A*|Q,r) for these better quality
contexts, this holds the potential to improve the
overall probability P(A*|Q, C) of generating the
accurate answer.

B Datasets

Our experiments are based on 9 datasets from
two popular benchmarks consisting long con-
text lengths - LongBench (Bai et al., 2024) and
ooBench (Zhang et al., 2024). QA tasks (Narra-
tiveQA, Qasper, MultifieldQA, HotpotQA, 2Wiki-
MultihopQA, MuSiQue, and EN.QA) take a query
and a context as input, with the goal of generating a
concise answer. The summarization task (QMSum)
requires generating a free-form summary based on
the given query and context. For the MCQ task
(EN.MC), the input additionally includes a set of
choices, and the task is to choose the correct choice
that answers the input query based on the provided
context. We present key statistics for these datasets
in Table 3.

C Experiment Design

We provide additional experimental design details
in this section to promote reproducibility.

1066

https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472

C.1 Prompts

We release all the prompts used in our experiments.
Tables 4 and 5 list the prompts for LongBench
datasets, while Table 6 presents the prompts for the
two datasets from ooBench. Note that for QMSum,
we use the same prompt for FB-RAG Stage II as
the one used for Vanilla RAG. This is because the
output summary is already descriptive, unlike other
datasets where answers tend to be very concise (a
few words or a phrase).

C.2 Hardware Used

All the experiments presented in this paper were
performed on 8 NVIDIA A100 GPUs. We used the
default inference configuration provided by Hug-
gingface, which uses ‘device_map=auto’. We did
not use any additional optimizations.

C.3 Decoding Token Limits

We set maximum limits for the number of tokens
that can be generated per LLM call. For Long-
Bench datasets, we use the limits from the code
released with the benchmark’. For EN.QA and
EN.MC datasets from coBench benchmark, we set
the limit to 64, based on the ground truth distribu-
tions. When generating both reasoning and answer
in Stage II of our approach, we add 64 to the origi-
nal token limit for all datasets.

D Results

D.1 Retriever comparisons

We compared the performance of several off-the-
shelf retrievers in our initial experiments, as pre-
sented in Table 7. All methods use OP RAG at 3k
context size. We find that BM25 performs reason-
ably well on average in comparison to numerous
top-performing semantic retrievers. In addition,
BM25 is a versatile approach without any under-
lying assumptions about the query, making it well-
suited for our forward-looking approach in this
paper. Hence, we fixed BM25 as the retriever for
the rest of our experiments discussed in Section 4
in the main paper.

D.2 FB-RAG Stage II Prompt comparisons

We experimented with a few prompt variations for
Stage II of FB-RAG. Table 8 presents these com-
parisons on LongBench datasets. We observe that
only using the answers sampled from the LLM
shows improvements over other RAG baselines

"https://github.com/THUDM/LongBench/tree/main

EN.MC

Accuracy
® ® ©
b 2 a

©
=3

~
®

—8— OP-RAG
Ours

~
o

lb 2‘0 Bb 4‘0 5‘0 6b 7‘0 8‘0
Number of chunks

Figure 4: Performance comparison between our ap-
proach and OP RAG on EN.MC dataset. Y-Axis: The
performance on the corresponding metric. X-Axis: The
number of chunks used by both methods for final re-
sponse generation. Across all data points, our approach
uses an Llama3.1-8B-Instruct model for forward lookup
in Stage 2 with 80 context chunks as input and setting
nrg = land np = 0.

50.0 1

IS
©
n

Avg Performance
8
o

IS
@
o

48.0 1

o4

1 2 3 4
Number of Forward Samples

o4

Figure 5: Studying the impact on the average perfor-
mance of FB-RAG on LongBench datasets by varying
the number of samples used in Stage II. Model used:
Ours-FB (6k — 3Kk).

presented in the main paper, although this can be
further improved slightly by using some form of
reasoning along with the answer. This helps to han-
dle scenarios where the answers are entity names or
binary that contain little information for retrieving
the most relevant context chunks.

