@inproceedings{lin-etal-2025-pemv,
title = "{PEMV}: Improving Spatial Distribution for Emotion Recognition in Conversations Using Proximal Emotion Mean Vectors",
author = "Lin, Chen and
Li, Fei and
Ji, Donghong and
Teng, Chong",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.20/",
doi = "10.18653/v1/2025.findings-naacl.20",
pages = "345--357",
ISBN = "979-8-89176-195-7",
abstract = "Emotion Recognition in Conversation (ERC) aims to identify the emotions expressed in each utterance within a dialogue. Existing research primarily focuses on the analysis of contextual structure in dialogue and the interactions between different emotions. Nonetheless, ERC datasets often contain difficult-to-classify samples and suffer from imbalanced label distributions, which pose challenges to the spatial distribution of dialogue features. To tackle this issue, we propose a method that generates Proximal Emotion Mean Vectors (PEMV) based on emotion feature queues to optimize the spatial representation of text features. We design a Center Loss based on PEMVs to pull hard-to-classify samples closer to their respective category centers and employ Angle Loss to maximize the angular separation between different PEMVs. Furthermore, we utilize PEMV as a classifier to better adapt to the spatial structure of dialogue features. Extensive experiments on three widely used benchmark datasets demonstrate that our method achieves state-of-the-art performance and validates its effectiveness in optimizing feature space representations."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-etal-2025-pemv">
<titleInfo>
<title>PEMV: Improving Spatial Distribution for Emotion Recognition in Conversations Using Proximal Emotion Mean Vectors</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Donghong</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chong</namePart>
<namePart type="family">Teng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>Emotion Recognition in Conversation (ERC) aims to identify the emotions expressed in each utterance within a dialogue. Existing research primarily focuses on the analysis of contextual structure in dialogue and the interactions between different emotions. Nonetheless, ERC datasets often contain difficult-to-classify samples and suffer from imbalanced label distributions, which pose challenges to the spatial distribution of dialogue features. To tackle this issue, we propose a method that generates Proximal Emotion Mean Vectors (PEMV) based on emotion feature queues to optimize the spatial representation of text features. We design a Center Loss based on PEMVs to pull hard-to-classify samples closer to their respective category centers and employ Angle Loss to maximize the angular separation between different PEMVs. Furthermore, we utilize PEMV as a classifier to better adapt to the spatial structure of dialogue features. Extensive experiments on three widely used benchmark datasets demonstrate that our method achieves state-of-the-art performance and validates its effectiveness in optimizing feature space representations.</abstract>
<identifier type="citekey">lin-etal-2025-pemv</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.20</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.20/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>345</start>
<end>357</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PEMV: Improving Spatial Distribution for Emotion Recognition in Conversations Using Proximal Emotion Mean Vectors
%A Lin, Chen
%A Li, Fei
%A Ji, Donghong
%A Teng, Chong
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F lin-etal-2025-pemv
%X Emotion Recognition in Conversation (ERC) aims to identify the emotions expressed in each utterance within a dialogue. Existing research primarily focuses on the analysis of contextual structure in dialogue and the interactions between different emotions. Nonetheless, ERC datasets often contain difficult-to-classify samples and suffer from imbalanced label distributions, which pose challenges to the spatial distribution of dialogue features. To tackle this issue, we propose a method that generates Proximal Emotion Mean Vectors (PEMV) based on emotion feature queues to optimize the spatial representation of text features. We design a Center Loss based on PEMVs to pull hard-to-classify samples closer to their respective category centers and employ Angle Loss to maximize the angular separation between different PEMVs. Furthermore, we utilize PEMV as a classifier to better adapt to the spatial structure of dialogue features. Extensive experiments on three widely used benchmark datasets demonstrate that our method achieves state-of-the-art performance and validates its effectiveness in optimizing feature space representations.
%R 10.18653/v1/2025.findings-naacl.20
%U https://aclanthology.org/2025.findings-naacl.20/
%U https://doi.org/10.18653/v1/2025.findings-naacl.20
%P 345-357
Markdown (Informal)
[PEMV: Improving Spatial Distribution for Emotion Recognition in Conversations Using Proximal Emotion Mean Vectors](https://aclanthology.org/2025.findings-naacl.20/) (Lin et al., Findings 2025)
ACL