@inproceedings{gupta-li-2025-seeing,
title = "Seeing Through the Mask: {AI}-Generated Text Detection with Similarity-Guided Graph Reasoning",
author = "Gupta, Nidhi and
Li, Qinghua",
editor = "Inui, Kentaro and
Sakti, Sakriani and
Wang, Haofen and
Wong, Derek F. and
Bhattacharyya, Pushpak and
Banerjee, Biplab and
Ekbal, Asif and
Chakraborty, Tanmoy and
Singh, Dhirendra Pratap",
booktitle = "Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "The Asian Federation of Natural Language Processing and The Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-ijcnlp.84/",
pages = "1350--1360",
ISBN = "979-8-89176-303-6",
abstract = "The rise of generative AI has led to challenges in distinguishing AI-generated text from human-written content, raising concerns about misinformation and content authenticity. Detecting AI-generated text remains challenging, especially under various stylistic domains and paraphrased inputs. We introduce SGG-ATD, a novel detection framework that models structural and contextual relationships between LLM-predicted and original-input text. By masking parts of the input and reconstructing them using a language model, we capture implicit coherence patterns. These are encoded in a graph where cosine and contextual links between keywords guide classification via a Graph Convolutional Network (GCN). SGG-ATD achieves strong performance across diverse datasets and shows resilience to adversarial rephrasing and out-of-distribution inputs, outperforming competitive baselines."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gupta-li-2025-seeing">
<titleInfo>
<title>Seeing Through the Mask: AI-Generated Text Detection with Similarity-Guided Graph Reasoning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nidhi</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qinghua</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haofen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="given">F</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Biplab</namePart>
<namePart type="family">Banerjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhirendra</namePart>
<namePart type="given">Pratap</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The Asian Federation of Natural Language Processing and The Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-303-6</identifier>
</relatedItem>
<abstract>The rise of generative AI has led to challenges in distinguishing AI-generated text from human-written content, raising concerns about misinformation and content authenticity. Detecting AI-generated text remains challenging, especially under various stylistic domains and paraphrased inputs. We introduce SGG-ATD, a novel detection framework that models structural and contextual relationships between LLM-predicted and original-input text. By masking parts of the input and reconstructing them using a language model, we capture implicit coherence patterns. These are encoded in a graph where cosine and contextual links between keywords guide classification via a Graph Convolutional Network (GCN). SGG-ATD achieves strong performance across diverse datasets and shows resilience to adversarial rephrasing and out-of-distribution inputs, outperforming competitive baselines.</abstract>
<identifier type="citekey">gupta-li-2025-seeing</identifier>
<location>
<url>https://aclanthology.org/2025.findings-ijcnlp.84/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>1350</start>
<end>1360</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Seeing Through the Mask: AI-Generated Text Detection with Similarity-Guided Graph Reasoning
%A Gupta, Nidhi
%A Li, Qinghua
%Y Inui, Kentaro
%Y Sakti, Sakriani
%Y Wang, Haofen
%Y Wong, Derek F.
%Y Bhattacharyya, Pushpak
%Y Banerjee, Biplab
%Y Ekbal, Asif
%Y Chakraborty, Tanmoy
%Y Singh, Dhirendra Pratap
%S Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
%D 2025
%8 December
%I The Asian Federation of Natural Language Processing and The Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-303-6
%F gupta-li-2025-seeing
%X The rise of generative AI has led to challenges in distinguishing AI-generated text from human-written content, raising concerns about misinformation and content authenticity. Detecting AI-generated text remains challenging, especially under various stylistic domains and paraphrased inputs. We introduce SGG-ATD, a novel detection framework that models structural and contextual relationships between LLM-predicted and original-input text. By masking parts of the input and reconstructing them using a language model, we capture implicit coherence patterns. These are encoded in a graph where cosine and contextual links between keywords guide classification via a Graph Convolutional Network (GCN). SGG-ATD achieves strong performance across diverse datasets and shows resilience to adversarial rephrasing and out-of-distribution inputs, outperforming competitive baselines.
%U https://aclanthology.org/2025.findings-ijcnlp.84/
%P 1350-1360
Markdown (Informal)
[Seeing Through the Mask: AI-Generated Text Detection with Similarity-Guided Graph Reasoning](https://aclanthology.org/2025.findings-ijcnlp.84/) (Gupta & Li, Findings 2025)
ACL