D.3 Varying the number of chunks used for
final generation

In Figure 4, we compare the performance of our ap-
proach with OP-RAG on EN.MC dataset by vary-
ing the number of chunks used for final generation.
We find that FB-RAG at 53 chunks (16k context)
beats the best performance of the baseline at 80
chunks (24k context).

1067

https://github.com/THUDM/LongBench/tree/main

Dataset

LC, Vanilla/ OP RAG

Self-Route: Stage I

FB-RAG: Stage 11

NarrativeQA

You are given a story, which
can be either a novel or a movie
script, and a question. Answer
the question as concisely as you
can, using a single phrase if pos-
sible. Do not provide any expla-
nation. Story: {context} Now,
answer the question based on
the story as concisely as you can,
using a single phrase if possible.
Do not provide any explanation.
Question: {input} Answer:

You are given a story, which can be ei-
ther a novel or a movie script, and a ques-
tion. Answer the question as concisely
as you can, using a single phrase if possi-
ble. Do not provide any explanation. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. Story: {context} Now,
answer the question based on the story
as concisely as you can, using a single
phrase if possible. Do not provide any
explanation. If the question cannot be
answered based on the information in
the article, write “unanswerable”. Ques-
tion: {input} Answer:

You are given a story, which
can be either a novel or a movie
script, and a question. An-
swer the question as concisely
as you can, using a single phrase
if possible. Story: {context}
Now, first provide your reason-
ing briefly in 2-3 sentences start-
ing with ’Rationale:’. Then, an-
swer the question starting with
’Answer:’ as concisely as you
can, using a single phrase if pos-
sible. Question: {input} Ratio-
nale:

Qasper

You are given a scientific arti-
cle and a question. Answer the
question as concisely as you can,
using a single phrase or sentence
if possible. If the question can-
not be answered based on the
information in the article, write
iinanswerable: If the question is
a yes/no question, answer yesy
floy or tinanswerable: Do not
provide any explanation. Arti-
cle: {context} Answer the ques-
tion based on the above article
as concisely as you can, using a
single phrase or sentence if pos-
sible. If the question cannot be
answered based on the informa-
tion in the article, write iinan-
swerable: If the question is a
yes/no question, answer yesy fioy
or inanswerable: Do not pro-
vide any explanation. Question:
{input} Answer:

You are given a scientific article and a
question. Answer the question as con-
cisely as you can, using a single phrase
or sentence if possible. If the question
cannot be answered based on the infor-
mation in the article, write iinanswer-
able- If the question is a yes/no question,
answer yesy fio; or iinanswerable: Do not
provide any explanation. Article: {con-
text} Answer the question based on the
above article as concisely as you can,
using a single phrase or sentence if pos-
sible. If the question cannot be answered
based on the information in the article,
write {inanswerable: If the question is
a yes/no question, answer yesy iioy or
iinanswerable: Do not provide any ex-
planation. Question: {input} Answer:

You are given a scientific ar-
ticle and a question. Answer
the question as concisely as you
can, using a single phrase or sen-
tence if possible. If the ques-
tion cannot be answered based
on the information in the arti-
cle, write iinanswerable. If the
question is a yes/no question, an-
swer yesy iloy or iinanswerable:
Atrticle: {context} Now, first
provide your reasoning briefly
in 2-3 sentences starting with
’Rationale:’. Then, answer the
question starting with ’Answer:’
based on the above article as
concisely as you can, using a
single phrase or sentence if pos-
sible. If the question cannot be
answered based on the informa-
tion in the article, write iinan-
swerable: If the question is a
yes/no question, answer yes; fioy
or tinanswerable: Question: {in-
put} Rationale:

MultiFieldQA

Read the following text and an-
swer briefly. {context} Now,
answer the following question
based on the above text, only
give me the answer and do not
output any other words. Ques-
tion: {input} Answer:

Read the following text and answer
briefly. {context} Now, answer the fol-
lowing question based on the above text,
only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Read the following text and an-
swer briefly. {context} Now,
first provide your reasoning
briefly in 2-3 sentences starting
with ’Rationale:’. Then, answer
the question starting with *An-
swer:’ based on the above text.
Question: {input} Rationale:

