@inproceedings{lin-etal-2025-cll,
title = "{CLL}-{R}et{ICL}: Contrastive Linguistic Label Retrieval-based In-Context Learning for Text Classification via Large Language Models",
author = "Lin, Chaohao and
Wu, Kaida and
Xiang, Peihao and
Wu, Yanzhao and
Bai, Ou",
editor = "Inui, Kentaro and
Sakti, Sakriani and
Wang, Haofen and
Wong, Derek F. and
Bhattacharyya, Pushpak and
Banerjee, Biplab and
Ekbal, Asif and
Chakraborty, Tanmoy and
Singh, Dhirendra Pratap",
booktitle = "Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "The Asian Federation of Natural Language Processing and The Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-ijcnlp.97/",
pages = "1575--1590",
ISBN = "979-8-89176-303-6",
abstract = "Recent research has delved into Retrieval-based In-Context Learning (RetICL), leveraging the power of large language models (LLMs) for text classification. Despite its promise, a persistent challenge lies in effectively retrieving relevant demonstrations from a support set. Many existing approaches have overlooked the essential role of linguistic label information in guiding this retrieval process. To bridge this gap, we present Contrastive Linguistic Label Retrieval-based In-Context Learning (CLL-RetICL), a novel framework designed to identify the most relevant and impactful sentences without altering the model parameters. Our approach uniquely integrates sentence-query similarity with sentence-label similarity, enabling a more nuanced and comprehensive evaluation of relevance. We tested CLL-RetICL across diverse text classification tasks and evaluated its performance on various LLMs. Experimental results demonstrate that CLL-RetICL consistently outperforms previous retrieval methods that do not incorporate linguistic label information. These findings highlight the critical importance of linguistic label-aware selection in enhancing text classification accuracy."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-etal-2025-cll">
<titleInfo>
<title>CLL-RetICL: Contrastive Linguistic Label Retrieval-based In-Context Learning for Text Classification via Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chaohao</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaida</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peihao</namePart>
<namePart type="family">Xiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanzhao</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ou</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haofen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="given">F</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Biplab</namePart>
<namePart type="family">Banerjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhirendra</namePart>
<namePart type="given">Pratap</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The Asian Federation of Natural Language Processing and The Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-303-6</identifier>
</relatedItem>
<abstract>Recent research has delved into Retrieval-based In-Context Learning (RetICL), leveraging the power of large language models (LLMs) for text classification. Despite its promise, a persistent challenge lies in effectively retrieving relevant demonstrations from a support set. Many existing approaches have overlooked the essential role of linguistic label information in guiding this retrieval process. To bridge this gap, we present Contrastive Linguistic Label Retrieval-based In-Context Learning (CLL-RetICL), a novel framework designed to identify the most relevant and impactful sentences without altering the model parameters. Our approach uniquely integrates sentence-query similarity with sentence-label similarity, enabling a more nuanced and comprehensive evaluation of relevance. We tested CLL-RetICL across diverse text classification tasks and evaluated its performance on various LLMs. Experimental results demonstrate that CLL-RetICL consistently outperforms previous retrieval methods that do not incorporate linguistic label information. These findings highlight the critical importance of linguistic label-aware selection in enhancing text classification accuracy.</abstract>
<identifier type="citekey">lin-etal-2025-cll</identifier>
<location>
<url>https://aclanthology.org/2025.findings-ijcnlp.97/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>1575</start>
<end>1590</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CLL-RetICL: Contrastive Linguistic Label Retrieval-based In-Context Learning for Text Classification via Large Language Models
%A Lin, Chaohao
%A Wu, Kaida
%A Xiang, Peihao
%A Wu, Yanzhao
%A Bai, Ou
%Y Inui, Kentaro
%Y Sakti, Sakriani
%Y Wang, Haofen
%Y Wong, Derek F.
%Y Bhattacharyya, Pushpak
%Y Banerjee, Biplab
%Y Ekbal, Asif
%Y Chakraborty, Tanmoy
%Y Singh, Dhirendra Pratap
%S Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
%D 2025
%8 December
%I The Asian Federation of Natural Language Processing and The Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-303-6
%F lin-etal-2025-cll
%X Recent research has delved into Retrieval-based In-Context Learning (RetICL), leveraging the power of large language models (LLMs) for text classification. Despite its promise, a persistent challenge lies in effectively retrieving relevant demonstrations from a support set. Many existing approaches have overlooked the essential role of linguistic label information in guiding this retrieval process. To bridge this gap, we present Contrastive Linguistic Label Retrieval-based In-Context Learning (CLL-RetICL), a novel framework designed to identify the most relevant and impactful sentences without altering the model parameters. Our approach uniquely integrates sentence-query similarity with sentence-label similarity, enabling a more nuanced and comprehensive evaluation of relevance. We tested CLL-RetICL across diverse text classification tasks and evaluated its performance on various LLMs. Experimental results demonstrate that CLL-RetICL consistently outperforms previous retrieval methods that do not incorporate linguistic label information. These findings highlight the critical importance of linguistic label-aware selection in enhancing text classification accuracy.
%U https://aclanthology.org/2025.findings-ijcnlp.97/
%P 1575-1590
Markdown (Informal)
[CLL-RetICL: Contrastive Linguistic Label Retrieval-based In-Context Learning for Text Classification via Large Language Models](https://aclanthology.org/2025.findings-ijcnlp.97/) (Lin et al., Findings 2025)
ACL