@inproceedings{juseon-do-etal-2025-considering,
title = "Considering Length Diversity in Retrieval-Augmented Summarization",
author = "Juseon-Do and
Hwang, Jaesung and
Kwon, Jingun and
Kamigaito, Hidetaka and
Okumura, Manabu",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.134/",
doi = "10.18653/v1/2025.findings-naacl.134",
pages = "2489--2500",
ISBN = "979-8-89176-195-7",
abstract = "This study investigates retrieval-augmented summarization by specifically examining the impact of exemplar summary lengths because previous methods have not considered length constraints. We propose a Diverse Length-aware Maximal Marginal Relevance (DL-MMR) algorithm to better control summary lengths. This algorithm combines the query relevance with diverse target lengths in retrieval-augmented summarization. Unlike previous methods that necessitate exhaustive exemplar-exemplar relevance comparisons using MMR, DL-MMR considers the exemplar target length as well and avoids comparing exemplars to each other, thereby reducing computational cost and conserving memory during the construction of an exemplar pool. Experimental results showed the effectiveness of DL-MMR, which considers length diversity, compared to the original MMR algorithm. DL-MMR additionally showed the effectiveness in memory saving of 781,513 times and computational cost reduction of 500,092 times, while maintaining the same level of informativeness."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="juseon-do-etal-2025-considering">
<titleInfo>
<title>Considering Length Diversity in Retrieval-Augmented Summarization</title>
</titleInfo>
<name>
<namePart>Juseon-Do</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaesung</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingun</namePart>
<namePart type="family">Kwon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hidetaka</namePart>
<namePart type="family">Kamigaito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manabu</namePart>
<namePart type="family">Okumura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>This study investigates retrieval-augmented summarization by specifically examining the impact of exemplar summary lengths because previous methods have not considered length constraints. We propose a Diverse Length-aware Maximal Marginal Relevance (DL-MMR) algorithm to better control summary lengths. This algorithm combines the query relevance with diverse target lengths in retrieval-augmented summarization. Unlike previous methods that necessitate exhaustive exemplar-exemplar relevance comparisons using MMR, DL-MMR considers the exemplar target length as well and avoids comparing exemplars to each other, thereby reducing computational cost and conserving memory during the construction of an exemplar pool. Experimental results showed the effectiveness of DL-MMR, which considers length diversity, compared to the original MMR algorithm. DL-MMR additionally showed the effectiveness in memory saving of 781,513 times and computational cost reduction of 500,092 times, while maintaining the same level of informativeness.</abstract>
<identifier type="citekey">juseon-do-etal-2025-considering</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.134</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.134/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>2489</start>
<end>2500</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Considering Length Diversity in Retrieval-Augmented Summarization
%A Hwang, Jaesung
%A Kwon, Jingun
%A Kamigaito, Hidetaka
%A Okumura, Manabu
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%A Juseon-Do
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F juseon-do-etal-2025-considering
%X This study investigates retrieval-augmented summarization by specifically examining the impact of exemplar summary lengths because previous methods have not considered length constraints. We propose a Diverse Length-aware Maximal Marginal Relevance (DL-MMR) algorithm to better control summary lengths. This algorithm combines the query relevance with diverse target lengths in retrieval-augmented summarization. Unlike previous methods that necessitate exhaustive exemplar-exemplar relevance comparisons using MMR, DL-MMR considers the exemplar target length as well and avoids comparing exemplars to each other, thereby reducing computational cost and conserving memory during the construction of an exemplar pool. Experimental results showed the effectiveness of DL-MMR, which considers length diversity, compared to the original MMR algorithm. DL-MMR additionally showed the effectiveness in memory saving of 781,513 times and computational cost reduction of 500,092 times, while maintaining the same level of informativeness.
%R 10.18653/v1/2025.findings-naacl.134
%U https://aclanthology.org/2025.findings-naacl.134/
%U https://doi.org/10.18653/v1/2025.findings-naacl.134
%P 2489-2500
Markdown (Informal)
[Considering Length Diversity in Retrieval-Augmented Summarization](https://aclanthology.org/2025.findings-naacl.134/) (Juseon-Do et al., Findings 2025)
ACL