HotpotQA

Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. The following
are given passages. {context}
Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. Question: {in-
put} Answer:

Answer the question based on the given
passages. Only give me the answer
and do not output any other words. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. The following are
given passages. {context} Answer the
question based on the given passages.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Answer the question based on
the given passages. {context}
Now, first provide your reason-
ing briefly in 2-3 sentences start-
ing with Rationale:’. Then, an-
swer the question starting with
’Answer:” based on the given
passages. Question: {input} Ra-
tionale:

Table 4: (Part 1/ 2) Prompts used in our experiments for LongBench datasets.

1068

Dataset

LC, Vanilla/ OP RAG

Self-Route: Stage I

FB-RAG: Stage II

2WikiMultihopQA

Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. The following
are given passages. {context}
Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. Question: {in-
put} Answer:

Answer the question based on the given
passages. Only give me the answer
and do not output any other words. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. The following are
given passages. {context} Answer the
question based on the given passages.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Answer the question based on
the given passages. The follow-
ing are given passages. {con-
text} Now, first provide your
reasoning briefly in 2-3 sen-
tences starting with ’Rationale:’.
Then, answer the question start-
ing with *Answer:” based on the
given passages. Question: {in-
put} Rationale:

MuSiQue

Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. The following
are given passages. {context}
Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. Question: {in-
put} Answer:

Answer the question based on the given
passages. Only give me the answer
and do not output any other words. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. The following are
given passages. {context} Answer the
question based on the given passages.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Answer the question based on
the given passages. The follow-
ing are given passages. {con-
text} Now, first provide your
reasoning briefly in 2-3 sen-
tences starting with 'Rationale:’.
Then, answer the question start-
ing with *Answer:” based on the
given passages. Question: {in-
put} Rationale:

QMSum

You are given a meeting tran-
script and a query containing
a question or instruction. An-
swer the query in one or more
sentences. Transcript: {context}
Now, answer the query based on
the above meeting transcript in
one or more sentences. Query:
{input} Answer:

You are given a meeting transcript and
a query containing a question or instruc-
tion. Answer the query in one or more
sentences. If the question cannot be
answered based on the information in
the article, write “unanswerable”. Tran-
script: {context} Now, answer the query
based on the above meeting transcript
in one or more sentences. If the ques-
tion cannot be answered based on the
information in the article, write “unan-
swerable”. Query: {input} Answer:

You are given a meeting tran-
script and a query containing
a question or instruction. An-
swer the query in one or more
sentences. Transcript: {context}
Now, answer the query based on
the above meeting transcript in
one or more sentences. Query:
{input} Answer:

Table 5:

(Part 2 / 2) Prompts used in our experiments for LongBench datasets.

Dataset

LC, Vanilla / OP RAG

Self-Route: Stage I

FB-RAG: Stage 11

EN.QA

Read the book and answer the
question. Be very concise in
your answer. Book: {context}
Now, answer the question based
on the book. Only give me the
answer and do not output any
other words. Question: {input}
Answer:

Read the book and answer the ques-
tion. Be very concise in your answer. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. Book: context Now,
answer the question based on the book.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Read the book and answer the
question. Be very concise in
your answer. Book: {context}
Now, first provide your reason-
ing briefly in 2-3 sentences start-
ing with 'Rationale:’. Then, an-
swer the question starting with
’Answer:’ as concisely as you
can. Question: {input} Ratio-
nale:

EN.MC

Read the book and answer the
question. Book: {context} Now,
answer the question based on
the book. Only output the an-
swer and do not output any
other words. Question: {input}
{all_classes} Answer:

Read the book and answer the question.
If the question cannot be answered based
on the information in the article, write
“unanswerable”. Book: {context} Now,
answer the question based on the book.
Only output the answer and do not out-
put any other words. If the question
cannot be answered based on the infor-
mation in the article, write “unanswer-
able”. Question: {input} {all_classes}
Answer:

Read the book and answer the
question. Book: {context} Now,
first provide your reasoning
briefly in 2-3 sentences starting
with *Rationale:’. Then, answer
the question starting with *An-
swer:” as concisely as you can.
Question: {input} {all_classes}
Rationale:

Table 6: Prompts used in our experiments for coBench datasets.

