@inproceedings{t-y-s-s-etal-2025-relexed,
title = "{REL}ex{ED}: Retrieval-Enhanced Legal Summarization with Exemplar Diversity",
author = "T.y.s.s, Santosh and
Jia, Chen and
Goroncy, Patrick and
Grabmair, Matthias",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.26/",
doi = "10.18653/v1/2025.findings-naacl.26",
pages = "427--434",
ISBN = "979-8-89176-195-7",
abstract = "This paper addresses the task of legal summarization, which involves distilling complex legal documents into concise, coherent summaries. Current approaches often struggle with content theme deviation and inconsistent writing styles due to their reliance solely on source documents. We propose RELexED, a retrieval-augmented framework that utilizes exemplar summaries along with the source document to guide the model. RELexED employs a two-stage exemplar selection strategy, leveraging a determinantal point process to balance the trade-off between similarity of exemplars to the query and diversity among exemplars, with scores computed via influence functions. Experimental results on two legal summarization datasets demonstrate that RELexED significantly outperforms models that do not utilize exemplars and those that rely solely on similarity-based exemplar selection."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="t-y-s-s-etal-2025-relexed">
<titleInfo>
<title>RELexED: Retrieval-Enhanced Legal Summarization with Exemplar Diversity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Santosh</namePart>
<namePart type="family">T.y.s.s</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Goroncy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Grabmair</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>This paper addresses the task of legal summarization, which involves distilling complex legal documents into concise, coherent summaries. Current approaches often struggle with content theme deviation and inconsistent writing styles due to their reliance solely on source documents. We propose RELexED, a retrieval-augmented framework that utilizes exemplar summaries along with the source document to guide the model. RELexED employs a two-stage exemplar selection strategy, leveraging a determinantal point process to balance the trade-off between similarity of exemplars to the query and diversity among exemplars, with scores computed via influence functions. Experimental results on two legal summarization datasets demonstrate that RELexED significantly outperforms models that do not utilize exemplars and those that rely solely on similarity-based exemplar selection.</abstract>
<identifier type="citekey">t-y-s-s-etal-2025-relexed</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.26</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.26/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>427</start>
<end>434</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RELexED: Retrieval-Enhanced Legal Summarization with Exemplar Diversity
%A T.y.s.s, Santosh
%A Jia, Chen
%A Goroncy, Patrick
%A Grabmair, Matthias
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F t-y-s-s-etal-2025-relexed
%X This paper addresses the task of legal summarization, which involves distilling complex legal documents into concise, coherent summaries. Current approaches often struggle with content theme deviation and inconsistent writing styles due to their reliance solely on source documents. We propose RELexED, a retrieval-augmented framework that utilizes exemplar summaries along with the source document to guide the model. RELexED employs a two-stage exemplar selection strategy, leveraging a determinantal point process to balance the trade-off between similarity of exemplars to the query and diversity among exemplars, with scores computed via influence functions. Experimental results on two legal summarization datasets demonstrate that RELexED significantly outperforms models that do not utilize exemplars and those that rely solely on similarity-based exemplar selection.
%R 10.18653/v1/2025.findings-naacl.26
%U https://aclanthology.org/2025.findings-naacl.26/
%U https://doi.org/10.18653/v1/2025.findings-naacl.26
%P 427-434
Markdown (Informal)
[RELexED: Retrieval-Enhanced Legal Summarization with Exemplar Diversity](https://aclanthology.org/2025.findings-naacl.26/) (T.y.s.s et al., Findings 2025)
ACL