@inproceedings{basher-etal-2025-bntts,
title = "{B}n{TTS}: Few-Shot Speaker Adaptation in Low-Resource Setting",
author = "Basher, Mohammad Jahid Ibna and
Kowsher, Md and
Islam, Md Saiful and
Nandi, Rabindra Nath and
Prottasha, Nusrat Jahan and
Menon, Mehadi Hasan and
Muntasir, Tareq Al and
Chowdhury, Shammur Absar and
Alam, Firoj and
Yousefi, Niloofar and
Garibay, Ozlem",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.279/",
doi = "10.18653/v1/2025.findings-naacl.279",
pages = "4956--4968",
ISBN = "979-8-89176-195-7",
abstract = "This paper introduces BnTTS (Bangla Text-To-Speech), the first framework for Bangla speaker adaptation-based TTS, designed to bridge the gap in Bangla speech synthesis using minimal training data. Building upon the XTTS architecture, our approach integrates Bangla into a multilingual TTS pipeline, with modifications to account for the phonetic and linguistic characteristics of the language. We pretrain BnTTS on 3.85k hours of Bangla speech dataset with corresponding text labels and evaluate performance in both zero-shot and few-shot settings on our proposed test dataset. Empirical evaluations in few-shot settings show that BnTTS significantly improves the naturalness, intelligibility, and speaker fidelity of synthesized Bangla speech. Compared to state-of-the-art Bangla TTS systems, BnTTS exhibits superior performance in Subjective Mean Opinion Score (SMOS), Naturalness, and Clarity metrics."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="basher-etal-2025-bntts">
<titleInfo>
<title>BnTTS: Few-Shot Speaker Adaptation in Low-Resource Setting</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Jahid</namePart>
<namePart type="given">Ibna</namePart>
<namePart type="family">Basher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="family">Kowsher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Saiful</namePart>
<namePart type="family">Islam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rabindra</namePart>
<namePart type="given">Nath</namePart>
<namePart type="family">Nandi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nusrat</namePart>
<namePart type="given">Jahan</namePart>
<namePart type="family">Prottasha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehadi</namePart>
<namePart type="given">Hasan</namePart>
<namePart type="family">Menon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tareq</namePart>
<namePart type="given">Al</namePart>
<namePart type="family">Muntasir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shammur</namePart>
<namePart type="given">Absar</namePart>
<namePart type="family">Chowdhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Firoj</namePart>
<namePart type="family">Alam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niloofar</namePart>
<namePart type="family">Yousefi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ozlem</namePart>
<namePart type="family">Garibay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>This paper introduces BnTTS (Bangla Text-To-Speech), the first framework for Bangla speaker adaptation-based TTS, designed to bridge the gap in Bangla speech synthesis using minimal training data. Building upon the XTTS architecture, our approach integrates Bangla into a multilingual TTS pipeline, with modifications to account for the phonetic and linguistic characteristics of the language. We pretrain BnTTS on 3.85k hours of Bangla speech dataset with corresponding text labels and evaluate performance in both zero-shot and few-shot settings on our proposed test dataset. Empirical evaluations in few-shot settings show that BnTTS significantly improves the naturalness, intelligibility, and speaker fidelity of synthesized Bangla speech. Compared to state-of-the-art Bangla TTS systems, BnTTS exhibits superior performance in Subjective Mean Opinion Score (SMOS), Naturalness, and Clarity metrics.</abstract>
<identifier type="citekey">basher-etal-2025-bntts</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.279</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.279/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>4956</start>
<end>4968</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BnTTS: Few-Shot Speaker Adaptation in Low-Resource Setting
%A Basher, Mohammad Jahid Ibna
%A Kowsher, Md
%A Islam, Md Saiful
%A Nandi, Rabindra Nath
%A Prottasha, Nusrat Jahan
%A Menon, Mehadi Hasan
%A Muntasir, Tareq Al
%A Chowdhury, Shammur Absar
%A Alam, Firoj
%A Yousefi, Niloofar
%A Garibay, Ozlem
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F basher-etal-2025-bntts
%X This paper introduces BnTTS (Bangla Text-To-Speech), the first framework for Bangla speaker adaptation-based TTS, designed to bridge the gap in Bangla speech synthesis using minimal training data. Building upon the XTTS architecture, our approach integrates Bangla into a multilingual TTS pipeline, with modifications to account for the phonetic and linguistic characteristics of the language. We pretrain BnTTS on 3.85k hours of Bangla speech dataset with corresponding text labels and evaluate performance in both zero-shot and few-shot settings on our proposed test dataset. Empirical evaluations in few-shot settings show that BnTTS significantly improves the naturalness, intelligibility, and speaker fidelity of synthesized Bangla speech. Compared to state-of-the-art Bangla TTS systems, BnTTS exhibits superior performance in Subjective Mean Opinion Score (SMOS), Naturalness, and Clarity metrics.
%R 10.18653/v1/2025.findings-naacl.279
%U https://aclanthology.org/2025.findings-naacl.279/
%U https://doi.org/10.18653/v1/2025.findings-naacl.279
%P 4956-4968
Markdown (Informal)
[BnTTS: Few-Shot Speaker Adaptation in Low-Resource Setting](https://aclanthology.org/2025.findings-naacl.279/) (Basher et al., Findings 2025)
ACL
- Mohammad Jahid Ibna Basher, Md Kowsher, Md Saiful Islam, Rabindra Nath Nandi, Nusrat Jahan Prottasha, Mehadi Hasan Menon, Tareq Al Muntasir, Shammur Absar Chowdhury, Firoj Alam, Niloofar Yousefi, and Ozlem Garibay. 2025. BnTTS: Few-Shot Speaker Adaptation in Low-Resource Setting. In Findings of the Association for Computational Linguistics: NAACL 2025, pages 4956–4968, Albuquerque, New Mexico. Association for Computational Linguistics.