1069

D.4 Varying the number of samples used in
Stage II of FB-RAG

We present the plot for analysis in Figure 5. The
X-axis denotes the number of samples used. The
Y-axis denotes the average performance on Long-
Bench datasets. The results are shown for the Ours-
FB (6k — 3Kk) configuration. As evident from the
figure, we find that the performance improves visi-
bly with just one forward sample, while attaining
the maximum at 5 samples.

D.5 In-Context Learning experiments

Section 5 discusses additional analysis where we
combine the techniques developed in this work with
the complementary methods proposed by Wei et al.
(2024). We present the results from these experi-
ments in Table 9.

1070

Method Avg | Narr Qasp Mult Hotp 2Wiki Musi QMSum
BM25 48.03 | 26.62 50.71 56.78 66.28 64.8 4591 25.11
M3Flag (1, 0, 0) 483 | 294 5036 5599 6376 6647 47.87 24.23
M3Flag (1,0.3,0) | 48.58 | 29.79 50.14 5586 64.83 66.78 48.33 24.36
BGEFlag 48.05 | 27.79 51.24 5399 66.64 6646 4574 @ 2449
MPNet 46.92 | 2597 50.72 5433 6295 6555 447 24.25

Table 7: Performance comparisons of off-the-shelf retrievers on LongBench datasets. All results are based on OP
RAG at 3k context with Llama3.1-70B-Instruct model. We compared two weight configurations for M3Flag, taking
recommendations from the authors to set the weights - refer to the original paper for details (Chen et al., 2024).

Method Avg | Narr Qasp Mult Hotp 2Wiki Musi QMSum
Only answers 50.09 | 30.63 52.11 56.17 66.16 68.97 51.49 25.07
Thought process | 50.09 | 32.33 51.6 55.63 6542 68.09 528 24.76
Explanation 50.33 | 30.83 51.84 5588 6692 68.62 53.67 24.54
Reasoning 50.23 | 33.22 5099 5599 6629 6742 53.13 24.56

Table 8: Performance comparisons of our approach on LongBench datasets by varying the prompt used for sampling
in Stage II. Model Used: Ours-FB (6k — 3k). Thought process: Generate the thought process before the final
answer, Reasoning: Generate a reasoning sequence before the final answer, Explanation: Generate an explanation
after generating the answer. While the performance improves over the baselines by only considering the final
answers as samples, we find that using reasoning or explanation performs slightly better on average.

Method | Avg [Narr Qasp Mult Hotp 2Wiki Musi QMSum
Results copied from Table 1 in the main paper
Vanilla 44.19 | 25.01 4931 5341 6091 58.84 3732 24.51
Ours-F (6k — 1.5k) 49.36 | 28.62 51.29 5553 6699 651 5293 25.07
Augmented to Vanilla RAG
Reason-then-Answer 3342 | 19.01 46.08 4534 43.78 29.6 2649 23.61
Few-Shot Demo. w/ Instruction | 41.59 | 21.24 4649 50.54 5449 5624 37.75 24.36
INSTRUCTRAG-ICL 4295 | 23.06 4755 5374 548 6147 3593 24.08
Augmented to Ours-F (6k — 1.5k)
Reason-then-Answer 37.71 | 27.74 4848 4533 46.61 37.06 35 23.75
Few-Shot Demo. w/ Instruction | 46.76 | 27.26 49.73 50.52 58.21 64.52 52.67 24.42
INSTRUCTRAG-ICL 48.79 | 282 4899 5552 637 6942 51.51 24.22

Table 9: Results on LongBench for 1.5k context length by combining FB-RAG with methods proposed in Wei et al.
(2024). We use Rouge-L F1 for QMSum, and F1 score for others. (X — Y): Context size X in Stage [and Y in

Stage II.

1071

